ABB solar inverters

Product manual
TRIO-TM-50.0-400 / TRIO-TM-60.0-480 (from 50 to 60kW)
IMPORTANT SAFETY INSTRUCTIONS
This manual contains important safety instructions that must be followed during the installation and maintenance of the equipment.

SAVE THESE INSTRUCTIONS!
Keep this document in a safe place near the inverter for easy access during installation, operation and maintenance.

THE INSTALLER MUST READ THIS DOCUMENT IN ITS ENTIRETY BEFORE INSTALLING THIS EQUIPMENT.
Operators are required to read this manual and scrupulously follow the instructions given in it, since ABB cannot be held responsible for damage caused to people and/or things, or the equipment, if the conditions described below are not observed.

The purpose of this document is to support the qualified technician, who has received training and/or has demonstrated skills and knowledge in construction, to install, operate and maintain the inverter. This manual covers only inverter, not any equipment (photovoltaic modules, external disconnects, etc) to which it is connected.

Warranty requirements are included in the Terms and Conditions of sale included with the inverter order.
NOTE: Any changes not approved by ABB void the warranty.
Warranty and supply conditions

The warranty conditions are considered to be valid if the Customer adheres to the indications in this manual; any conditions deviating from those described herein must be expressly agreed in the purchase order.

ABB declares that the equipment complies with the provisions of law currently in force in the country of installation and has issued the corresponding declaration of conformity.

Not included in the supply

ABB accepts no liability for failure to comply with the instructions for correct installation and will not be held responsible for systems upstream or downstream of the equipment it has supplied.

It is absolutely forbidden to modify the equipment. Any modification, manipulation, or alteration not expressly agreed with the manufacturer, concerning either hardware or software, shall result in the immediate cancellation of the warranty.

The customer is fully responsible for any changes made to the system.

Given the countless array of system configurations and installation environments possible, it is essential to check the following: adequate spaces, suitable for housing the equipment; airborne noise produced based on the environment; possible flammability conditions.

ABB will NOT be held liable for defects or malfunctions arising from: improper use of the equipment; deterioration resulting from transportation or particular environmental conditions; performing maintenance incorrectly or not at all; tampering or unsafe repairs; use or installation by unqualified persons.

ABB is not responsible for any loss of the equipment, or part of it, which does not take place on the basis of the regulations and laws in force in the country of installation.
Table of Contents

Introduction and general information

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warranty and supply conditions</td>
<td>4</td>
</tr>
<tr>
<td>Not included in the supply</td>
<td>4</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>5</td>
</tr>
<tr>
<td>Scope and target audience</td>
<td>9</td>
</tr>
<tr>
<td>Purpose and document structure</td>
<td>9</td>
</tr>
<tr>
<td>List of appendix documents</td>
<td>9</td>
</tr>
<tr>
<td>Operator and maintenance personnel skills/prerequisites</td>
<td>9</td>
</tr>
<tr>
<td>Symbols and signs</td>
<td>10</td>
</tr>
<tr>
<td>Field of use, general conditions</td>
<td>12</td>
</tr>
<tr>
<td>Intended or allowed use</td>
<td>12</td>
</tr>
<tr>
<td>Limits in field of use</td>
<td>12</td>
</tr>
<tr>
<td>Improper or prohibited use</td>
<td>12</td>
</tr>
</tbody>
</table>

Characteristics

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General conditions</td>
<td>13</td>
</tr>
<tr>
<td>Identification of the equipment and manufacturer</td>
<td>14</td>
</tr>
<tr>
<td>Communication identification label</td>
<td>16</td>
</tr>
<tr>
<td>Models and range of equipment</td>
<td>17</td>
</tr>
<tr>
<td>List of main reference components</td>
<td>18</td>
</tr>
<tr>
<td>DC wiring box Standard / -S / -SX / -SX2 version</td>
<td>19</td>
</tr>
<tr>
<td>AC wiring box Standard and -SX version</td>
<td>20</td>
</tr>
<tr>
<td>Principal wiring box components</td>
<td>21</td>
</tr>
<tr>
<td>Characteristics and technical data</td>
<td>23</td>
</tr>
<tr>
<td>Tightening torques</td>
<td>27</td>
</tr>
<tr>
<td>Cable gland clamping range</td>
<td>27</td>
</tr>
<tr>
<td>Overall dimensions</td>
<td>28</td>
</tr>
<tr>
<td>Dimensions of vertical wall assembly bracket</td>
<td>29</td>
</tr>
<tr>
<td>Horizontal wall assembly bracket</td>
<td>29</td>
</tr>
<tr>
<td>Efficiency curves</td>
<td>30</td>
</tr>
<tr>
<td>Power limitation (Power Derating)</td>
<td>31</td>
</tr>
<tr>
<td>Power reduction due to environmental conditions</td>
<td>31</td>
</tr>
<tr>
<td>Power reduction due to the input voltage</td>
<td>32</td>
</tr>
<tr>
<td>Power reduction due to the grid voltage</td>
<td>32</td>
</tr>
<tr>
<td>P- Q curve capability</td>
<td>33</td>
</tr>
<tr>
<td>Characteristics of a photovoltaic generator</td>
<td>34</td>
</tr>
<tr>
<td>Strings and Arrays</td>
<td>34</td>
</tr>
<tr>
<td>Description of the equipment</td>
<td>35</td>
</tr>
<tr>
<td>Operating diagram</td>
<td>35</td>
</tr>
<tr>
<td>Mutual connection of multiple inverters</td>
<td>36</td>
</tr>
<tr>
<td>Notes on the system sizing</td>
<td>36</td>
</tr>
</tbody>
</table>
1 - Introduction and general information

Functionality and components of the equipment .. 37
 Highlights .. 37
 Improved commissioning and maintenance ... 37
 Data transmission and control .. 37
 Aurora Vision® Plant Management Platform ... 37
 Configurable relay .. 38
 Remote switch-on/switch-off .. 38
 Reactive power feed into the grid ... 38
 Limiting the active power fed into the grid .. 38
 Communication interface ... 39
 Accessing to web server ... 39
 Ethernet bus connection ... 40
 Topographic diagram of the equipment ... 41

Safety devices ... 43
 Anti-Islanding .. 43
 Ground fault of the photovoltaic panels ... 43
 String fuses .. 43
 Overvoltage surge arresters .. 43
 Other safeguards .. 43

Safety and accident prevention .. 44
 Safety information and instructions ... 44
 Hazardous areas and operations .. 45
 Environmental conditions and risks .. 45
 Signs and labels .. 45
 Thermal and electrical hazard ... 46
 Clothing and protection of personnel ... 46
 Residual risks .. 47
 Table of residual risks ... 47

Lifting and transport .. 48
 General conditions .. 48
 Transport and handling ... 48
 Lifting .. 48
 Unpacking and checking .. 48
 Storage .. 49
 Weight of the modules of the equipment ... 49
 Types of lifting ... 50
 List of components supplied .. 51
 Kit of recommended spare parts ... 52

Installation .. 53
 General conditions .. 53
 Installation site and position .. 54
 Wireless signal environmental checks ... 56
 Installations above 2000 metres ... 57
 Installations with a high level of humidity ... 57
 Mounting with a support bracket .. 58
 Mounting on a vertical support .. 58
 Mounting on a horizontal support .. 64
1 - Introduction and general information

Grid output connection (AC side) ..70
 Characteristics and sizing of the protective grounding cable ...70
 Characteristics and sizing of the line cable ..71
 Load protection switch (AC disconnect switch) ..71
 Connection to terminal block AC side ..72
 Installation of the second protective earthing cable ..74

Operations preliminary to the connection of the PV generator ...75
 Checking of leakage to ground of the photovoltaic generator ...75
 Checking of strings voltage ..76
 Checking the correct polarity of the strings ..76
 Selection of differential protection downstream of the inverter ..76

Independent or parallel input channels configuration ..78
 Channel configuration examples ...79
 Independent channel configuration (default configuration) ...80
 Parallel channel configuration ..80

Input connection to PV generator (DC side) ...81
 Connection of inputs on the Standard and -S models ...82
 Connection of inputs on the -SX / -SX2 models ...83
 Installation procedure for quick-fit connectors ..84

String protection fuses (-SX / -SX2 models only) ..88
 Sizing of fuses ...88

Communication and control board ...90

Connections to the communication and control board ..91
 Ethernet connection ..92
 Serial Communication connection (RS485) ..95
 Remote control connection ...98
 Configurable Relay connection (ALARM and AUX) ...98

Installing the Wiring Box cover and conductive springs ...99

Instruments ..100

General conditions ...100

Description of the LED function ...101
 LED isolation fault ...101

User interface ..102
 Measurement tolerance ...102

Operation ..103

General conditions ...103

Commissioning (Via internal Webserver) - Wireless connection ...104
 Connection to the inverter - Wireless ...104
 Commissioning procedure - Wireless connected ..105

LED behaviour ..112

Description of the internal Webserver ..114
 Access to the internal Webserver ...114
 webserver menu structure ..117
 MAIN section ...118
 SETUP section ...119
 EVENTS Section ...121
 USER section ...122
Introduction and general information

Scope and target audience

Purpose and document structure

This operating and maintenance manual is a useful guide that will enable you to work safely and carry out the operations necessary for keeping the equipment in good working order.

If the equipment is used in a manner not specified in this manual, the protection provided by the equipment may be impaired.

The language in which the document was originally written is ITALIAN; therefore, in the event of inconsistencies or doubts please ask the manufacturer for the original document.

List of appendix documents

In addition to this user manual and maintenance you can consult (and download) the product documentation by visiting www.abbsolarinverters.com.

Part of the information given in this document is taken from the original supplier documents. This document contains only the information considered necessary for the use and routine maintenance of the equipment.

Operator and maintenance personnel skills/prerequisites

Personnel in charge of using and maintaining the equipment must be skilled for the described tasks and must reliably demonstrate their capacity to correctly interpret what is described in the manual.

For safety reasons, only a qualified electrician who has received training and/or demonstrated skills and knowledge of the inverter's structure and operation may install the inverter.

The installation must be performed by qualified installers and/or licensed electricians in accordance with the existing regulations in the country of installation.

Inverter operation and maintenance by a person who is NOT qualified, is intoxicated, or on narcotics, is strictly forbidden.

The customer has civil liability for the qualification and mental or physical state of the personnel who interact with the equipment. They must always use the personal protective equipment (PPE) required by the laws of the country of destination and whatever is provided by their employer.
Symbols and signs

In the manual and/or in some cases on the equipment, the danger or hazard zones are indicated with signs, labels, symbols or icons.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>📄⚠️</td>
<td>Indicates that it is mandatory to consult the manual or original document, which must be available for future use and must not be damaged in any way.</td>
</tr>
<tr>
<td>⚠️</td>
<td>General warning - Important safety information. Indicates operations or situations in which staff must be very careful.</td>
</tr>
<tr>
<td>⚠️⚡</td>
<td>Dangerous Voltage - Indicates operations or situations in which staff must be very careful with regard to dangerous voltage levels.</td>
</tr>
<tr>
<td>⚠️🔥</td>
<td>Hot parts - Indicates a risk arising from the presence of hot zones or zones with parts at high temperatures (risk of burns).</td>
</tr>
<tr>
<td>⚠️🔍</td>
<td>Risk of explosion</td>
</tr>
<tr>
<td>⚠️🤷‍♂️</td>
<td>Risk of injury due to the weight of the equipment. Take care during lifting and transport</td>
</tr>
<tr>
<td>🛑</td>
<td>Indicates that the area in question must not be accessed or that the operation described must not be carried out.</td>
</tr>
<tr>
<td>🚫تحكم في الأطفال</td>
<td>Keep out of the reach of children</td>
</tr>
<tr>
<td>🚫⚠️</td>
<td>Indicates that smoking and the use of naked flames is prohibited.</td>
</tr>
<tr>
<td>🚫➡️</td>
<td>Indicates that it is mandatory to carry out the described operations using the clothing and/or personal protective equipment provided by the employer.</td>
</tr>
<tr>
<td>🚫🕒</td>
<td>WEEE logo. Indicates that the product is to be disposed of according to current legislation regarding the disposal of electronic components.</td>
</tr>
<tr>
<td>📄</td>
<td>Indicates the protection rating of the equipment according to IEC 70-1 (EN 60529 June 1997) standard.</td>
</tr>
<tr>
<td>⚠️接地点</td>
<td>Point of connection for grounding protection.</td>
</tr>
<tr>
<td>🔥🌡️</td>
<td>Indicates the permitted temperature range</td>
</tr>
</tbody>
</table>
Introduction and general information

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Indicates a risk of electric shock. The discharge time of the stored energy (represented in the figure by the letters XX), is provided on the identification label.</td>
</tr>
<tr>
<td></td>
<td>Direct Current</td>
</tr>
<tr>
<td></td>
<td>Alternate current</td>
</tr>
<tr>
<td></td>
<td>With isolation transformer</td>
</tr>
<tr>
<td></td>
<td>Without isolation transformer</td>
</tr>
<tr>
<td></td>
<td>Positive pole of the input voltage (DC)</td>
</tr>
<tr>
<td></td>
<td>Negative pole of the input voltage (DC)</td>
</tr>
<tr>
<td></td>
<td>Indicates the centre of gravity of the equipment.</td>
</tr>
<tr>
<td></td>
<td>Indicates the requirement to wear acoustic protection devices in order to prevent damage to hearing</td>
</tr>
</tbody>
</table>
Field of use, general conditions

ABB shall not be liable for any damages whatsoever that may result from incorrect or careless operations.

You may not use the equipment for a use that does not conform to that provided for in the field of use. The equipment MUST NOT be used by inexperienced staff, or even experienced staff if carrying out operations on the equipment that fail to comply with the indications in this manual and enclosed documentation.

Intended or allowed use

This equipment is a inverter designed for:
- transforming a continuous electrical current (DC) supplied by a photovoltaic generator (FV)
- in an alternating electrical current (AC)
- suitable for feeding into the public distribution grid.

Limits in field of use

The inverter can be used only with photovoltaic modules which have ground isolated input poles, unless they are accessories installed that enable earthing of the inputs. In this case you must install an insulating transformer on the AC side of the system.

Only a photovoltaic generator can be connected in the input of the inverter (do not connect batteries or other sources of power supply).

The inverter can be connected to the electricity grid only in countries for which it has been certified/approved.

The inverter cannot be connected to the DC side in parallel to other inverters to convert energy from a photovoltaic generator with a power greater than the nominal power of the single inverter.

The inverter may only be used in compliance with all its technical characteristics.

Improper or prohibited use

IT IS STRICTLY FORBIDDEN TO:

- Install the equipment in environments subject to particular conditions of flammability or in adverse or disallowed environmental conditions, (temperature and humidity).
- Use the equipment with safety devices which are faulty or disabled.
- Use the equipment or parts of the equipment by linking it to other machines or equipment, unless expressly provided for.
- Modify operating parameters that are not accessible to the operator and/or parts of the equipment to vary its performance or change its isolation.
- Clean with corrosive products that could eat into parts of the equipment or generate electrostatic charges.
- Use or install the appliance or parts of it without having read and understood the contents of the user and maintenance manual.
- Heat or dry rags and clothing on the parts in temperature. In addition to being hazardous, doing so would compromise component ventilation and cooling.
General conditions

A description of the equipment characteristics is provided to identify its main components and specify the technical terminology used in the manual.

This chapter contains information about the models, details of the equipment, characteristics and technical data, overall dimensions and equipment identification.

The customer/Installer takes full responsibility if, when reading this manual, the chronological order of its presentation provided is not observed. All information is provided considering occasional inclusion of information in previous chapters.

In certain cases, there may be a need to separately document software functionality or attach supplementary documentation to this manual which is intended for more qualified professionals.
Identification of the equipment and manufacturer

The technical data provided in this manual does not substitute the data supplied on the labels affixed to the equipment.

The labels affixed to the equipment must NOT be removed, damaged, stained, hidden, etc., for any reason whatsoever.

TRIO-TM-50.0-400:

The approval label contains the following information:
1. Manufacturer
2. Model
3. Rating data
4. Certification marks

The labels are NOT to be hidden by foreign objects and parts (rags, boxes, equipment, etc.); they must be regularly cleaned and always kept in sight.
TRIO-TM-60.0-480:

The approval label contains the following information:
1. Manufacturer
2. Model
3. Rating data
4. Certification marks

The labels are NOT to be hidden by foreign objects and parts (rags, boxes, equipment, etc.); they must be regularly cleaned and always kept in sight.
In addition to the label showing the inverter data, there are also additional identification labels for the power module and the 2 wiring boxes.

The labels display the following information:

- **Inverter or wiring box model**
- **Inverter Part Number**
- **Inverter/wiring box Serial Number** consisting of:
 - YY = Year of manufacture
 - WW = Week of manufacture
 - SSSSSS = sequential number
- **Week/Year of manufacture**

⚠️ The officially required information is located on the approval label. The identification label is an accessory label which shows the information necessary for the identification and characterisation of the inverter by ABB.

