PVS980-58BC
Bidirectional converter, outdoor – up to 2.3 MVA
PVS980-58BC
Bidirectional converter, outdoor – up to 2.3 MVA

Lower system cost with high voltage batteries

- High total performance
- Maximized reliability
- Lower system cost
- For harsh environment
- ABB service with global support
- Long lifetime
PVS980-58BC
Bidirectional converter, outdoor – up to 2.3 MVA

1500 reasons for storing energy

1. High total performance
 High efficiency up to 98.8% with low auxiliary consumption. Uptime maximized with modular design and easiness of service.

2. Maximized reliability
 Industrial and proven design based on ABB industrial drives power conversion and control platform and solar inverters platform. Low maintenance self contained cooling system ensuring long lifetime of components.

3. Lower system cost
 High 1500 Vdc voltage system to reduce balance of system cost, installation cost and enabling bigger block sizes for further system cost savings.

4. For harsh environment
 Outdoor installation with high ingress protection IP66/IP56 and UL Type 3R with corrosive resistant stainless steel and aluminum enclosure.

5. ABB service with global support
 Common platform for storage and PV maximizes spare part and service personnel synergies.

6+. Fast, inbuilt support for battery energy storage systems
 Integrated energy storage firmware with advanced inbuilt control features with full four quadrant active and reactive power support with fast Modbus interface.

For large scale energy storage with or without solar
PVS980-58BC
Bidirectional converter, outdoor – up to 2.3 MVA

1500 reasons for storing energy

1. High total performance
 - High efficiency up to 98.8% with low auxiliary consumption.
 - Uptime maximized with modular design and easiness of service.

2. Maximized reliability
 - Industrial and proven design based on ABB industrial drives power conversion and control platform and solar inverters platform.
 - Low maintenance self contained cooling system ensuring long lifetime of components.

3. Lower system cost
 - High 1500 Vdc voltage system to reduce balance of system cost, installation cost and enabling bigger block sizes for further system cost savings.

4. For harsh environment
 - Outdoor installation with high ingress protection IP66/IP56 and UL Type 3R with corrosive resistive stainless steel and aluminum enclosure.

5. ABB service with global support
 - Common platform for storage and PV maximizes spare part and service personnel synergies.

6. Fast, inbuilt support for battery energy storage systems
 - Integrated energy storage firmware with advanced inbuilt control features with full four quadrant active and reactive power support with fast Modbus interface.

- Solar energy firming / smoothening
 - To mitigate intermittent nature of renewables energy generation by providing firm power output.

- Ramp rate control
 - Attenuates the intermittent nature of renewable energy sources by buffering the power output rapid changes.

- Energy time shifting / load levelling
 - Storing energy during periods of low demand from the grid, and supply energy when there is high demand.

- Fast frequency regulation
 - Maintaining the grid frequency stability by storing energy to the batteries during over frequency and deliver energy to the grid during period of under frequency.

- Peak power shaving
 - Peak power shaving close to demand charges can reduce the peak demand charges on utility bills and for utilities can reduce operational costs on meeting peak demand.

- Black start/islanding support
 - Smooth transition from grid tie to islanded mode for increased grid resiliency. Recover from blackout and avoid specially equipped generators such as diesel gen set.

▶ Solar energy firming / smoothening
To mitigate intermittent nature of renewables energy generation by providing firm power output.

▶ Ramp rate control
Attenuates the intermittent nature of renewable energy sources by buffering the power output rapid changes.

▶ Energy time shifting / load levelling
Storing energy during periods of low demand from the grid, and supply energy when there is high demand.

▶ Fast frequency regulation
Maintaining the grid frequency stability by storing energy to the batteries during over frequency and deliver energy to the grid during period of under frequency.

▶ Peak power shaving
Peak power shaving close to demand charges can reduce the peak demand charges on utility bills and for utilities can reduce operational costs on meeting peak demand.

▶ Black start/islanding support
Smooth transition from grid tie to islanded mode for increased grid resiliency. Recover from blackout and avoid specially equipped generators such as diesel gen set.