🚫 The labels are NOT to be hidden by foreign objects and parts (rags, boxes, equipment, etc.); they must be regularly cleaned and always kept in sight.

Communication identification label

An additional label containing the communication identification information is applied on the inverter. The label displays the following information:

- **SN:** Wireless Serial Number
- **MAC:** Wireless MAC Address
 - Included in the SSID of the wireless access point created by the inverter: ABB-XX-XX-XX-XX-XX (where “X” is an hexadecimal character of the MAC Address).
 - To use to obtain the “Host Name” http://ABB-XX-XX-XX-XX-XX.local (where “X” is an hexadecimal character of the MAC Address).
 - The MAC Address is the only piece of information required to register the inverter on the Aurora Vision Portal.
- **PK:** Product Key

Used as password to access the access point after 24 hours from inverter power-on have elapsed (and the default password “ABBSOLAR” has expired) or used as username and password in case of loss of the access credentials for the inverter’s internal Webserver.
Models and range of equipment

The choice of the inverter model must be made by a qualified technician who knows about the installation conditions, the devices that will be installed outside the inverter and possible integration with an existing system.

The power module is the same for all configurations, while the DC or AC wiring box can be purchased depending on requirements.

<table>
<thead>
<tr>
<th>“DC Wiring Box” Model Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCWB-TRIO-50.0-TM-400</td>
<td>DC input connectors with screw terminal block</td>
</tr>
<tr>
<td>DCWB-TRIO-60.0-TM-480</td>
<td>DC input connectors with screw terminal block + DC disconnect switch</td>
</tr>
<tr>
<td>DCWB-S-TRIO-50.0-TM-400</td>
<td>DC input connectors with screw terminal block + DC disconnect switch</td>
</tr>
<tr>
<td>DCWB-S-TRIO-60.0-TM-480</td>
<td>DC input connectors with screw terminal block + DC disconnect switch</td>
</tr>
<tr>
<td>DCWB-SX-TRIO-50.0-TM-400</td>
<td>Input with 15 quick fit connectors pairs (5 pairs for each MPPT) + Positive string fuses + DC disconnect switch</td>
</tr>
<tr>
<td>DCWB-SX-TRIO-60.0-TM-480</td>
<td>Input with 15 quick fit connectors pairs (5 pairs for each MPPT) + Positive and negative string fuses + DC disconnect switch</td>
</tr>
<tr>
<td>DCWB-SX2-TRIO-50.0-TM-400</td>
<td>Input with 15 quick fit connectors pairs (5 pairs for each MPPT) + Positive and negative string fuses + DC disconnect switch</td>
</tr>
<tr>
<td>DCWB-SX2-TRIO-60.0-TM-480</td>
<td>Input with 15 quick fit connectors pairs (5 pairs for each MPPT) + Positive and negative string fuses + DC disconnect switch</td>
</tr>
</tbody>
</table>

1) -SX and -SX2 models can optionally be equipped with DC overvoltage surge arresters type 2
2) All DCWB models can optionally be equipped with display

<table>
<thead>
<tr>
<th>“AC Wiring Box” Model Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACWB-TRIO-50.0-TM-400</td>
<td>AC output connectors with screw terminal block</td>
</tr>
<tr>
<td>ACWB-TRIO-60.0-TM-480</td>
<td>AC output connectors with screw terminal block</td>
</tr>
<tr>
<td>ACWB-SX-TRIO-50.0-TM-400</td>
<td>AC disconnect switch with AC output connection terminals</td>
</tr>
<tr>
<td>ACWB-SX-TRIO-60.0-TM-480</td>
<td>AC disconnect switch with AC output connection terminals</td>
</tr>
</tbody>
</table>

1) -SX model can optionally be equipped with AC overvoltage surge arresters type 2

<table>
<thead>
<tr>
<th>“Power module” Model Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIO-TM-50.0-400-POWER MODULE</td>
<td>Inverter section / power module 50.0kW nominal output power at 400Vac grid voltage</td>
</tr>
<tr>
<td>TRIO-TM-60.0-480-POWER MODULE</td>
<td>Inverter section / power module 60.0kW nominal output power at 480Vac grid voltage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>“Bracket” Model Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIO-50.0-BRACKET-VERTICAL</td>
<td>Wall mounting bracket; 90 to 16 degrees from horizontal</td>
</tr>
<tr>
<td>TRIO-50.0-BRACKET-HORIZONTAL</td>
<td>Horizontal mounting bracket; 15 to 0 degrees horizontal</td>
</tr>
</tbody>
</table>
List of main reference components

01 assembly bracket
02 DC wiring box
03 power module
04 interface connector cap
05 AC wiring box
06 handles
07 metal locking forks
08 front cover
09 communication and control board
10 positive (+) side string fuses
11 DC cable glands
12 AC filter board
13 DC input terminal block
14 DC disconnect switch
15 DC overvoltage surge arresters (opt.)
16 single AC cable gland
17 AC output terminal block
18 AC overvoltage surge arresters (opt.)
19 input connectors
20 ground protection terminal
21 anti-condensation valve
22 negative (-) side string fuses
23 interface connector
24 spacers
25 heat sink
26 top stops
27 rear pins
28 conductor springs
29 individual AC cable glands (not supplied)
30 cap deposit box
31 ground connection brackets
32 Wi-Fi antenna connector
33 external ethernet connector (RJ45)
34 service cable gland
35 AC disconnect switch
36 ground brackets fitting points
37 plastic locking forks
38 display (optional)
39 parallel MPPT connection points
DC wiring box Standard / -S / -SX / -SX2 version

- Communication and control board
- Positive (+) side string fuses
- DC cable glands
- DC input terminal block
- DC disconnect switch
- DC overvoltage surge arresters (opt.)
- Input connectors
- Anti-condensation valve
- Negative (-) side string fuses
- Interface connector
- Cap deposit box
- Ground brackets fitting points
- Parallel MPPT connection points
- Wi-Fi antenna connector
- External ethernet connector (RJ45)
- Service cable gland
- Ground connection brackets

Wiring box WBDC-Standard

Wiring box WBDC-S

Wiring box WBDC-SX

Wiring box WBDC-SX2
AC wiring box Standard and -SX version

12 AC filter board
16 single AC cable gland
17 AC output terminal block
18 AC overvoltage surge arrester (opt.)
20 ground protection terminal
21 anti-condensation valve
23 interface connector
26 ground connection brackets
30 individual AC cable glands (not supplied)
31 cap deposit box
32 ground connection brackets
36 AC disconnect switch
37 ground brackets fitting points

Wiring box WBAC-Standard

Wiring box WBAC-SX

Wiring box AC lateral view
Principal wiring box components

AC line disconnect switch 36
TRIO-50.0 wiring box -S / -SX
Model: OT100F4N2 or equivalent

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Utilisation category</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>380-415Vac</td>
<td>AC22A</td>
<td>100A</td>
</tr>
<tr>
<td>380-415Vac</td>
<td>AC23A</td>
<td>80A</td>
</tr>
</tbody>
</table>

AC line data

AC disconnect switch

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Utilisation category</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>380-415Vac</td>
<td>AC22A</td>
<td>100A</td>
</tr>
<tr>
<td>380-415Vac</td>
<td>AC23A</td>
<td>80A</td>
</tr>
</tbody>
</table>

AC disconnect switch

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Utilisation category</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>500Vac</td>
<td>AC22A</td>
<td>100A</td>
</tr>
<tr>
<td>500Vac</td>
<td>AC23A</td>
<td>60A</td>
</tr>
</tbody>
</table>

DC line data

DC line disconnect switch 14
TRIO-50.0/60.0 wiring box -S / -SX/-SX2
Model: OTDC180U22 or equivalent

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Utilisation category</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000Vdc</td>
<td>UL98B</td>
<td>180A (60A for each pole)</td>
</tr>
</tbody>
</table>

String fuses 22
TRIO-50.0/60.0 wiring box -SX/ -SX2
The standard string protection fuses installed on the inverter have the following features:

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Rating</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000Vdc</td>
<td>15 A (Max. Rating 20A)</td>
<td>gPV</td>
</tr>
</tbody>
</table>

DC overvoltage surge arresters 15 class 2 (optional)
TRIO-50.0/60.0 per wiring box -SX/SX2
The DC overvoltage surge arresters installed in this wiring box model are of the Dehn DG M PV2 SCI SN1868FM (5 cartridges) type. The surge arresters consist of interchangeable cartridges type DG MOD PV SCI 500 (A) and DG MOD PV 500 (B).
In the event of damage to the surge arresters caused by atmospheric agents, spare part kits may be ordered quoting code KIT SURGE DC SIDE TRIO.
AC overvoltage surge arresters **class 2** (optional)
TRIO-50.0/60.0 wiring box -SX

The AC surge arresters installed are type Dehn DG M TT 385 FM (or equivalent), composed of four interchangeable cartridges, type DG MOD 385 (D) and DG MOD NPE (C).

In the event of damage to the surge arresters caused by atmospheric agents, spare part kits may be ordered quoting code KIT SURGE AC SIDE TRIO.

In the event of damage to the surge arresters caused by atmospheric agents, spare part kits are available.
Characteristics and technical data

<table>
<thead>
<tr>
<th>Table: Technical Data</th>
<th>TRIO-TM-50.0-400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>Absolute Maximum Input Voltage (Vmax,abs)</td>
<td>1000 V</td>
</tr>
<tr>
<td>Input start-up voltage (Vstart)</td>
<td>420...700 V (default 420 V)</td>
</tr>
<tr>
<td>DC Input operating interval (Vdcmin...Vdcmax)</td>
<td>0.7xVstart...950 V (min 300 V)</td>
</tr>
<tr>
<td>Rated DC Input Voltage (Vdcr)</td>
<td>610 Vdc</td>
</tr>
<tr>
<td>DC Input Nominal Power (Pdc)</td>
<td>52000 W</td>
</tr>
<tr>
<td>Number of Independent MPPT</td>
<td>3 (SX and SX2 version) / 1 (standard and SX version)</td>
</tr>
<tr>
<td>Max DC Input power for each MPPT (PMPPT,max)</td>
<td>17500 W</td>
</tr>
<tr>
<td>MPPT DC Voltage Range (VMPPTmin ... VMPPTmax) to Pacr</td>
<td>480-800 Vdc</td>
</tr>
<tr>
<td>Maximum Return current (AC side vs DC side)</td>
<td>Negligible in normal operating conditions (3)</td>
</tr>
<tr>
<td>Max short circuit current (Iscmax) for each MPPT</td>
<td>55 A (165A in case of parallel MPPT)</td>
</tr>
<tr>
<td>Number of DC Connection Pairs for each MPPT</td>
<td>5 (-SX and -SX2 version)</td>
</tr>
<tr>
<td>Type of Input DC Connectors</td>
<td>Screw terminal block max. cross-section 95mm² (Standard and -S version) PV quick fit connector (4) (-SX and -SX2 version)</td>
</tr>
<tr>
<td>Type of photovoltaic panels that can be connected at input according to IEC 61730</td>
<td>Class A</td>
</tr>
<tr>
<td>Input protection</td>
<td></td>
</tr>
<tr>
<td>Reverse Polarity Protection</td>
<td>Yes, from current limited source</td>
</tr>
<tr>
<td>Input overvoltage protection for each MPPT - Varistors</td>
<td>Yes, 1 for each MPPT</td>
</tr>
<tr>
<td>Input overvoltage protection for each MPPT - Modular surge arrester</td>
<td>Type 2 (option) with monitoring (only -SX and -SX2 version)</td>
</tr>
<tr>
<td>Isolation Check</td>
<td>Complying with the local standard</td>
</tr>
<tr>
<td>Characteristics of DC disconnect switch for each MPPT (versions with DC disconnect switch)</td>
<td>1000 V / 60 A for each MPPT (180 A in case of parallel MPPT)</td>
</tr>
<tr>
<td>String fuses (-SX/-SX2 versions)</td>
<td>15A (gPV / 1000Vdc) (6)</td>
</tr>
<tr>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>AC Connection to the grid</td>
<td>3Ø grounded WYE system only, 3W + GND (no N connection) or 4W + GND (with N connection)</td>
</tr>
<tr>
<td>Nominal AC Output Power (Pacr @cosφ=1)</td>
<td>50000 W</td>
</tr>
<tr>
<td>Maximum AC Output Power (Pacmax @cosφ=1)</td>
<td>50000 W</td>
</tr>
<tr>
<td>Maximum apparent Output power (Smax)</td>
<td>50000 VA</td>
</tr>
<tr>
<td>Rated AC Output Voltage (Vacr)</td>
<td>400 V</td>
</tr>
<tr>
<td>Output voltage range (Vacmin...Vacmin)</td>
<td>320...480 V (7)</td>
</tr>
<tr>
<td>Maximum output current (Iacmax)</td>
<td>77 A</td>
</tr>
<tr>
<td>Contribution to short-circuit current</td>
<td>92 A</td>
</tr>
<tr>
<td>Rated Output Frequency (fr)</td>
<td>50 Hz / 60 Hz</td>
</tr>
<tr>
<td>Output Frequency Range (fmin...fmax)</td>
<td>47...53 Hz / 57...63 Hz (2)</td>
</tr>
<tr>
<td>Nominal power factor and setting interval</td>
<td>>0.995, 0...1 inductive/capacitive with maximum Smax</td>
</tr>
<tr>
<td>Total harmonic distortion of current</td>
<td><3%</td>
</tr>
<tr>
<td>Max AC cable cross section accepted</td>
<td>95 mm² copper (150 mm² copper/aluminum with TRIO-AC-WIRING KIT)</td>
</tr>
<tr>
<td>AC Connections Type</td>
<td>Screw terminal block - single AC cable gland PG42 (7) (default configuration) or 5 individual AC cable glands (not supplied)</td>
</tr>
<tr>
<td>Output protection</td>
<td></td>
</tr>
<tr>
<td>Anti-islanding Protection</td>
<td>Complying with the local standard (active frequency drift combined with RoCoF techniques)</td>
</tr>
<tr>
<td>Maximum external AC overcurrent protection</td>
<td>100 A</td>
</tr>
<tr>
<td>Output overvoltage protection - Varistors</td>
<td>Yes</td>
</tr>
<tr>
<td>Output overvoltage protection - Modular surge arrester</td>
<td>Type 2 (option) with monitoring (only -SX version)</td>
</tr>
</tbody>
</table>
2 - Characteristics

Table: Technical Data

<table>
<thead>
<tr>
<th>Operating performance</th>
<th>TRIO-TM-50.0-400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Efficiency (η_{max})</td>
<td>98.3%</td>
</tr>
<tr>
<td>Weighted Efficiency (EURO/CEC)</td>
<td>98.0% / -</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communication</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedded communication interface</td>
<td>2x RS485, 2x Ethernet (RJ45), WLAN (IEEE802.11 b/g/n @ 2.4 GHz)</td>
</tr>
<tr>
<td>Communication protocol</td>
<td>Modbus RTU / TCP (Sunspec compliant); Aurora Protocol</td>
</tr>
<tr>
<td>Remote Monitoring services</td>
<td>Standard level access to Aurora Vision monitoring portal</td>
</tr>
<tr>
<td>Advanced features</td>
<td>Integrated Web User Interface; Display (option); Embedded logging and direct transferring of data to Cloud</td>
</tr>
</tbody>
</table>

Environmental

Ambient temperature range	-25...+60°C / -13...140°F with derating over 45°C / 113°F
Storage temperature	-40°C...+85°C / -40°F...185°F
Relative Humidity	4...100 % condensing
Typical noise emission pressure	75 dB(A) @ 1 m
Maximum operating altitude without derating	2000 m / 6561 ft
Environmental pollution degree classification for external environments	3
Environmental class	Outdoor

Physical

Environmental Protection Rating	IP 65 (IP54 for the cooling section)
Cooling System	Forced air
Dimensions (H x W x D)	725 mm x 1491 mm x 315 mm / 28.5” x 58.7” x 12.4”
Weight	95 kg / 209 lb total
	66 kg / 145 lb power module
	15 kg / 33 lb for AC wiring box (full optional)
	14 kg / 31lb for DC wiring box (full optional)
Assembly System	Wall bracket or horizontal support
Overvoltage rating as per IEC 62109-1	II (DC input) III (AC output)

Safety

Safety class	I
Isolation Level	Transformerless (TL)
CE Marking	CE (\(\odot\))
Safety and EMC Standards	IEC/EN 62109-1, IEC/EN 62109-2, EN 61000-6-2, EN 61000-6-3, EN 61000-3-11, EN 61000-3-12
Grid standard (check the availability with your sales channel)	CEI 0-21, CEI 0-16, DIN V VDE V 0126-1-1, VDE-Ar-N 4105, G59/3, EN 50438 (not for all national appendices), RD 1699, RD 413, RD 661, P.O. 12.3, AS 4777, BDEW, NRS-097-2-1, MEA, PEA, IEC 61727, IEC 60068, IEC 61683, VFR-2014, IEC 62116

Accessories

| TRIO-50.0/60.0-GROUNDING KIT | Allows to connect the negative input pole to ground |
| TRIO-AC-WIRING-KIT | Allows to connect the AC output cables, copper or aluminum, with cross section up to 150mm² |

1. The output voltage range may vary according to the grid standard of the country of installation
2. The output frequency range may vary according to the grid standard of the country of installation
3. In the event of a fault, limited by the external protection envisaged on the AC circuit
5. 50Hz only
6. Maximum installable size 20A
7. PG42 reduced cable entry from 25 to 31mm

Note. Features not specifically mentioned in this data sheet are not included in the product.
2 - Characteristics

Table: Technical Data

<table>
<thead>
<tr>
<th>Input</th>
<th>TRIO-TM-60.0-480</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Maximum Input Voltage (Vmax,abs)</td>
<td>1000 V</td>
</tr>
<tr>
<td>Input start-up voltage (Vstart)</td>
<td>420...700 V (predefinata 500 V)</td>
</tr>
<tr>
<td>DC Input operating interval (Vdcmín...Vdcmáx)</td>
<td>0,7xVstart...950 V (min 360 V)</td>
</tr>
<tr>
<td>Rated DC Input Voltage (Vdcr)</td>
<td>720 V</td>
</tr>
<tr>
<td>DC Input Nominal Power (Pdcr)</td>
<td>61800 W</td>
</tr>
<tr>
<td>Number of Independent MPPT</td>
<td>3 (SX and SX2 version) / 1 (standard and SX version)</td>
</tr>
<tr>
<td>Max DC Input power for each MPPT (PMPPT,max)</td>
<td>21000 W</td>
</tr>
<tr>
<td>MPPT DC Voltage Range (VMPPTmin ... VMPPTmax) to Pacr</td>
<td>570...800 V</td>
</tr>
<tr>
<td>Maximum DC Input Current (Idcmáx) for each MPPT</td>
<td>36 A</td>
</tr>
<tr>
<td>Maximum Return current (AC side vs DC side)</td>
<td>Negligible in normal operating conditions (3)</td>
</tr>
<tr>
<td>Max short circuit current (Iscmax) for each MPPT</td>
<td>55 A (165A in case of parallel MPPT)</td>
</tr>
<tr>
<td>Number of DC Connection Pairs for each MPPT</td>
<td>5 (-SX and -SX2 version)</td>
</tr>
<tr>
<td>Type of Input DC Connectors</td>
<td>Screw terminal block max. cross-section 95mm² (Standard and -S version)</td>
</tr>
<tr>
<td>Type of photovoltaic panels that can be connected at input according to IEC 61730</td>
<td>PV quick fit connector (4) (-SX and -SX2 version)</td>
</tr>
</tbody>
</table>

Input protection

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Polarity Protection</td>
<td>Yes, from current limited source</td>
</tr>
<tr>
<td>Input overvoltage protection for each MPPT - Varistors</td>
<td>Yes, 1 for each MPPT</td>
</tr>
<tr>
<td>Input overvoltage protection for each MPPT - Modular surge arrester</td>
<td>Type 2 (option) with monitoring (only -SX and -SX2 version)</td>
</tr>
<tr>
<td>Isolation Check</td>
<td>Complying with the local standard</td>
</tr>
<tr>
<td>Characteristics of DC disconnect switch for each MPPT (versions with DC disconnect switch)</td>
<td>1000 V / 60 A for each MPPT (180 A in case of parallel MPPT)</td>
</tr>
<tr>
<td>String fuses (-SX/-SX2 versions)</td>
<td>15A (gPV / 1000Vdc) (6)</td>
</tr>
</tbody>
</table>

Output

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Connection to the grid</td>
<td>3Ø grounded WYE system only, 3W + GND (no N connection) or 4W + GND (with N connection)</td>
</tr>
<tr>
<td>Nominal AC Output Power (Pacr @cosφ=1)</td>
<td>60000 W</td>
</tr>
<tr>
<td>Maximum AC Output Power (Pacmax @cosφ=1)</td>
<td>60000 W</td>
</tr>
<tr>
<td>Maximum apparent Output power (Smax)</td>
<td>60000 VA</td>
</tr>
<tr>
<td>Rated AC Output Voltage (Vacr)</td>
<td>480 Vac</td>
</tr>
<tr>
<td>Output voltage range (Vacmin...Vacmáx)</td>
<td>384...571 Vac (1)</td>
</tr>
<tr>
<td>Maximum output current (Iacr)</td>
<td>77 A</td>
</tr>
<tr>
<td>Contribution to short-circuit current</td>
<td>92 A</td>
</tr>
<tr>
<td>Rated Output Frequency (fr)</td>
<td>50 Hz / 60 Hz</td>
</tr>
<tr>
<td>Output Frequency Range (fmin...fmax)</td>
<td>47...53 Hz / 57...63 Hz (2)</td>
</tr>
<tr>
<td>Nominal power factor and setting interval</td>
<td>> 0.995, 0...1 inductive/capacitive with maximum Smax</td>
</tr>
<tr>
<td>Total harmonic distortion of current</td>
<td><3%</td>
</tr>
<tr>
<td>Max AC cable cross section accepted</td>
<td>95 mm² copper (150 mm² copper/aluminum with TRIO-AC-WIRING KIT)</td>
</tr>
<tr>
<td>AC Connections Type</td>
<td>Screw terminal block - single AC cable gland PG42 (7) (default configuration) or 5 individual AC cable glands (not supplied)</td>
</tr>
</tbody>
</table>

Output protection

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-islanding Protection</td>
<td>Complying with the local standard (active frequency drift combined with RoCoF techniques)</td>
</tr>
<tr>
<td>Maximum external AC overcurrent protection</td>
<td>100 A</td>
</tr>
<tr>
<td>Output overvoltage protection - Varistors</td>
<td>Yes</td>
</tr>
<tr>
<td>Output overvoltage protection - Modular surge arrester</td>
<td>Type 2 (option) with monitoring (only -SX version)</td>
</tr>
</tbody>
</table>
Operating performance

| Maximum Efficiency (η_{max}) | 98.5% |
| Weighted Efficiency (EURO/CEC) | 98.0% / - |

Communication

Embedded communication interface	2x RS485, 2x Ethernet (RJ45), WLAN (IEEE802.11 b/g/n @ 2.4 GHz)
Communication protocol	Modbus RTU / TCP (Sunspec compliant); Aurora Protocol
Remote Monitoring services	Standard level access to Aurora Vision monitoring portal

Environmental

Ambient temperature range	-25…+60°C / -13...140°F with derating over 45°C / 113°F
Storage temperature	-40°C...+85°C / -40°F...185°F
Relative Humidity	4…100 % with condensation
Typical noise emission pressure	75 dB(A) @ 1 m
Maximum operating altitude without derating	2000 m / 6561 ft
Environmental pollution degree	3
classification for external environments	
Environmental class	Outdoor

Physical

Environmental Protection Rating	IP 65 (IP54 for the cooling section)
Cooling System	Forced air
Dimensions (H x W x D)	725 mm x 1491 mm x 315 mm / 28.5” x 58.7” x 12.4”
Weight	95 kg / 209 lb total
Weight	66 kg / 145 lb power module
Weight	15 kg / 33 lb for AC wiring box (full optional)
Weight	14 kg / 31lb for DC wiring box (full optional)
Assembly System	Wall bracket or horizontal support
Overvoltage rating as per IEC 62109-1	II (DC input) III (AC output)

Safety

Safety class	I
Isolation Level	Without transformer (TL)
CE Marking	CE (9)
Safety and EMC Standards	IEC/EN 62109-1, IEC/EN 62109-2, EN 61000-6-2, EN 61000-6-3, EN 61000-3-11, EN 61000-3-12
Grid standard (check the availability with your sales channel)	CEI 0-21, CEI 0-16, DIN V VDE V 0126-1-1, VDE-AR-N 4105, G59/3, EN 50438 (not for all national appendices), RD 1699, RD 413, RD 661, P.O. 12.3, AS 4777, BDEW, NRS-097-2-1, MEA, PEA, IEC 61727, IEC 60068, IEC 61683, VFR-2014, IEC 62116

Accessories

| TRIO-50.0/60.0-GROUNDING KIT | Allows to connect the negative input pole to ground |
| TRIO-AC-WIRING-KIT | Allows to connect the AC output cables, copper or aluminum, with cross section up to 150mm² |

1. The output voltage range may vary according to the grid standard of the country of installation
2. The output frequency range may vary according to the grid standard of the country of installation
3. In the event of a fault, limited by the external protection envisaged on the AC circuit
5. 50Hz only
6. Maximum installable size 20A
7. PG42 reduced cable entry from 25 to 31mm

Note. Features not specifically mentioned in this data sheet are not included in the product
Tightening torques

To maintain the IP65 protection of the system and for optimal installation, the following tightening torques must be used:

<table>
<thead>
<tr>
<th>Component</th>
<th>Torque (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Wiring box</td>
<td></td>
</tr>
<tr>
<td>Service cable gland</td>
<td>5.0</td>
</tr>
<tr>
<td>DC cable glands M32 (only Standard / -S versions)</td>
<td>8.0</td>
</tr>
<tr>
<td>Front cover</td>
<td>2.4</td>
</tr>
<tr>
<td>DC input terminal block 95 mm² (Standard / -S version)</td>
<td>20</td>
</tr>
<tr>
<td>Mounting screws for earth connection brackets</td>
<td>11</td>
</tr>
<tr>
<td>Power module</td>
<td></td>
</tr>
<tr>
<td>Mounting screws for earth connection brackets</td>
<td>11</td>
</tr>
<tr>
<td>AC Wiring box</td>
<td></td>
</tr>
<tr>
<td>Single AC cable gland (PG 42 - reduced cable entry)</td>
<td>10</td>
</tr>
<tr>
<td>Single AC cable glands M32 (not supplied)</td>
<td>8.0</td>
</tr>
<tr>
<td>Front cover</td>
<td>2.4</td>
</tr>
<tr>
<td>AC output terminal block 95 mm² (Standard version)</td>
<td>20</td>
</tr>
<tr>
<td>AC disconnect switch terminal block 70 mm² (-S / -SX version)</td>
<td>6</td>
</tr>
<tr>
<td>Mounting screws for earth connection brackets</td>
<td>11</td>
</tr>
</tbody>
</table>

Cable gland clamping range

| Component | Range (mm) | |
|------------------------------------|------------|
| **DC Wiring box** | |
| Service cable gland (PG 21) | 13...18 |
| DC cable glands M32 (Standard / -S versions) | 13...21 |
| **AC Wiring box** | |
| Single AC cable gland (PG 42 - reduced cable entry) | 25...31 |
| Single AC cable glands M32 (not supplied) | 13...21 |
Overall dimensions

The overall dimensions are expressed in millimetres and include the vertical or horizontal wall installation bracket.
Dimensions of vertical wall assembly bracket.

The dimensions of the wall mounting bracket are expressed in millimetres.

Horizontal wall assembly bracket.

The dimensions of the wall mounting bracket are expressed in millimetres.
Efficiency curves

The equipment was designed considering current energy conservation standards, to avoid waste and unnecessary leakage.

Graphs of the efficiency curves of all models of inverter described in this manual are shown below.

The efficiency curves are linked to technical parameters that are continually being developed and improved and should therefore be considered approximate.
Power limitation (Power Derating)

In order to allow inverter operation in safe thermal and electrical conditions, the unit automatically reduces the value of the power fed into the grid. Power limiting may occur due to:
- Adverse environmental conditions (thermal derating)
- Percentage of output power (value set by the user)
- Grid voltage over frequency (mode set by user)
- Grid overvoltage U>10min Der. (enabling carried out by user)
- Anti-islanding
- Grid under voltage
- Input voltage values too high.
- High input current values.

Power reduction due to environmental conditions

The power reduction value and the inverter temperature at which it occurs depend on the ambient temperature and on many operating parameters.

Example: input voltage, grid voltage and power available from the photovoltaic field.

The inverter can therefore reduce the power during certain periods of the day according to the value of these parameters.

In any case, the inverter guarantees the maximum output power even at high temperatures, provided the sun is not shining directly on it.

<table>
<thead>
<tr>
<th>Ambient temperature (°C)</th>
<th>P_out (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100% (P_acr)</td>
</tr>
<tr>
<td>25</td>
<td>100%</td>
</tr>
<tr>
<td>30</td>
<td>90%</td>
</tr>
<tr>
<td>35</td>
<td>80%</td>
</tr>
<tr>
<td>40</td>
<td>70%</td>
</tr>
<tr>
<td>45</td>
<td>60%</td>
</tr>
<tr>
<td>50</td>
<td>50%</td>
</tr>
<tr>
<td>55</td>
<td>40%</td>
</tr>
<tr>
<td>60</td>
<td>30%</td>
</tr>
<tr>
<td>65</td>
<td>20%</td>
</tr>
<tr>
<td>70</td>
<td>10%</td>
</tr>
<tr>
<td>75</td>
<td>0%</td>
</tr>
</tbody>
</table>

Output power Vs Ambient temperature

TRIO-TM-50.0-400
TRIO-TM-60.0-480
Power reduction due to the input voltage

The reduction of the power supplied where the DC input voltage values are too high or too low is adjusted automatically.

TRIO-TM-50.0-400
TRIO-TM-60.0-480

* The curves on the graph, indicate how “All input powered”, are valid if the input voltages (of each input channel) are balanced.

* The curves on the graph are valid with nominal value of grid voltage.

Output power Vs Input voltage

Power reduction due to the grid voltage

The reduction of the power supplied where the grid voltage values are too high or too low is adjusted automatically.

TRIO-TM-50.0-400
TRIO-TM-60.0-480

* The curves on the graph, indicate how “All input powered”, are valid if the input voltages (of each input channel) are balanced.

* The curves on the graph are valid with nominal value of grid voltage.

Output power Vs Grid voltage

The $U_<$ and $U_>$ values could change based on the grid country standard selection.
P - Q curve capability

Based on the country grid standard the P-Q capability curve can be reduced.

Conditions:

TRIO-TM-50.0-400
- Ambient temperature 45 °C
- Rated output voltage (Un) 400Vac
- Rated active power (Pn) 50kW
- Nominal apparent power (Sn) 50kVA
- Rated reactive power (Qn) 50kVAR
- Cos -0 ... 1 ... 0 +
- Capability with grid voltage between 0.937xUn ... 1.1xUn

TRIO-TM-60.0-480
- Ambient temperature 45 °C
- Rated output voltage (Unom) 480Vac
- Rated active power (Pnom) 60kW
- Nominal apparent power (Snom) 60kVA
- Rated reactive power (Qnom) 60kVAR
- Cos -0 ... 1 ... 0 +
- Capability with grid voltage between 0.937xUnom ... 1.1xUnom

![Capability P-Q](image-url)
Characteristics of a photovoltaic generator

A PV generator consists of an assembly of photovoltaic modules that transform solar radiation into DC electrical energy and can be made up of:

Strings: number (X) of PV modules connected in series
Array: group of X strings connected in parallel

Strings and Arrays

The string technology was developed to significantly reduce the installation costs of a photovoltaic system, mainly associated to wiring on the DC side of the inverter and subsequent distribution on the AC side. A photovoltaic panel consists of many photovoltaic cells mounted on the same support.

- A string consists of a certain number of panels connected in series.
- An array consists of two or more strings connected in parallel.

Large photovoltaic systems can include multiple arrays connected to one or more inverters. The greater the number of panels in each string, the lower the cost and the less complex the wiring connections of the system.

The current of each array must fall within the limits of the inverter.
Description of the equipment

This equipment is a string inverter which converts the direct current of a photovoltaic generator into alternating current and feeds it into the public distribution grid.

Photovoltaic panels convert solar radiation into “DC” electrical energy (via a photovoltaic field, also called PV generator); in order to use it, it is transformed into “AC” alternate current. This conversion, known as inversion from DC to AC, is done in an efficient way by the ABB inverters, without using any rotary elements, rather only via static electronic systems.

In order to allow inverter operation in safe thermal and electrical conditions, the unit automatically reduces the value of the power fed into the grid under adverse environmental conditions or unsuitable input voltage values.

When connected in parallel with the grid, the alternating current from the inverter flows directly into the domestic or industrial distribution circuit, which is in turn connected to the public distribution grid.

This way the solar energy system compensates for the energy drawn from the utilities connected to the grid to which it is linked.

When the photovoltaic system is not generating sufficient energy, the power required to ensure proper operation of connected loads is taken from the public distribution grid. While if too much energy is produced, it is directly fed to the grid, thus becoming available to other users.

According to national and local standards and regulations the produced energy can be sold to the grid or credited to the user against future consumption, thus granting a great saving of money.

Operating diagram
Mutual connection of multiple inverters

If the photovoltaic system exceeds the capacity of a single inverter, it is possible to connect multiple inverters to the system, each of them in turn connected on the DC side to an appropriate section of the photovoltaic generator, and on the AC side to the distribution grid. Each string inverter will work independently of the others and its own photovoltaic module will supply the maximum power available to the grid.

Notes on the system sizing

Decisions on how to structure a photovoltaic system depend on a series of factors and considerations, such as the type of panels, the space availability, the future location of the system, energy production goals over the long term, etc.

A configuration program that can help to correctly size the photovoltaic system is available on the ABB website (http://stringsizer.abb.com).
Functionality and components of the equipment

Highlights

- 3 Independent MPPT
- Transformerless inverter
- Double stage topology for a wide input range
- Large set of specific grid codes available which can be selected directly in the field
- Both vertical and horizontal installation
- 2 available sizes, 50 and 60 kW with 400 and 480 Vac of output voltage, respectively
- Wireless access to embedded user interfaces
- Ethernet daisy chain enabled
- Modbus TPC/RTU Sunspec compliant
- Remote monitoring and firmware update via Aurora Vision® (logger free)

Improved commissioning and maintenance

Thanks to the build-in Web User Interface (WUI) the installer can commission the inverter wirelessly and change advanced parameters by using any standard WLAN enabled device (smartphone, tablet or PC). Integrated logging capability allows remote monitoring of the plant without the need of any additional external loggers. Remote firmware update of the inverter system and components via Aurora Vision®.

Data transmission and control

Embedded multi communication interfaces (WLAN, Ethernet, RS485) combined with a Sunspec compliant Modbus protocol (RTU/TCP) allow the inverter to be easily integrated with any third party monitoring and control systems.

Please contact the ABB technical support or get access to Sunspec alliance website for getting the Modbus register map supported by the inverter.

The RS-485 serial interface can be configured to communicate using also the proprietary “Aurora” protocol.

Aurora Vision® Plant Management Platform

Integrated logging capability allows remote monitoring of the plant without the need of any additional external loggers. Aurora Vision is a cloud based platform enabling remote monitoring and asset management of ABB devices in range of solar power application. Aurora Vision consists of a three different product:

1. **Plant Portfolio Manager** is a full featured web based application used by solar power professionals to monitor and manage a portfolio of solar power plants using ABB inverters.
2. **Plant Viewer** is an easy to use web based serviced application used by non-solar power professionals (such as homeowners or small business owners) to monitor solar power plants they own.
3. **Plant Viewer for Mobile** is the mobile version of **Plant Viewer** enabling non-solar power professionals to remotely monitor their own PV plants by using smart phones, tablets and iPod Touch with iOS and Android operating systems.

All three product previously mentioned work together to allow solar power professional and site owners to collaboratively manage solar power plant.

Please contact the ABB technical support for getting your own plant portfolio manager account (mainly for installers and plant administrators). Please get your Plant Viewer and Plant Viewer for Mobile by accessing the website www.auroravision.net and click on “Register with Plant Viewer” button (mainly for site owners).

Configurable relay

The inverter is equipped with a configurable switching relay, which can be used in different operating configurations that can be set using the designated software. A typical example of application is closing the contact when an alarm is triggered.

Remote switch-on switch-off

This command can be used to perform a software switch off/switch on the inverter via an external (remote) command. The switching on of the inverter, when this functionality is activated, besides being dictated by the presence of normal parameters which allow the inverter to be connected to the grid, also depends on the external control for switching on/off.

Reactive power feed into the grid

The inverter is able to produce reactive power and can feed this power into the grid via the phase factor setting. Power feeding modes vary according to the country of installation and the grid companies.

Limiting the active power fed into the grid

The inverter can limit the amount of active power fed into the grid by the inverter to the desired and settable value.
Communication interface

The inverter provides the following communication interface:

- **Integrated Wi-Fi channel (IEEE 802.11 b/g/n@2.4GHz)**

The use is recommended to access wirelessly to embedded web server by using any WLAN standard device (PC, tablet, smartphone) for commissioning and parameter setting.

- **2x Ethernet ports (10/100BaseTx - external RJ45 plugs)**

The ports are configured by default for enabling daisy chain connection of the inverters over the Ethernet bus.

 In order to improve the reliability of the communication with the inverters, it is also allowed to create ring shape layout by using this Ethernet bus.

- **2x RS485 ports (internally located)**

 Mainly recommended for replacement of old product or service operations.

Accessing to web server

The recommended way to access to the inverter web server is the Wi-Fi communication interface.

Any standard WLAN devices with a common browser can be used for this purpose.

- Once powered, the inverter will automatically create a wireless network (approx. 60 seconds after its switch-on) that will be visible as an Access Point from the user devices previously mentioned (tablet, smartphone, etc.).

- Enable the wireless connection on the device which is being used for the board setup (tablet, smartphone or PC) and connect it to the Access Point created by the inverter system: the name of the wireless network created by the system that the connection should be established with, will be: **ABB-XX-XX-XX-XX-XX** where “X” is a hex digit of the wireless MAC address (MAC address can be found on the “Communication Identification Label” placed on the side of the inverter).

- When required Input the network password **ABBSOLAR**

 After 24 hours which the inverter is power-on, the access point default password “ABBSOLAR” will be disabled and any subsequent access to the internal webserver will be possible only using the PRODUCT KEY (printed on the “Wireless identification label”) as access point password. In case of need, product key can be recovered by Aurora Vision Cloud or by calling ABB technical support.

The access to the web server is allowed by user account and admin account (both protected by password) defined during the commissioning procedure.

In order to recover the user/admin password push “forgot password” button and follow the procedure.
Ethernet bus connection

By default the 2 Ethernet ports of the inverters are already configured for enabling communication over daisy chain layout. Once physically connected the inverters do not need specific settings: after the first turning on, the inverters automatically got all needed network parameters with or without the presence of DHCP server. If an internet connection is available on site the inverters are automatically configured to transmit telemetry data to Aurora Vision Cloud without the need of installing any additional devices (logging capability are already integrated into the inverter by default).

Aurora Vision Plant Management platform is the ABB cloud solution allowing customer to remotely monitor and manage its own solar plants. Please refer to http://new.abb.com/power-converters-inverters/solar or contact ABB technical support for further information on how getting an Aurora Vision account

With the inverters connected over Ethernet daisy chain and with an available internet connection it will be always possible, via Aurora Vision Cloud, to upgrade remotely the firmware of the inverters.

In order to improve the communication services and allow reaching of all the inverters in the chain also in presence of fault it is recommended to create a ring shape layout by connecting both the first and the last inverters of the chain to the local Ethernet switch (as shown in the picture).

Mixed Wireless / Ethernet connection

Please refer to chapter 5 for further information about the installation.
Topographic diagram of the equipment

This new addition to the TRIO family, with 3 independent MPPT and power ratings of up to 60 kW (480 V version), has been designed with the objective to maximize the ROI in large systems with all the advantages of a decentralized configuration for both rooftop and ground-mounted installations.

Modular design
The TRIO-TM-50.0/60.0 has a modular design to guarantee maximum flexibility, thanks to the different versions available. The separate and configurable AC and DC compartments increase the ease of installation and maintenance with their ability to remain separately wired from the inverter module inside the system.

The TRIO comes with the most complete wiring box configurations available including up to 15 DC inputs with fast connectors, string protection fuses, AC and DC switches and type II AC and DC surge arresters.

Design flexibility
The internal circuitry is with double stage conversion and therefore consists of:
- DC/DC input converter (booster)
- DC-AC output inverter

The DC-DC converter and the DC-AC inverter both work at a high switching frequency and are therefore small and relatively light.

Each input converter is dedicated to an array with a maximum power point tracking (MPPT) function in order to maximize the exportation of energy from the photovoltaic generator.

This inverter version is of the type without transformer, that is without galvanic isolation between the input and the output. This allows ultimately an increase in conversion efficiency.

The operation and the protection management of the inverter is controlled by two independent DSPs (Digital Signal Processors) and a central microprocessor.

The connection to the distribution grid is thus kept under control by two independent computers, in full compliance with the electric field norms both for power supply to the systems as well as security. In doing all this, we guarantee optimal operation of the whole assembly and a high performance in all irradiation conditions and always ensuring full compliance with the relevant directives, standards and regulations.

Embedded multi communication interfaces (WLAN, Ethernet, RS485) combined with a Sunspec compliant Modbus protocol (RTU/TCP) allow the inverter to be easily integrated with any third party monitoring and control systems.
The diagram summarises the internal structure of the inverter.
Safety devices

Anti-Islanding

In the event of a local grid outage by the electricity company, or when the equipment is switched off for maintenance operations, the inverter must be physically disconnected to ensure the protection of the people working on the grid, in accordance with the relevant national laws and regulations. To prevent possible islanding, the inverter is equipped with an automatic safety disconnection system called “Anti-Islanding”.

The method used to ensure an active anti-islanding protection is: active frequency drift in combination with techniques RoCoF

Anti-islanding protection mechanisms are different depending on the grid standards, even if they all have the same purpose.

Ground fault of the photovoltaic panels

An advanced ground fault protection circuit continuously monitors the ground connection and disconnects the inverter when a ground fault indicating the fault condition by means of the red “GFI” LED on the LED panel on the front side.

Use this inverter with panels connected in “floating” mode, i.e. with no earth connections on the positive and negative terminals.

If is necessary to connect the negative pole of the PV plant to ground use the TRIO-50.0/60.0-GROUNDING KIT product.

String fuses

The DCWB equipped with string fuses are:
- SX version - Only positive side (+) string fuses 10 are preinstalled
- SX2 version - Negative side (-) string fuses 22 and the positive side (+) string fuses 10 are preinstalled.

The fuses protect the appliance from currents exceeding the limit value independently for each string.

The sizing of the fuses must therefore be carefully assessed during installation.

Overvoltage surge arresters

As an additional protection to prevent damage caused by the discharges from lightning and electrostatic induction phenomena, the DC wiring box 12 (versions -SX / -SX2) and the AC wiring box 15 (version -SX), can be optionally equipped with DC overvoltage surge arresters 15 and with AC overvoltage surge arresters 10.

Other safeguards

The inverter is equipped with additional protective devices to ensure safe operation in any circumstance. These protections include:
- Constant monitoring of the grid voltage to ensure that voltage and frequency values remain within operating limits;
- Internal temperature control to automatically limit the power if necessary to prevent overheating of the unit (derating).

The numerous control systems determine a redundant structure to ensure absolutely safe operations.
Safety information and instructions

The equipment has been manufactured in accordance with the strictest accident-prevention regulations and supplied with safety devices suitable for the protection of components and operators.

For obvious reasons, it is not possible to anticipate the great number of installations and environments in which the equipment will be installed. It is therefore necessary for the customer to appropriately inform the manufacturer about particular installation conditions.

ABB accepts no liability for failure to comply with the instructions for correct installation and cannot be held responsible for the upstream or downstream equipment.

It is essential to provide operators with correct information. They must therefore read and comply with the technical information provided in the manual and in the attached documentation.

The instructions provided in the manual do not replace the safety devices and technical data for installation and operation labels on the product, and they do not replace the safety regulations in force in the country of installation.

The manufacturer is willing to train staff, at its premises or on site, in accordance with conditions agreed to in the contract.

Do not use the equipment if you find any operating anomalies.

Avoid temporary repairs. All repairs should be carried out using only genuine spare parts, which must be installed in accordance with their intended use.

Liabilities arising from commercial components are delegated to the respective manufacturers.
Hazardous areas and operations

Environmental conditions and risks

The device can be installed outdoors, but only in environmental conditions that do not prevent its regular operation. These conditions are listed in the technical data and in the installation chapter.

ABB is not responsible for the disposal of the equipment: displays, cables, batteries, accumulators, etc., and therefore the customer must dispose of these items, which are potentially harmful to the environment, in accordance with the regulations in force in the country of installation.

The same precautions should be adopted for dismantling the equipment.

The device is not designed to operate in environments that are particularly inflammable or explosive.

The customer and/or installer must appropriately train operators or anyone who may come into close proximity of the equipment, and highlight, with notices or other means where necessary, the hazardous areas or operations at risk: magnetic fields, hazardous voltages, high temperatures, possible discharges, generic hazard, etc.

Signs and labels

The labels affixed on the equipment must strictly not be removed, damaged, defaced, hidden, etc.

The labels must be regularly cleaned and kept in sight, i.e. not hidden by foreign objects and parts (rags, boxes, equipment, etc.)

The technical data provided in this manual does not in any case replace that shown on the labels affixed on the equipment.
Thermal and electrical hazard

WARNING: the removal of guards or covers is only permitted after the voltage has been removed and time period indicated on the label has passed. This is to let the components cool down and allow the internal capacitors to discharge.

When the device has just been switched off, it may have hot parts as a result of overheating of the heated surfaces (e.g.: transformers, accumulators, coils, etc.) so be careful where you touch.

In the event of fire, use CO2 extinguishers and auto-extraction systems to extinguish the fire in closed environments.

Clothing and protection of personnel

ABB has done its best to eliminate sharp edges and corners, but as this is not always possible you are advised always to wear the clothing and personal protective equipment provided by the employer.

Personnel must not wear clothes or accessories that could start fires or generate electrostatic charges or, in general, clothing that can compromise personal safety.

All operations on the equipment must be performed with adequately insulated clothing and instruments.

E.g.: insulating gloves, class 0, RC category

Maintenance operations may only be performed after the equipment has been disconnected from the grid and from the photovoltaic generator.

Staff must NOT go near the equipment with bare feet or wet hands.

The maintenance technician must in any case ensure that no one else can switch on or operate the device during the maintenance operations, and should report any anomaly or damage due to wear or ageing so that the correct safety conditions can be restored.

The installer or maintenance technician must always pay attention to the work environment, ensuring that it is well-lit and there is enough room to ensure an escape route.

During installation, consider that the noise emitted based on the environment could possibly exceed the legal thresholds (less than 80 dBA), therefore, suitable ear protection must be worn.
Residual risks

Despite the warnings and safety systems, there are still some residual risks that cannot be eliminated. These risks are listed in the following table with some suggestions to prevent them.

Table of residual risks

<table>
<thead>
<tr>
<th>RISK ANALYSIS AND DESCRIPTION</th>
<th>SUGGESTED REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise pollution due to installation in unsuitable environments or where staff work permanently.</td>
<td>Reassess the environment or the place of installation.</td>
</tr>
<tr>
<td>Suitable local ventilation that does not cause overheating of the equipment and is sufficient not to create discomfort to people in the room.</td>
<td>Restore suitable ambient conditions and air the room.</td>
</tr>
<tr>
<td>External weather conditions, such as water seepage, low temperatures, high humidity, etc.</td>
<td>Maintain ambient conditions suitable for the system.</td>
</tr>
<tr>
<td>Overheating of surfaces at temperature (transformers, accumulators, coils, etc.) can cause burns. Also be careful not to block the cooling slits or systems of the equipment.</td>
<td>Use suitable protective equipment or wait for the parts to cool down before switching on the equipment.</td>
</tr>
<tr>
<td>Inadequate cleaning: compromises cooling and does not allow the safety labels to be read.</td>
<td>Clean the equipment, labels and work environment adequately.</td>
</tr>
<tr>
<td>Accumulation of electrostatic energy can generate hazardous discharges.</td>
<td>Ensure the devices have discharged their energy before working on them.</td>
</tr>
<tr>
<td>Inadequate training of staff.</td>
<td>Ask for a supplementary course.</td>
</tr>
<tr>
<td>During installation, temporarily mounting the equipment or its components may be risky.</td>
<td>Be careful about and disallow access to the installation area.</td>
</tr>
<tr>
<td>Accidental disconnections of the quick-fit connectors with the equipment in operation, or wrong connections, may generate electric arcs</td>
<td>Be careful about and disallow access to the installation area.</td>
</tr>
</tbody>
</table>
General conditions

Some recommendations apply only to large size product or multiple small size product packaging.

Transport and handling

Transport of the equipment, especially by road, must be carried out with means for protecting the components (in particular, the electronic components) from violent shocks, humidity, vibration, etc.

During handling, do not make any sudden or fast movements that can create dangerous swinging.

Lifting

ABB usually stores and protects individual components by suitable means to make their transport and subsequent handling easier, but as a rule, it is necessary to utilize the experience of specialized staff in change of loading and unloading the components.

The ropes and equipment used for lifting must be suitable for bearing the weight of the equipment.

Do not lift several units or parts of the equipment at the same time, unless otherwise indicated.

Unpacking and checking

Packaging elements (cardboard, cellophane, staples, adhesive tape, straps, etc.) may cause cuts and/or injuries if not handled with care. They should be removed with the proper equipment.

The components of the packaging must be disposed on in accordance with the regulations in force in the country of installation.

When you open an equipment package, check that the equipment is undamaged and make sure all the components are present. If you find any defects or damage, stop unpacking and consult the carrier, and also promptly inform ABB Service.
Storage

If the package with the power module part is stored correctly, it can withstand a maximum load of 4 stacked devices (divided into 4 pallets).

If the package with the wiring box is stored correctly, it can withstand a maximum load of 8 stacked devices (divided into 2 pallets).

DO NOT stack with equipment or products other than those indicated. Assembly brackets and/or accessory components are in separate packages and can be piled separately.

Weight of the modules of the equipment

<table>
<thead>
<tr>
<th>Table: Weights</th>
<th>Weight (kg)</th>
<th>Lifting points (n°#)</th>
<th>Min. height of cables (mm)</th>
<th>Holes or Eyebolts UNI2947</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power module</td>
<td>66 kg</td>
<td>4</td>
<td>1.200</td>
<td>M 12 kit of handles and eyebolts (to be ordered)</td>
</tr>
<tr>
<td>Wiring box DC</td>
<td>Standard / -S: 13 kg -SX / -SX2: 14 kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wiring box AC</td>
<td>Standard: 14 kg -SX: 15 kg</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Types of lifting

Because of its weight, the power module must be lifted by two people or alternatively using suitable lifting equipment.

It is preferable not to lift the inverter from the cover. If it should be necessary, respect the lifting points at the screws (shown in the figure).

In order to make the power module easier to manage, 4 handles can be fitted into the designated holes depending on requirements (4 side holes; 2 top holes; 2 bottom holes).

If lifting with ropes, the eyebolts can be fitted to the holes which are useful for lifting in a vertical position, while if lifting in a horizontal position, it is preferable to use 4 anchoring points at the operator's discretion.

The DC wiring box and the AC wiring box can be lifted manually as they are of a more limited weight.

The handles and eyebolts can be ordered separately.
List of components supplied

Supplied with the inverter are all the components required to correctly install and connect the inverter.

<table>
<thead>
<tr>
<th>Components available in the kits supplied with the brackets</th>
<th>Qty (kit vertical installation)</th>
<th>Qty (kit horizontal installation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical support assembly bracket</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Horizontal support assembly bracket</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Countersunk screws M5x14 for mechanically securing the half-brackets</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Hex head screw M6x16 (4 for securing the ground connection brackets and 2 for the cage nuts)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Forks for securing the power module to the wiring boxes</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Rear spacers for wall alignment (vertical installation)</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Wiring box/power module ground connection brackets</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Flat washer M6 (4 for securing the ground connection brackets and 2 for the cage nuts)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Toothed washer M6 for securing the ground connection brackets</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Conductor springs</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
Components available for all DC wiring box models

<table>
<thead>
<tr>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector for connection of the configurable relay</td>
<td>2</td>
</tr>
<tr>
<td>Connector for connecting the communication and control signals</td>
<td>2</td>
</tr>
<tr>
<td>Airtight connector for ethernet cable connection</td>
<td>2</td>
</tr>
<tr>
<td>Two-hole gasket for signal cable glands PG 21 + cap</td>
<td>2 + 2</td>
</tr>
<tr>
<td>M6 nut for securing the ground terminal onto the AC wiring box</td>
<td>1</td>
</tr>
<tr>
<td>M6 toothed washer for securing the ground terminal onto the AC wiring box</td>
<td>2</td>
</tr>
<tr>
<td>Wireless antenna</td>
<td>1</td>
</tr>
<tr>
<td>Bar for parallel input channels configuration + M5x12 screws (equipped with cut and flat washer)</td>
<td>1 + 3</td>
</tr>
</tbody>
</table>

Technical documentation

Kit of recommended spare parts

A list of spare parts that are compatible with the TRIO inverter available (at the ABB warehouse) is given below:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIO HANDLING KIT</td>
<td>Kit of handles and eyebolts for lifting the power module part</td>
<td>4 handles, 2 eyebolts</td>
</tr>
<tr>
<td>KIT 10 FUSES 12A</td>
<td>Kit of 12A fuses (gPV - 1000Vdc) (only -SX/-SY)</td>
<td>10</td>
</tr>
<tr>
<td>KIT 10 FUSES 15A</td>
<td>Kit of 15A fuses (gPV - 1000Vdc) (only -SX/-SY)</td>
<td>10</td>
</tr>
</tbody>
</table>
General conditions

The device is installed depending on the system and the place where the device is installed. Its performance therefore depends on the correctness of the connections.

Staff authorised to carry out the installation must be specialised and experienced in this job. They must also have received suitable training on equipment of this type.

The operation must be carried out by qualified personnel and it is advisable to adhere to the indications provided in this manual, the diagrams and the enclosed documentation.

For safety reasons, only a qualified electrician who has received training and/or demonstrated skills and knowledge on the structure and operation of the unit may install the inverter.

The installation must be performed by qualified installers and/or licensed electricians in accordance with the existing regulations in the country of installation.

The removal of the inverter panels/cover allows access to the area dedicated to service personnel (the operator is not authorized to access this area)

Connection of the photovoltaic system to an electric installation connected to the distribution grid must be approved by the electricity provider.

The installation must be carried out with the equipment disconnected from the grid (power disconnect switch open) and with the photovoltaic panels shaded or isolated.

When the photovoltaic panels are exposed to sunlight they provide continuous DC voltage to the inverter.
Installation site and position

- Consult the technical data to check the required environmental conditions (protection rating, temperature, humidity, altitude, etc.)

- Installation of the unit in a location exposed to direct sunlight is acceptable.

- Do not install in small closed rooms where air cannot circulate freely

- Always ensure that the flow of air around the inverter is not blocked so as to prevent overheating.

- Do not install near flammable substances (minimum distance 3 m)

- Do not install near walls in wood or other flammable substances.

- Do not install in rooms where people live or where the prolonged presence of people or animals is expected, because of the high noise that the inverter produces during operation. The level of the sound emission is heavily influenced by where the appliance is installed (for example: the type of surface around the inverter, the general properties of the room, etc.) and the quality of the electricity supply.

- Installation of these models can be carried out vertically or horizontally, with a maximum inclination as indicated in the figure.

- Hardware and software maintenance on device entails removing the front covers. Check that the correct installation safety distances are observed in order to allow routine check and maintenance operations.

- Install on a wall or strong structure suitable to bear the weight

- If possible, install at eye-level so that the status LEDs can be seen easily.

- Install at a height which takes into consideration the weight of the appliance and in a position which is suitable for servicing, unless suitable means are provided to carry out the operation.

- Final installation of the device must not compromise access to any disconnection devices that may be located externally.
• Respect the minimum distances from objects around the inverter that could prevent the inverter installation and restrict or block the air flow. The wiring boxes are connected to the inverter using quick fit connectors which require sufficient space in order for them to be connected and disconnected easily.

• Provide sufficient working space in front of the inverter that allows to make connections on the wiring box.

• In case of multiple installation position the inverters side by side keeping the minimum distances (measured from the outer edge of the inverter) for each inverter.

• If the space available does not allow this arrangement, position the inverters in a staggered arrangement as shown in the figure so that heat dissipation is not affected by other inverters below.

• The vertical installation is also permitted on a structure which must be composed of a support for the attachment of the bracket and one for the support of the rear pins.

• The vertical installation of two inverters positioned back to back is also permitted on a structure which must be composed of a support for the attachment of the brackets and one for the support of the rear pins.

Please refer to the warranty terms and conditions to evaluate any possible warranty exclusions due to improper installation.
Wireless signal environmental checks

The inverter can be commissioned and monitored using the wireless communication channel. The WLAN board of the inverter uses radio waves to transmit and receive data, it is therefore important to assess this factor in order to have optimal installation.

- Walls in reinforced cement and surfaces covered in metal (doors, shutters, etc.) can markedly reduce the reach of the device which even in optimal conditions, should be of approximately 50 metres in free space.

- It is therefore recommended that before installing the inverter, the strength of the wireless signal is checked, using a mobile device (smartphone, tablet or notebook) and connecting to the wireless router from a position which is close to the installation site of the inverter.

The radio signal level between the inverter and the wireless router can be improved in a number of ways:

1. Change the direction of the antenna. The antenna has a dead zone at its tip, which should not be positioned facing the wireless router, as shown in the figure.

2. Find a new position for the router considering the different types of materials which the radio signal will have to pass through:

<table>
<thead>
<tr>
<th>Material</th>
<th>Relative signal reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open field</td>
<td>0% (strength of approximately 50 metres)</td>
</tr>
<tr>
<td>Wood / Glass</td>
<td>From 0 to 10%</td>
</tr>
<tr>
<td>Stone / Plywood</td>
<td>From 10 to 40%</td>
</tr>
<tr>
<td>Reinforced concrete</td>
<td>From 60 to 90%</td>
</tr>
<tr>
<td>Metal</td>
<td>Up to 100 %</td>
</tr>
</tbody>
</table>

The quality of the RF signal can be assessed during the installation stage where the signal is displayed in dBm.

3. Install a wireless signal repeater and place it in an area between the inverter and the router, trying to make sure that the most critical obstacles are avoided.
Installations above 2000 metres

On account of the rarefaction of the air (at high altitudes), particular conditions may occur that should be considered when choosing the place of installation:

- Less efficient cooling and therefore a greater likelihood of the device going into derating because of high internal temperatures.
- Reduction in the dielectric resistance of the air which, in the presence of high operating voltages (DC input), can create electric arcs (electrical discharges) that may damage the device.
- As the altitude increases, the failure rate of some electronic components increases exponentially because of cosmic radiation.

All installations at altitudes exceeding 2000 metres are prohibited on the basis of the criticalities indicated above.

Installations with a high level of humidity

Never open the inverter in the case of rain, snow or a level of humidity >95%. Always carefully seal all unused openings.

Even though the device is equipped with an anti-condensation valve, air with extremely high levels of humidity can lead to the creation of condensation inside the inverter.
- As the inverter is almost completely insulated from the outside, condensation can also form after installation in certain weather conditions.
Mounting with a support bracket

Mounting on a vertical support

• Use 4 of the countersunk M5x14 screws to connect the two bracket pieces together.

• Insert the 2 cage nuts into their seats B on the bracket.

• Position the bracket B perfectly level on the vertical support and use it as drilling template.

Consider the overall dimensions of the power module along with the 2 wiring boxes.

• It is the installer’s responsibility to choose an appropriate number and distribution of attachment points. The choice must be based on the type of support (wall, frame or other support), the type of anchors to be used, and their ability to support 4 times the inverter’s weight (4x95Kg=380Kg for all models).

Attach the bracket to the wall with at least 10 attachment screws. Depending on the type of anchor chosen, drill the required 10 holes (minimum) A to mount the bracket. Put at least four screws in the upper side and at least four in the lower side.

• Fix the bracket to the support.
• Install spacers 24 in the two lower rear attachment pins 27 of the power module. This will prevent backwards tilt when the power module is hung on the bracket.

• Lift the power module up to the bracket using the (optional) handles 26 or the (optional) M12 eyebolts, or another appropriate lifting device. The power module is pre-equipped with metal expansions which allow it to be temporarily put vertically on the floor to make it easier the installation of handles or eyebolts.

Risk of injury due to the heavy weight of the equipment.

• Insert the heads of two upper rear attachment pins 27 into the slots on the bracket and confirm that the slots on the bracket are aligned with the line on the sides of the power module. This indicates that they have been correctly positioned.

• Remove handle or eye bolts (if used)

• Remove the quick disconnect connector covers 04 as follows:
 - Pull the metal locking fork 07 outwards A
 - Pull off the quick disconnect cover B
Save both parts. They will be needed in a later step.
• Set the wiring box disconnect switches to “0”; otherwise it will not be possible to remove the front cover.

• Unscrew the 8 screws holding the front covers of the DC wiring box and AC wiring box in place. Don’t lose the screws!

• Install 1 spacers in the lower rear attachment pin of each wiring box. This will prevent backwards tilt when the wiring box is hung on the bracket.

• Remove the covers from the quick disconnect connectors, one on each wiring box.

Then follow these steps to store these caps. They will be needed if the assembly ever needs to be shipped:

- A couple a power module connector cover (green in the figure) with one from a wiring box (in blue in the figure).
- B Slip the plastic locking fork, which was used to secure the wiring box cover, over the two covers. **Be sure the fork is plastic, not metal.**
- C Insert the two connector covers and plastic locking fork in the dedicated space in the wiring box.
- D Repeat the same operation for the other wiring box.
• Install the 2 brackets acting as an earth connection on the provided fastening points (one for each wiring box) and marked with the symbol ↓. On the figure is shown how to install the brackets on the wiring box. The bracket is not symmetrical and so it must be fixed on the side with the holes facing down. Follow the order of installation set out below:
- earth connection bracket
- flat washer
- toothed washer
- fixing screw with hexagonal head.
During this phase loosely position the screw without tightening it.

• Insert 1 spacer into the rear pins at the bottom of each wiring box.

• Mount the wiring boxes onto the bracket one at a time inserting the two rear pins at the top into the slots on the bracket.

Risk of injury due to the heavy weight of the equipment.

In this condition, the wiring boxes will be detached from the power module so not to interfere with the quick-fit connectors.
• Couple the wiring boxes to the power module one at a time, making them slide horizontally on the bracket and ensuring that the quick fit connectors are inserted correctly.

• Once this has been completed, insert the metal locking forks into the designated slots of the quick-fit connectors in order to secure the wiring boxes to the power module.

• Install the top stops, inserting them into the slots and locking the screws (hex screw M6x16) on the cage nuts which were previously fitted onto the bracket.
• Before fitting the covers ③, install (mandatory) the ground connection brackets ② into the fastening points ③7 at the bottom between the power module and the 2 wiring boxes.
Follow the order of installation set out below:
- earth connection bracket
- flat washer
- toothed washer
- fixing screw with hexagonal head.
Tighten the 2 fixing screws with hexagonal heads on the earth connection points ③7 (marked by the symbol ③) located on the power module. Then also tighten the 2 fixing screws (one per wiring box) that permanently secure the 2 ground connection brackets ②.

The ground connection between the 3 parts which compose the inverter is ensured by the brackets ②.

• Remove the protective cover from the support of the wireless antenna located on the left side of the DC wiring box. Install the wireless antenna by screwing it into the specific connector.

• Proceed with the wiring and connections depending on the model.
Mounting on a horizontal support

- Connect the 6 pieces of the horizontal bracket 01 together with the 10 screws (M5x14) shipped with the bracket (refer to figure at right).

- Insert the 2 cage nuts into their seats B on the bracket.

- Position the bracket 01 so that it is perfectly flat and use it as a drilling template. Consider the overall dimensions of the power module along with the 2 wiring boxes and check that the bracket is level.

- It is the installer’s responsibility to choose an appropriate number and distribution of attachment points. The choice must be based on the type of support and the type of anchors to be used.

 Attach the bracket to the support with at least 8 attachment screws. Depending on the type of anchor chosen, drill the required 8 holes A to mount the bracket.

- Fix the bracket to the surface and ensure that it is not distorted in shape.
• Lift the power module up to the bracket using the (optional) handles or the (optional) M12 eyebolts, or another appropriate lifting device. The power module is pre-equipped with metal expansions which allow it to be temporarily put vertically on the floor to make it easier the installation of handles or eyebolts.

Risk of injury due to the heavy weight of the equipment.

• Insert the heads of two upper rear attachment pins into the slots on the bracket positioning the power module at the center of the bracket.

Check that all 4 rear pins are correctly inserted into the slots.

Risk of injury due to the heavy weight of the equipment.

• Remove handle or eye bolts (if used)

• Remove the quick disconnect connector covers as follows:
 - Pull the metal locking fork outwards
 - Pull off the quick disconnect cover

Save both parts. They will be needed in a later step.
• Set the wiring box disconnect switches to “0”; otherwise it will not be possible to remove the front cover 15.

• Unscrew the 8 screws holding the front covers 15 of the DC wiring box 12 and AC wiring box 15 in place. Don’t lose the screws!

• Remove the covers 14 from the quick disconnect connectors, one on each wiring box.

Then follow these steps to store these caps. They will be needed if the assembly ever needs to be shipped:
- A couple a power module connector cover (green in the figure) with one from a wiring box (in blue in the figure).
- B Slip the plastic locking fork 38, which was used to secure the wiring box cover, over the two covers. Be sure the fork is plastic, not metal.
- C Insert the two connector covers and plastic locking fork 41 in the dedicated space in the wiring box 15.
- D Repeat the same operation for the other wiring box.
5 - Installation

• Install the 2 brackets acting as an earth connection on the provided fastening points (one for each wiring box) and marked with the symbol . On the figure is shown how to install the brackets on the wiring box. The bracket is not symmetrical and so it must be fixed on the side with the holes facing down. Follow the order of installation set out below:
 - earth connection bracket
 - flat washer
 - toothed washer
 - fixing screw with hexagonal head.
 During this phase loosely position the screw without tightening it.

• Mount the wiring boxes onto the bracket one at a time inserting the two rear pins at the top into the slots on the bracket.

 Risk of injury due to the heavy weight of the equipment.

In this condition, the wiring boxes will be detached from the power module so not to interfere with the quick-fit connectors.
• Couple the wiring boxes to the power module one at a time, making them slide horizontally on the bracket and ensuring that the quick fit connectors are inserted correctly.

• Once this has been completed, insert the metal locking forks into the designated slots of the quick-fit connectors in order to secure the wiring boxes to the power module.

• Install the top stops, inserting them into the slots and locking the screws (hex screw M6x16) on the cage nuts which were previously fitted onto the bracket.
Before fitting the covers (mandatory), install the ground connection brackets into the fastening points at the bottom between the power module and the 2 wiring boxes.

Follow the order of installation set out below:
- earth connection bracket
- flat washer
- toothed washer
- fixing screw with hexagonal head.

Tighten the 2 fixing screws with hexagonal heads on the earth connection points (marked by the symbol) located on the power module. Then also tighten the 2 fixing screws (one per wiring box) that permanently secure the 2 ground connection brackets.

The ground connection between the 3 parts which compose the inverter is ensured by the brackets.

Remove the protective cover from the support of the wireless antenna located on the left side of the DC wiring box. Install the wireless antenna by screwing it into the specific connector.

Proceed with the wiring and connections depending on the model.
Grid output connection (AC side)

The inverter must be connected to a three-phase system with the center of the star connected to ground. To connect the inverter to the grid is possible to choose between the four-wire connection (3 phases + neutral) and the three-wire connection (3 phases).

In any case, the inverter’s earth connection is mandatory.
The cable to be used can be five-pole (four-wire configuration), or four-pole (three-wire configuration).

The connections can also be made with the AC wiring box detached from the power module which can be connected later for commissioning.

When working with the AC wiring box detached, pay particular attention to outdoor installations, where the interface quick connectors must always be protected by installing the cap on the housing.

Characteristics and sizing of the protective grounding cable

ABB inverters must be earthed via the terminal with the protective earth symbol and using a cable with an appropriate conductor cross-section for the maximum ground fault current that the generating system might experience.

Any failure of the inverter when it is not connected to earth through the appropriate terminal is not covered by the warranty.

In compliance with standard IEC 62109 it is necessary:
• Install a copper grounding cable on the ground protection terminal with a minimum section of 25 mm².
• It is possible to install a second grounding cable (with the same section as the one installed on the ground protection terminal) on the connection point located on the underside of the power module and marked with the symbol. Installation of a second protective earthing cable is also required by regulations in force in certain countries of installation.

If necessary, carefully read the instructions provided in the paragraph "Installation of the second protective earthing cable".

Before connecting the inverter to a hazardous source of AC or DC voltage, once the earth connections between the inverter modules have been made (and in the same way that the temporary earth connections during the assembly or dismantling stage of the system were made), use a suitable multimeter to test the conductivity of the earth connections between:
- a screw on the cover of the AC wiring box and a screw on the cover of the DC wiring box
- a screw on the cover of the AC wiring box and a screw on the cover of the power module
Characteristics and sizing of the line cable

The cross-section of the AC line conductor must be sized in order to prevent unwanted disconnections of the inverter from the grid due to high impedance of the line that connects the inverter to the power supply; if the impedance is too high it causes an increase in the AC voltage which, on reaching the limit set by the standards in the country of installation, causes the inverter to switch off.

The table shows the maximum line conductor length in relation to the section of the conductor itself:

<table>
<thead>
<tr>
<th>Line conductor cross section (²mm)</th>
<th>Line conductor maximum length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIO-TM-50.0-400</td>
<td>TRIO-TM-60.0-480</td>
</tr>
<tr>
<td>25</td>
<td>36 m</td>
</tr>
<tr>
<td>35</td>
<td>52 m</td>
</tr>
<tr>
<td>50</td>
<td>75 m</td>
</tr>
<tr>
<td>70</td>
<td>106 m</td>
</tr>
<tr>
<td>95</td>
<td>144 m</td>
</tr>
</tbody>
</table>

The values are calculated in nominal power conditions, considering:
- loss of power along the line no greater than 1%
- use of copper cable, with HEPR rubber isolation and positioned in open air.

Load protection switch (AC disconnect switch)

To protect the AC connection line of the inverter, an overcurrent protection device with the following features must be installed:

<table>
<thead>
<tr>
<th>TRIO-TM-50.0-400</th>
<th>TRIO-TM-60.0-480</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type Automatic circuit breaker with differential thermal-magnetic protection</td>
<td></td>
</tr>
<tr>
<td>Voltage/current rating 100 A / 400 V</td>
<td>100 A / 480 V</td>
</tr>
<tr>
<td>Magnetic protection characteristic B/C</td>
<td></td>
</tr>
<tr>
<td>Number of poles 3/4</td>
<td></td>
</tr>
</tbody>
</table>

In case of installation of a residual current protection device must meet the following characteristics:

<table>
<thead>
<tr>
<th>TRIO-50.0-TL-OUTD / TRIO-TM-60.0-480</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A / AC</td>
</tr>
<tr>
<td>Sensibility 500mA</td>
</tr>
</tbody>
</table>
Connection to terminal block AC side

To avoid risks of electrical shock, all wiring operations must be carried out with the disconnect switch downstream of the inverter (grid side) off.

Be careful not to change round one of the phases with neutral!

Grounding is essential before connection to the power supply network.

For the AC wiring box Standard model
Connection of AC cable (25 to 31mm diameter, copper or aluminum) is made to the AC output terminal block 17, the terminal block accepts cables with a maximum-cross section of 95 mm² (torque to 20Nm).

To carry out the connections, a multicore cable can be passed through the single AC cable gland 16 or separate cables through the individual AC cable glands 30. The default configuration is with a single AC cable gland 16. If it is necessary to use the five individual AC cable glands 30 must be used the M32 measure.

For the AC wiring boxes model -S and -SX
Connection of AC cable (25 to 31mm diameter, copper) is made to the AC disconnect switch 36, the AC disconnect switch accepts cables with a maximum-cross section of 70 mm² (torque to 6Nm). Aluminum cables can be installed using special bi-metal terminals.

To carry out the connections, a multicore cable can be passed through the single AC cable gland 16 or separate cables through the individual AC cable glands 30. The default configuration is with a single AC cable gland 16. If it is necessary to use the five individual AC cable glands 30 must be used the M32 measure.
AC cable installation:
- Unscrew the cable gland or the cable clamps and remove the cover
- Introduce the cable with a suitable cross-section
- Connect the earth cable to the designated threaded metal insert or earth protection terminal following to the sequence illustrated in the figure. A ring cable lug, suitable for a M6 size threaded insert, must be fixed
- Connect the Neutral, R, S, T wires to the respective terminals:
 - On the AC output terminal block for the Standard wiring box
 - Directly to the AC disconnect switch for the -SX wiring box.
 - Observe the connection sequence of the phases R, S, T indicated on the label placed near the AC terminals.

In case of using aluminum cables for AC connections, consider that:
- The terminal present on the Standard version accepts the connection of copper and aluminum cables.
- For -SX versions must be used bimetallic terminals suitable to coupling the aluminum wires with the internal contacts of the AC disconnect switch.
- Give each wire a pull test to confirm the connection is secure
- Set the switch based on the configuration of the output connections.

- **3 WIRES** position. Three wires configuration (R+S+T)
- **4 WIRES** position. Four wires configuration (R+S+T+Neutral)
Installation of the second protective earthing cable

The insertion of a second earth cable may be required by the regulations of the country of installation. In making the connection, the following conditions must be fulfilled:

1. the ground cable must be secured to one of the dedicated connection points and identified by the symbol 📋

2. use a cable lug (not supplied) of a suitable size for installation on one of the M6 screws (supplied) used for securing the ground connection brackets 📋

3. the cable lug must be installed between the two toothed washers M6 (not supplied)

4. Secure the cable lug using the screw and the two washers tightening to a torque of 11Nm. The connection point can be positioned below the ground connection brackets 📋 or between the bracket 📋 and the fastening points 📋.

The figure below shows an installation example of the protective grounding cable:
Operations preliminary to the connection of the PV generator

In order to perform safely the preliminary operations before the connection to the PV generator it is needed that the DC wiring box is connected to the ground. Preliminary operations can be performed in two different circumstances:

1. Inverter installed (power module and both the wiring boxes). In this case check that the grounding connection in the wiring box is present and that both the ground connection brackets have been installed correctly.

2. DC wiring box disconnected from the inverter. In this case it is necessary a temporary grounding connection to be removed after the complete installation of the inverter (power module and both the wiring boxes) and after the connection of the grounding cable in the AC wiring box and the installation of ground connection brackets.

The temporary ground connection is made on additional hole on the grounding bracket.

Use the M6 screw and washer (not supplied) to fix the temporary earth cable.

Checking of leakage to ground of the photovoltaic generator

Measure the voltage present between positive and negative pole of each string with respect to ground.

If a voltage is measured between an input pole and ground, it may be that there is a low isolation resistance of the photovoltaic generator and the installer will have to carry out a check to solve the problem.

Do not connect the strings if a leakage to ground has been detected, as the inverter might not connect to the grid.
Checking of strings voltage

Measure the voltage present between positive and negative pole of each string.
If the open circuit voltage of the string is near the maximum value accepted by the inverter, consider that low ambient temperatures cause an increase in the string voltage (different according to the photovoltaic module used). In this case it is necessary to carry out a check of the sizing of the system and/or a check on the connections of the modules of the system (e.g.: number of modules in series higher than the design number).

Input voltages higher than the maximum value accepted by the inverter (see technical data table) may occur the damage of the inverter.

Checking the correct polarity of the strings

Before wiring the strings, you must ensure that the voltage of each string complies with the correct polarity using a voltmeter.

Selection of differential protection downstream of the inverter

All ABB string inverters marketed in Europe are equipped with a device for protection against ground faults in accordance with the safety standard IEC 62109-2, please refer to sections 4.8.2 and 4.8.3 of the Standard (equivalent to Standard DIN V VDE V 0126-1:2006, section 4.7). In particular, ABB inverters are equipped with a redundancy on the reading of the ground leakage current sensitive to all components of both direct and alternating current. Measurement of the ground leakage current is carried out at the same time and independently by 2 different processors: it is sufficient for one of the two to detect an anomaly to trip the protection, with consequent disconnection from the grid and stopping of the conversion process.

There is an absolute threshold of 500 mA of total leakage current AC+DC with protection tripping time at a max. of 300 msec.
Furthermore, there are another three tripping levels with thresholds respectively at 30 mA, 60 mA and 150 mA to cover the “rapid” changes in fault current induced by accidental contact with leaking live parts. The max. tripping times are progressively shortened as the speed of change in the fault current increases and, starting from the 300 msec/max for the 30 mA change, they are shortened respectively to 150 msec and 40 msec for 60 mA and 150 mA changes.

It should in any case be noted that the integrated device only protects the system against ground faults that occur upstream of the AC terminals of the inverter (namely towards the DC side of the photovoltaic system and consequently towards the photovoltaic modules). The leakage currents that can occur in the AC section between the draw/feed in point and the inverter are not detected and require an external protection device.
For protection of the AC line, on the basis of the information above with regard to the differential protection integrated in ABB inverters, it is not necessary to install a type B ground fault switch.

In accordance with article 712.413.1.1.1.2 of Section 712 of IEC Standard 64-8/7, we hereby declare that, because of their construction, ABB inverters do not inject ground fault direct currents.

The use of an AC type circuit breaker with differential thermal magnetic protection with tripping current of 500 mA is advisable so as to prevent false tripping, due to the normal capacitive leakage current of photovoltaic modules.

In the case of systems which consist of several inverters connected to a single switch with differential protection it is recommended that a device is installed which allows the adjustment of the tripping value and the tripping time.
Independent or parallel input channels configuration

The inverter equipped with DC wiring box -SX and -SX2 versions have three input channels (thus benefiting from three trackers for MPPT maximum power point tracking) which work independently of one another, which can be paralleled by leveraging a single MPPT.

Strings of photovoltaic modules having the same type and number of panels in series must be connected to each single channel; they must also have the same installation conditions (in terms of orientation to the SOUTH and inclination from the horizontal plane).

When connecting the two input channels in parallel, you must comply with the above requirements in order to benefit from the ability to leverage the full power of the inverter output on a single channel.

The multi MPPT structure however allows management of three photovoltaic generators which are independent of each other (one for each input channel), and which may differ between themselves with regard to installation conditions, type and number of photovoltaic modules connected in series. A necessary condition for the three MPPT to be used independently is that the photovoltaic generator connected to each of the inputs has a lower power than the power limit of the single input channel and a maximum current lower than the current limit of the single input channel.

All input parameters that must be met for correct inverter operation are shown in the "technical data" table.
Channel configuration examples

<table>
<thead>
<tr>
<th>PV generator characteristics</th>
<th>MPPT configuration</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The photovoltaic generator consists of strings having a different number of modules in series from each other. The photovoltaic generator consists of strings that have different installation conditions from each other.</td>
<td>MPPT configuration has to be INDEPENDENT</td>
<td>A NECESSARY condition so that the three MPPTs can be used in independent mode is for the photovoltaic generator connected to each of the inputs to have a power lower than the power limit of the single input channel AND a maximum current lower than the current limit of the single input channel.</td>
</tr>
<tr>
<td>Possibility of choosing between the configuration with MPPT as INDEPENDENT or PARALLEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The photovoltaic generator consists of strings having the same number of modules in series as each other. The photovoltaic generator consists of strings that have the same installation conditions, that is to say, all the strings have the same inclination from the horizontal and the same orientation to the SOUTH. The photovoltaic generator connected to each of the inputs has a power lower than the power limit of the input channel AND a current lower than the current limit of the input channel.</td>
<td>MPPT configuration has to be PARALLEL</td>
<td>A NECESSARY condition so that the three MPPTs must be used in parallel mode is for the photovoltaic generator connected to each of the inputs to have a power higher than the power limit of the single input channel OR a current higher than the current limit of the single input channel. An ADVISABLE () condition so that the three MPPTs can be connected in parallel is for the photovoltaic generator connected to the three inputs to consist of strings made by the same number of modules in series and for all the modules to have the same installation conditions. () This condition is advisable from the point of view of the energy production of the system, not from the point of view of inverter operation.</td>
</tr>
<tr>
<td>The photovoltaic generator consists of strings having the same number of modules in series as each other. The photovoltaic generator consists of strings that have the same installation conditions, that is to say, all the strings have the same inclination from the horizontal and the same orientation to the SOUTH. The photovoltaic generator connected to each of the inputs has a power higher than the power limit of the input channel OR a current higher than the current limit of the input channel.</td>
<td>MPPT configuration has to be PARALLEL</td>
<td>A SUFFICIENT (*) condition so that the three MPPTs must be used in parallel mode is for the photovoltaic generator connected to each of the inputs to have a power higher than the power limit of the single input channel OR a maximum current higher than the current limit of the single input channel. An ADVISABLE () condition so that the three MPPTs can be connected in parallel is for the photovoltaic generator connected to the three inputs to consist of strings made by the same number of modules in series and for all the modules to have the same installation conditions. () This condition is advisable from the point of view of the energy production of the system, not from the point of view of inverter operation.</td>
</tr>
</tbody>
</table>
Independent channel configuration (default configuration)

In the inverter equipped with DC wiring box -SX and -SX2 versions, the independent configuration of the input channels (MPPT) is set at the factory. This means that the parallel bar (supplied) must not be installed on the parallel MPPT connection points 40, and that the software setting “Independent channel mode” should be performed on the inverter; this setting can be done by different way:
1. During the commissioning wizard phase (STEP 4)
2. In the dedicated section of the internal webserver “Setup section > Setup DC side > Input mode”
3. Using the inverter display (if available) on the dedicated menu “Inverter>Settings> Input mode”.

Parallel channel configuration

In the inverter equipped with DC wiring box -SX and -SX2 versions, the configuration of the input channels (MPPT) can be set in parallel. This means that the parallel bar (supplied) must be installed on the parallel MPPT connection points 40, and that the software setting “parallel channel mode” should be performed on the inverter; this setting can be done by different way:
1. During the commissioning wizard phase (STEP 4)
2. In the dedicated section of the internal webserver “Setup section > Setup DC side > Input mode”
3. Using the inverter display (if available) on the dedicated menu “Inverter>Settings> Input mode”.
Input connection to PV generator (DC side)

After having carried out preliminary checks and therefore having verified that there are no problems in the photovoltaic system, and the channel configuration has been selected (parallel or independent) you may connect the inputs to the inverter.

According to the system configuration, check the correct setting of the channels to independent or in parallel mode. An incorrect setting of the input channels can lead to loss of energy production.

Comply with the maximum input current relating to the quick-fit connectors as indicated in the technical data.

Polarity inversion can cause serious damage. Check polarity before connecting each string!

When the photovoltaic panels are exposed to sunlight they provide continuous DC voltage to the inverter. To avoid risks of electrical shock, all wiring operations must be carried out with the DC disconnect switch (internal or external to the inverter) OFF.

Caution! The inverters referred to in this document are TRANSFORMERLESS. This type requires the use of insulated photovoltaic panels (IEC61730 Class A Rating) and the need to keep the photovoltaic generator floating with respect to ground: no terminal of the generator must be connected to ground.

The connections can also be made with the wiring box detached from the power module that can be connected later for commissioning.

When working with the wiring box detached, pay particular attention to:
- presence of temporary ground connection
- coupling connector must always be protected in outdoor installations.

The DC side connections are different according to the wiring box used:
- the Standard / -S models use cable glands
- the -SX / -SX2 models use quick fit connectors (one for each pole of each string).

On the Standard / -S versions, the connection in parallel of the strings (array composition) must take place upstream of the input in the inverter and must be made by technicians during installation.

The -SX / -SX2 versions accept a direct single strings connection with connectors which are located on the outside of the wiring box.

To avoid risks of electrical shock, all the connect operations must be carried out with the DC disconnect switch and the AC disconnect switch open.
Connection of inputs on the Standard and -S models

For these two models, connection with the DC input terminal board is made by inserting the cables into the cable glands.

The maximum cable diameter accommodated by the cable gland is between 13 to 21 mm, while each terminal clamp on the terminal block accepts a cable with a maximum cross-section of 95 mm² (copper or aluminum).

Unscrew the cable gland, remove the cover, feed a cable of suitable cross-section and connect it to the terminals on the DC input terminal block with a tightening torque of 20 Nm.

Once connection to the terminal block has been completed, retighten (8.0 Nm torque) the cable gland firmly and check seal.
Connection of inputs on the -SX / -SX2 models

For the string connections on the DC wiring box (the SX/SX2 versions), it is necessary to use the quick fit connectors (usually Weidmüller PV-Stick or WM4, MultiContact MC4 and Amphenol H4) located on the bottom of the mechanic.

The input connectors are divided into 3 groups (one group for each input channel) consisting of 5 pairs of quick fit connectors.

Refer to the document “String inverter – Product Manual appendix” available at www.abb.com/solarinverters to know the brand and the model of the quick fit connector. Depending on the model of the connector of the own inverter, it is necessary to use the same model and the respective counterpart (check the compliant counterpart on the website of the manufacturer or in ABB).

Using corresponding parts that are not compliant with the quick fit connector models on the inverter could cause serious damage to the unit and lead to invalidation of the warranty.

Connect all the strings required by the system, always checking the seal of the connectors.

If any string inputs are not required, you must ensure that covers are installed to the connectors, and install any which are missing.

This is necessary both for the inverter seal, and to avoid damage to the free connector which may be used at a later time.

In these versions of the wiring box, it is MANDATORY to directly connect the individual strings coming into the inverter (do not make field switchboards for parallel strings). This is because the string fuses, situated on each input, are not rated to take strings in parallel (array). This operation can cause damage to the fuse and consequently malfunctioning of the inverter.
Installation procedure for quick-fit connectors

There are typically four different types of quick-fit connector models used on ABB inverters: Weidmüller PV-Stick or WM4, MultiContact MC4 and Amphenol H4.

Please refer to the document “String inverters – Product manual appendix” available at www.abb.com/solarinverters for information on the quick-fit connector brand and model used in the inverter.

The model of connectors installed on your inverter must be matched by the same model of the respective corresponding parts to be used (checking the conforming corresponding part on the manufacturer’s website or with ABB).

Using corresponding parts that are not compliant with the quick-fit connector models on the inverter could cause serious damage to the unit and lead to invalidation of the warranty.

CAUTION: To avoid damage to the equipment, when attaching cables, pay particular attention to polarity.

1. WEIDMÜLLER PV-Stick quick-fit connectors

Installation of Weidmüller PV-Stick connectors does not require any special tooling.

- Strip the cable to which you want to apply the connector (after verifying that it complies with the connector limits).

- Insert the wire into the connector until you hear a locking “click”.

- Tighten the knurled ring nut for optimal clamping.

4...6mm²

15...16.5mm

5.5...7.5mm
2. WEIDMÜLLER WM4 quick-fit connectors

Installation of Weidmüller WM4 connectors requires crimping to be carried out with suitable equipment.
- Strip the cable to which you want to apply the connector (after verifying that it complies with the connector limits).
- Apply the terminal to the conductor using the designated pliers.
- Insert the cable with the terminal into the interior of the connector, until you hear the click indicating that the terminal is locked inside the connector.
- Firmly tighten the cable gland using the relevant tool to finish the operation.
3. MULTICONTACT MC4 quick-fit connectors

Installation of Multicontact MC4 connectors requires crimping to be carried out with suitable equipment.

- Strip the cable to which you want to apply the connector (after verifying that it complies with the connector limits).

- Apply the terminal to the conductor using the designated pliers.

- Insert the cable with the terminal into the interior of the connector, until you hear the click indicating that the terminal is locked inside the connector.

- Firmly tighten the cable gland using the relevant tool to finish the operation.
4. AMPHENOL H4 quick-fit connectors

Installation of Amphenol H4 connectors requires crimping to be carried out with suitable equipment.
- Strip the cable to which you want to apply the connector (after verifying that it complies with the connector limits).

- Apply the terminal to the conductor using the designated pliers.

- Insert the cable with the terminal into the interior of the connector, until you hear the click indicating that the terminal is locked inside the connector.

- Firmly tighten the cable gland using the relevant tool to finish the operation.
String protection fuses (-SX / -SX2 models only)

Sizing of fuses

The correct sizing of the positive side (+) and negative side (-) string fuses to be used to protect from “return currents” is very important because it can considerably limit the risk of fire and damage to the PV generator.

The DC wiring box equipped with string fuses are:

- SX version. Only positive side (+) string fuses
- SX2 version. Positive side (+) and negative side (-) string fuses

A “return current” can be generated in the event of a fault and relevant short-circuit at the ends of one or more PV modules of the system; this condition can cause all the current supplied by the strings not involved in the fault, but connected to the same input channel, to pass through the faulty string.
In these versions of the wiring box, you must directly connect the individual strings coming into the inverter (do not make field switchboards for parallel strings). This is because the positive side (+) and negative side (-) string fuses, situated on each input, are not rated to take strings in parallel (array). This operation can cause damage to the fuse and consequently malfunctioning of the inverter.

The sizing of the string fuses must be made taking into account the 2 following conditions:

1. The nominal current of the fuse (I_{rated}) must not exceed the maximum rating of the fuse to be used in series on the strings (maximum series fuse rating), indicated in the technical data of the PV modules in compliance with standard EC 61730-2:

$$I_{\text{rated}} < \text{Maximum series fuse rating}$$

2. The fuse rating (I_{rated}) must be determined based on the string current and on the sizing guidelines provided by the manufacturer to avoid untimely tripping. As a general guideline, based on the photovoltaic modules’ short circuit current (I_{sc}), it is possible to calculate the rating of the fuse with the following formula:

$$I_{\text{rated}} > (1.4 \approx 1.5) \times I_{\text{sc}}$$

Fuses must be chosen among the standard commercially available ratings, selecting the value that is closest to the obtained result. The fuse selected with the calculation described previously takes into consideration derating factors and corrections such as:
- increase in the effective irradiation of the installation area
- Increase in the I_{sc} on the basis of the high temperature of the PV module
- Thermal derating of the fuse
- Maximum return current of the PV modules installed

ABB can supply fuse kits of different values:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIT 10 FUSES 12A</td>
<td>Kit of 12A fuses</td>
<td>10</td>
</tr>
<tr>
<td>KIT 10 FUSES 15A</td>
<td>Kit of 15A fuses</td>
<td>10</td>
</tr>
</tbody>
</table>

For effective calculation taking real installation conditions into account, refer to the documents supplied by the protection fuse manufacturer.
Communication and control board

<table>
<thead>
<tr>
<th>Code</th>
<th>Reference</th>
<th>Description of the communication and control board</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5</td>
<td>a04</td>
<td>SD card housing</td>
</tr>
<tr>
<td>J5 - J6</td>
<td>a09</td>
<td>Connection to the multifunction relay (ALARM and AUX)</td>
</tr>
<tr>
<td>J7</td>
<td>a11</td>
<td>Connection of the RS485 (PC) lines, of the remote ON/OFF and 5V auxiliary lines</td>
</tr>
<tr>
<td>S6</td>
<td>a12</td>
<td>RS485 line (1) termination resistance selector switch</td>
</tr>
<tr>
<td>S5</td>
<td>a13</td>
<td>RS485 line (2) termination resistance selector switch</td>
</tr>
<tr>
<td>J9 - J10</td>
<td>a14</td>
<td>RS485 (1) line connection on RJ45 connector</td>
</tr>
<tr>
<td>J8</td>
<td>a15</td>
<td>RS485 (1) communication card housing</td>
</tr>
<tr>
<td>J11 - J12</td>
<td>a16</td>
<td>RS485 (2) line connection on RJ45 connector</td>
</tr>
<tr>
<td>J16</td>
<td>a17</td>
<td>RS485 (2) communication card housing</td>
</tr>
<tr>
<td>S7</td>
<td>a18</td>
<td>Switch to set the inverter to normal or service mode</td>
</tr>
<tr>
<td>J22</td>
<td>a19</td>
<td>Inverter data memory card housing</td>
</tr>
<tr>
<td>X5</td>
<td>a20</td>
<td>Battery housing</td>
</tr>
<tr>
<td>J1</td>
<td>a22</td>
<td>Grounding kit housing (optional kit)</td>
</tr>
</tbody>
</table>
Connections to the communication and control board

The communication and control signals are connected to the communication and control board inside the DC wiring box or directly to the connectors on the external of the inverter. In particular, on the left side of the DC wiring box, there are:

- Two ethernet connectors. The two connectors can be used for the daisy-chain connection (in / out) of inverters present on the system. The ethernet connection can be used to monitor, configure, and update the firmware remotely.

- Two PG21 cable glands that can be used to reach the terminals / connectors on the communication and control board. Each cable gland accepts a cable (from 13 mm to 18 mm diameter). As an alternative to each cable gland, the two-hole gasket (supplied) can be installed, which accepts two cables with a diameter of 1.5 to 6mm; If a seal hole is not to be used, it is necessary to install a plug (supplied plastic cylinder) to ensure the inverter's sealing.
Ethernet connection

The connection of the ethernet communication cable must be made on the specific connectors on the left side of the DC wiring box. If the inverters of the plant need to be connected in daisy chain use both connectors. The ethernet cable must be installed on the dedicated counterpart supplied.

The cable should be compliant to the following specification:
- Cross-section: min. 2 x 2 x 0.22 mm² or min. 2 x 2 x AWG 24
- Cable type: 100BaseTx, CAT5 (or higher) with shielding STP or FTP
- UV-resistant if used outdoors
- Type of plug: metallic shielded RJ45
- The maximum length that can reach these cables is 100 meters, and it is always advisable not to let them pass by the power cords to avoid interference with data transmission.
- Maximum inverters number connected over one single daisy chain is 50

Procedure to install the counterpart on the cable:
1. Unscrew the holding ring nut from the connector;
 remove the the gasket inside the connector body;
 feed the ethernet cable through the holding ring nut and the connector body
2. Install the gasket on the cable
3. Push the gasket inside the connector body until it fits snugly
4. Extract the cable from the corresponding part just enough to enable the connection in the connector on the inverter.
5. Remove the cap from the ethernet connector installed on the inverter.

6. Connect the ethernet cable

7. Slide the counterpart on the cable until bringing it snug to the ethernet connector of the inverter.
7a. Turn the fastening ring nut (tightening torque of 1.2 Nm) until blocking the two connectors and check the correctness of the installation.
7b. Turn the holding ring nut to a tightening torque of 1.0 Nm
The ethernet connection allows a direct data transfer to the ABB server for monitoring purpose. When the inverter will be powered on, the data transmission to the Aurora Vision® CLOUD platform will automatically start and will be possible to monitor the inverters using the Plant Portfolio Manager / Plant Viewer / Plant Viewer for Mobile (Mobile App).

Two topologies of ethernet connection to the router are available:

- **Daisy chain configuration**
 - Daisy chain over Ethernet cable (100m maximum inverter – inverter and inverter – switch)
 - Star layout (100 m maximum inverter – switch)

No initial setup is required to start data transmission to Aurora Vision. In the daisy chain configuration it is preferable to connect the units in “loop” configuration. The first and the last inverter of the chain must be connected to the router.

Once the inverters have been connected to the router, you must register at Aurora Vision to monitor the system.
Serial Communication connection (RS485)

The connection of the inverters over the RS485 line is recommended for replacement of already installed old model of inverters or service purpose only.

Automatic settings of network parameters, embedded logging capability, automatic logger free transferring of data to Aurora Vision Cloud and remote firmware update are not provided if the inverters are connected over the RS485 line.

The inverter has two RS485 communication lines with the communication protocol which can be set in "Aurora" (proprietary communication protocol) or ModBus (public communication protocol). The default configuration of the protocol for both communication ports is "Aurora" which can be changed through the advanced "Aurora Manager LITE" configuration software.

Both RS485 lines can be used to:
- connecting the inverter to monitoring devices
- carry out configuration operations using the "Aurora Manager LITE" configuration software.
- sending power management commands

The two lines only differ in terms of the firmware upgrading (locally or remotely through the ABB monitoring devices) which must be carried out by connecting to the RS485 (1) port.

When connecting the ABB monitoring devices, the RS485(1) line must be used.

Cables connecting the RS485 line may use two different types of connection:

- Connection of the conductors using the terminal connectors a11 (+T/R, -T/R, RTN e SH)
The SH connection must be used for connecting the shielding boot(s) of the cable(s).

- Connection of conductors with RJ45 connectors a14 or a16
The two RJ45 connectors (A) and (B) available for the RS485 communication, are equivalent to each other and can be used interchangeably for the arrival or for the output of the line in realising the daisy chain connection of the inverters.
Table: crimping diagram for RJ45 connectors

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>+T/R</td>
</tr>
<tr>
<td>5</td>
<td>-T/R</td>
</tr>
<tr>
<td>7</td>
<td>RTN</td>
</tr>
<tr>
<td>1, 2, 4, 6, 8</td>
<td>not used</td>
</tr>
</tbody>
</table>

Use a connector with metal body to provide cable shield continuity!

For long distance connections, the connection on terminal connector is preferable using a shielded twisted pair cable with characteristic impedance of $Z_0=120$ Ohm like the one shown on the following table:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive data</td>
<td>+T/R</td>
</tr>
<tr>
<td>Negative data</td>
<td>-T/R</td>
</tr>
<tr>
<td>Reference</td>
<td>RTN</td>
</tr>
<tr>
<td>Screen</td>
<td>SH</td>
</tr>
</tbody>
</table>

Shield continuity must be provided along the communication line using the SH terminal and must be grounded at a single point.

The RS485 line can be used to set up a line of communication (with the communication protocol which can be set in “Aurora” or “ModBus”) which, when connected to a monitoring device, enables the operation of the photovoltaic system to be kept under control. Depending on the device used monitoring can be local or remote.

Any ABB monitoring devices must be wired to the RS485(1) port

For information on installation, compatibility and use please refer to the specific documentation on the accessory components.
Connect all the units of the RS485 chain in accordance with the daisy-chain model observing the correspondence between the signals, and activate the termination resistance of the communication line in the final element of the chain by switching the a12 or a13 switch respectively on the basis of the RS 485 (1) and RS 485 (2) line in the ON position.

The communication line must also be terminated on the first element of the chain which normally corresponds to the monitoring device.

It is recommended not to exceed a length of 1000m for the communication line. The maximum number of inverters that can be connected to the same RS485 line is 62.

When connecting a single inverter to the monitoring system, activate the communication line resistance terminal by setting the switch a12 or a13 (to the ON position).

Set a different RS485 address on each inverter in the chain. No inverter can have “Auto” as an address. An address can be freely chosen between 2 and 63. The setting of the address on the inverter is done through the "Aurora Manager" software.

When an RS-485 connection is being used, if one or more inverters are added to the system at a later time, it is necessary to remember to reset to OFF the switch on the termination resistance being used (1) or (2) on the inverter which previously was the last in the system. Each inverter is shipped with the RS485 address pre-set to two (2) and with the resistance terminal setting Switch a12 or a13 in the OFF position.
Remote control connection

The connection and disconnection of the inverter to and from the grid can be controlled through an external control. The function must be enabled in the relevant menu through the Aurora Manager Tools software. If the remote control function is disabled, the switching on of the inverter is dictated by the presence of the normal parameters which allow the inverter to connect to the grid.

If the remote control function is operating, besides being dictated by the presence of the normal parameters that allow the inverter to connect to the grid, the switching on of the inverter also depends on the state of the R1 ON/OFF and R2 ON/OFF terminals compared to the RTN terminal present on the a11 connector of the communication and control board.

When one of the R1 ON/OFF or R2 ON/OFF signals is brought to the same potential as the RTN signal (i.e. by making a short circuit between the two terminals of the connector), this causes the inverter to disconnect from the grid.

The connections of these controls are made between the “R1 ON/OFF” and the “R1 ON/OFF” inputs compared to the common “RTN” signal. Since this is a digital input, there are no requirements to be observed as regards cable cross-section (it only needs to comply with the sizing requirement for passing cables through the cable glands and the terminal connector).

Configurable Relay connection (ALARM and AUX)

The inverter is equipped with 2 multifunction relays with configurable activation. It can be connected with normally open contact (being connected between the NO terminal and the common contact C) and with normally closed contact (being connected between the NC terminal and the common contact C).

Different types of devices (light, sound, etc.) can be connected to the relay, provided they comply with the following requirements:

Alternating current
- Maximum Voltage: 240 V AC
- Maximum Current: 1 A

Direct current
- Maximum Voltage: 30 V DC
- Maximum Current: 0.8 A

Cable requirements
- External diameter: from 5 to 17 mm
- Conductor cross-section: from 0.14 to 1.5 mm²

This contact can be used in different operating configurations that can be selected by accessing the Aurora Manager Tools software,
Installing the Wiring Box cover and conductive springs

When you have finished connecting and configuring the inverter, and before commissioning, the front covers of the AC and DC wiring boxes must be fitted as well as the cover of the inverter itself.

During the installation of the cover must be observed the sequence and the tightening torque of the screws 8 in order to maintain the IP rating of the inverter

- Confirm the disconnect switches on the cover are OFF
- Carefully place the cover over the wiring box.
- Reinstall the cover screws following the order shown in the figure; torque to 2.4 Nm

Also fit the 6 conductor springs which serve to reduce the irradiated electrical noise.
Note: The conductor springs must be inserted between the covers in the unpainted areas.
The springs are fitted as follows:
1 compress the spring
2 insert the spring between the two covers
3 release the spring

Inverter commissioning can start once the Wiring Box covers have been fitted.
General conditions

One of the first rules for preventing damage to the equipment and to the operator is to have a thorough knowledge of the instruments. We, therefore, advise that you carefully read this manual. If you are not sure about any information in this manual, please ask ABB Service for more detailed information.

Do not use the equipment if:
- you do not have suitable qualifications to work on this equipment or similar products;
- you are unable to understand how it works;
- you are not sure what will happen when the buttons or switches are operated;
- you notice any operating anomalies;
- there are doubts or contradictions between your experience, the manual and/or other operators.

ABB cannot be held responsible for damage to the equipment or the operator if it is the result of lack of knowledge, insufficient qualifications or lack of training.
Description of the LED function

The LED functions on the inverter are described below.

- **GREEN**: Indicates that the inverter is functioning correctly. When the unit is commissioned, while the grid is checked, this LED blinks. If a valid grid voltage is detected, the LED remains continuously lit, as long as there is sufficient sunlight to activate the unit. Otherwise, the LED will continue to blink until the sunlight is sufficient for activation.

- **YELLOW**: Indicates that the inverter has detected an anomaly. This type of problem is highlighted through the "Aurora Manager Lite" software.

- **RED**: The “GFI” (ground fault) LED indicates that the inverter has detected a ground fault in the DC side photovoltaic generator. When this fault is detected, the inverter immediately disconnects from the grid.

LED isolation fault

Interventions after warning of isolation fault

When the red LED activates, first of all try to reset the alarm using the "Aurora Manager Lite" software.

If the inverter reconnects normally to the network the fault was due to temporary phenomena.

You are advised to have the plant inspected by the installer or a specialist should this malfunction occur repeatedly.

If the inverter does not reconnect to the grid, isolate it on both the AC and DC sides (by using the disconnect switches), then contact the installer or authorised centre to repair the fault in the photovoltaic generator.
User interface

1. Embedded Web User Interface
 • Accessible via Wi-Fi by using any WLAN enabled standard device (PC, smartphone, tabled,…)
 • Enables single inverter parameters settings (Aurora Manager Embedded)
 • Updating of the inverter firmware.

2. Local display
 • Just for reading settings
 • Enabled setting RS485 ports addresses and MPPT functioning mode
 • Available on request (it is an accessory)

3. Aurora Manager Lite
 • Mainly for service purpose
 • Local monitoring of the inverter.
 • Advanced configuration of the inverter (INSTALLER access level)
 • Updating of the inverter firmware.
 • In order to use the software a connection must be established between the PC and the inverter (by means of an RS485 communication line) using a PVI-USB-RS485_232 signal converter.

4. Mobile app and web portal Aurora Vision
 • Remote monitoring of the inverter.

Measurement tolerance

The data supplied by the inverter may differ from measurements taken by certified measuring instruments (e.g. output meters, multimeters and grid analysers); since the inverter is not a measuring instrument it has wider tolerances for the measurements it makes.

The tolerances are generally:

±5% for real-time measurements with output power below 20%
±3% for real-time measurements with output power above 20%
±4% for all statistical data.
General conditions

Before checking the operation of the equipment, it is necessary to have a thorough knowledge of the Instruments chapter 6 and the functions that have been enabled in the installation process.

The equipment operates automatically without the aid of an operator; the operating state should be controlled through the equipment’s instrumentation.

The interpretation or variation of some data is reserved exclusively for specialized and qualified staff.

The incoming voltage must not exceed the maximum values shown in the technical data, section 2 in order to avoid damaging the equipment.

Consult the technical data for further details.

During operation, check that the environmental and logistical conditions are correct (see installation chapter 5). Make sure that environmental and logistical conditions have not changed over time and that the equipment is not exposed to adverse weather conditions.
Commissioning (Via internal Webserver) - Wireless connection

⚠️ Do not place objects of any kind on the inverter during operation! Do not touch the heat sink while the inverter is operating! Some parts may be very hot and could cause burns.

⚠️ Before proceeding with commissioning, make sure you have carried out all the checks and verifications indicated in the section on preliminary checks.

Connection to the inverter - Wireless

Commissioning could be carried out via wireless connection to the inverter’s internal webserver. Initial setup of the system must therefore be carried out via a tablet, notebook or smartphone with a wireless connection.

- Close the DC disconnect switch to supply the inverter with input voltage from the photovoltaic generator.

⚠️ Make sure irradiation is stable and adequate for the inverter commissioning procedure to be completed.

- Once powered, the inverter will automatically create a wireless network (approx. 60 seconds after its switch-on) that will be visible as an Access Point from the user devices previously mentioned (tablet, smartphone, etc.).

- Enable the wireless connection on the device which is being used for the board setup (tablet, smartphone or PC) and connect it to the Access Point created by the inverter system: the name of the wireless network created by the system that the connection should be established with, will be: `ABB-XX-XX-XX-XX-XX-XX` where “X” is a hex digit of the wireless MAC address (MAC address can be found on the “Communication Identification Label” placed on the side of the inverter).

The screens shown below pertain to a tablet with the Android operating system. Screens on other devices or operating systems may differ.

- When required digit the network password `ABBSOLAR`

After 24 hours which the inverter is power-on, the access point default password “ABBSOLAR” will be disabled and any subsequent access to the internal webserver will be possible only using the PRODUCT KEY (printed on the “Wireless identification label”) as access point password. In case of need, product key can be recovered by Aurora Vision Cloud of by calling ABB technical support.
Commissioning procedure - Wireless connected

- Open an internet browser (recommended browser: Chrome versions from v.55, Firefox versions from v.50) and enter the pre-set IP address 192.168.117.1 to access the setup pages (web user interface). A guided setup procedure will open that will enable you to impose the necessary settings for correct commissioning of the inverter.

The language of the wizard could be changed by clicking on the upper status bar

The required informations during the procedure are:

STEP 1 - Administrator/User login credentials

- Set the Administrator account user and password (minimum 8 character for password): Administrator account can open and view the contents of photovoltaic site. Additionally, they can make changes to inverter settings. User and password are CASE SENSITIVE.

- Set the User account user and (optional) password (minimum 8 character for password): User account can only read data. It cannot make any changes. User and password are CASE SENSITIVE.
STEP 2 (Optional) - Wireless network connection.

As described on chapter 2 the recommended way to get all the installed inverters to communicate to the internet and Aurora Vision Cloud is creating a cabled Ethernet daisy chain bus. Anyway, in case of a few inverters installation in suitable environment, it is also possible to connect each inverter of the plant to a Wi-Fi router without using any cable.

The AP is still available and the user can connect to the inverter. In this scenario the Router gives IPs according to its own rules. Inverter is reachable by IP.

Domain name can be used only if the Router permits multicast.

In fact, during the installation wizard of the single inverter, the installer will be asked to connect the inverter to a Wi-Fi router. If the installer decided to do that be advised that the inverters will turn on a second Wi-Fi radio channel for enabling the communication with the Wi-Fi router. Otherwise this second radio channel will be kept turned off.

The availability of this second radio channel will allow the installer to be able to communicate wirelessly with the inverter by using the static IP address, in any operating condition, with the inverter connected to the switch/router by either Ethernet cable or Wi-Fi.

Whatever means is used to connect the inverter to the router (Ethernet cable or Wi-Fi) it will be always possible to access to the embedded web server also by connecting its own device to the same switch/router, and reaching the inverter (via second radio channel in case of Wi-Fi connection with the router) by using the assigned IP address or inverter’s host name.

The IP address assigned to the inverter may vary or may be unknown. Please contact the IT administrator for getting the assigned IP address. Differently from the assigned IP address, the «Host Name» of the inverter is unchangeable over time. In order to use the «Host Name» as an alternative to the assigned IP address, for accessing to the inverters web server from the router the Domain Name System (DNS) service is needed to be available and activated.

The Host Name associated to each ABB inverters is structured as indicated below: ABB-logger ID.LOCAL where:

logger ID stands for the MAC address indicated on the “Communication identification label” applied on the inverter.
The parameters relating to the customer wireless network (set on the router) that must be known and set during this step are:

- **IP Settings**: DHCP or Static.
 If you select the DHCP function (default setup) the router will automatically assign a dynamic IP address to the inverter whenever it tries to connect to the user network.

 With Static, the user can assign a fixed IP address to the system. The data which has to be entered in order for IP static address assigning to take place will appear. Complete the additional fields at the bottom of the screen (all the fields are mandatory with the exception of the secondary DNS server).

- **Available networks (SSID)**:
 Identify and select your own (customer) wireless network from all those shown in the SSID field (you can carry out a new search of the networks that can be detected with the Update button). Once the network has been selected, confirm.

- **Password**: Wireless network password.
 Enter the password for the destination network (if necessary) and start the connection attempt (it will take a few seconds).

Click on “Connect” button to connect the inverter to the home wireless network.

A message will ask for confirmation. Click “Next” to connect the inverter to the customer wireless network.
Once the inverter is connected to the customer wireless network, a new message will confirm that the connection is acquired.

The message provides the IP Address assigned by the home wireless network router to the inverter that can be used each time you want to access the internal webserver, with the inverter connected to the home wireless network. Take note of it.

Click on “Next” button to proceed to the next stage of the configuration wizard.

The IP address assigned may vary for reasons connected to the wireless home router setup (for example, a very brief DHCP lease time). If verification of the address is required, it is usually possible to obtain the client list (and the corresponding IP addresses) from the wireless router administration panel.

If the inverter loses the connection with the home wireless network (and therefore, loses the internet connection), it will once again enable its own access point.

The most common causes of losing connectivity might be: different wireless network password, faulty or unreachable router, replacement of router (different SSID) without the necessary setting updates.
Set the Date, Time and Time zone (The inverter will propose these fields when available).

When it’s not possible for the inverter to detect the time protocol, these fields have to be manually entered.

Click on “Next” button to proceed to the next stage of the configuration wizard.
STEP 4 - Inverter country standard and Input configuration

- **Country standard: selection of grid standard:**
 Set the grid standard of the country in which the inverter is installed.

 From the moment that the grid standard is set, you have 24 hours to make any changes to the value, after which the “Country Select > Set Std.” functionality is blocked, and the remaining time will have to be reset in order to have the 24 hours of operation available again in which to select a new grid standard (follow the procedure “Resetting the remaining time for grid standard variation” described in the relevant section).

- **Input mode:**
 (See the relevant section of this manual to know how set the input mode)
 1. Independent
 2. Parallel

 Confirm the settings by clicking “END” and the inverter will reboot.

A notification will confirm that the wizard is completed.
• After the wizard is completed, the message “Initializing...Please Wait” is displayed on the inverter display. Regardless of the input voltage value, the inverter displays various messages and changes the behaviour of the “Power” and “Alarm” LEDs:

<table>
<thead>
<tr>
<th>Input voltage</th>
<th>Message on display</th>
<th>LED Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin < Vstart</td>
<td>Waiting Sun</td>
<td>Power = Flashing</td>
<td>The input voltage is not sufficient to enable connection to the grid.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alarm = OFF</td>
<td></td>
</tr>
<tr>
<td>Vin > Vstart</td>
<td>Missing Grid</td>
<td>Power = Flashing</td>
<td>The input voltage is sufficient to enable connection to the grid; the inverter waits for the grid voltage to be present to make the parallel connection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alarm = ON</td>
<td></td>
</tr>
</tbody>
</table>

The inverter is powered SOLELY by the voltage generated by the photovoltaic generator: the presence of grid voltage alone is NOT SUFFICIENT for the inverter to switch on.

• With the inverter in the “Missing Grid” status, close the AC switch downstream of the inverter thus applying the grid voltage to the inverter: the inverter checks the grid voltage, measures the isolation resistance of the photovoltaic field with respect to ground and performs other auto-diagnostic checks. During the preliminary checks on the parallel connection with the grid, the “Power” LED keeps flashing, the “Alarm” and “GFI” LEDs are off.

• During the check on the grid voltage and the measurement of the isolation resistance, the voltage, grid frequency and isolation resistance values measured by the inverter are displayed. The inverter ONLY creates a parallel connection with the grid if the grid and isolation resistance parameters fall within the ranges foreseen by current regulations.

• If the outcome of the preliminary checks on the grid parallel is positive, the inverter connects to the grid and starts to export power to the grid. The “Power” LED remains fixed on while the “Alarm” and “GFI” LEDs are off.

To address any problems that may occur during the initial stages of operation of the system and to ensure the inverter remains fully functional, you are advised to check for any firmware updates in the download area of the website www.abb.com/solarinverters or at https://registration.abbsolarinverters.com (instructions for registering on the website and updating the firmware are given in this manual).
LED behaviour

The LEDs on the front panel may behave in different ways depending on the inverter’s operational status.

All possible LED activation combinations are shown in the following table. In particular, each LED could behave in one of the following ways:

- **= LED on**
- **= LED flashing slow (2 seconds on / 2 seconds off)**
- **= LED flashing fast (0.2 seconds on / 0.2 seconds off)**
- **= LED off**
- **= Any one of the conditions described above**

<table>
<thead>
<tr>
<th>LED status</th>
<th>Operating state</th>
</tr>
</thead>
<tbody>
<tr>
<td>green:</td>
<td>Firmware programming</td>
</tr>
<tr>
<td>yellow:</td>
<td>Night mode (inverter automatically switches off)</td>
</tr>
<tr>
<td>red:</td>
<td>Inverter initialization</td>
</tr>
<tr>
<td>green:</td>
<td>The inverter is connected and is feeding power into the grid</td>
</tr>
<tr>
<td>yellow:</td>
<td>Disconnection from the grid</td>
</tr>
<tr>
<td>red:</td>
<td>Warning indication: (W message codes) or Error: (E message codes)</td>
</tr>
<tr>
<td>green:</td>
<td>Temperature protection trip</td>
</tr>
<tr>
<td>yellow:</td>
<td>Anomaly in the insulation system of the photovoltaic generator</td>
</tr>
<tr>
<td>red:</td>
<td>• Front cover open</td>
</tr>
<tr>
<td>LED status</td>
<td>Operating state</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>green:</td>
<td>• Ventilation anomaly</td>
</tr>
<tr>
<td>yellow:</td>
<td>Indicates an anomaly in the operation of the internal ventilation system that could limit output power at high ambient temperatures.</td>
</tr>
<tr>
<td>red:</td>
<td>• Failed association of internal inverter components (after replacement)</td>
</tr>
<tr>
<td></td>
<td>Indicates that the installed wiring box (only in the event of a replacement) was already associated with another inverter and cannot be associated with the new inverter.</td>
</tr>
<tr>
<td>green:</td>
<td>• Overvoltage surge arresters triggered (where fitted)</td>
</tr>
<tr>
<td>yellow:</td>
<td>Indicates that any class II overvoltage surge arresters installed on the AC or DC side have been triggered.</td>
</tr>
<tr>
<td>red:</td>
<td>• String protection fuses triggered (where fitted)</td>
</tr>
<tr>
<td></td>
<td>Indicates that one or more input string protection fuses that may be installed have been triggered.</td>
</tr>
<tr>
<td>green:</td>
<td>• Autotest not executed (only for Italian network standards)</td>
</tr>
<tr>
<td>yellow:</td>
<td>On the inverter was not performed the Autotest.</td>
</tr>
<tr>
<td>red:</td>
<td>• Internal statistics memory anomaly</td>
</tr>
<tr>
<td></td>
<td>Indicates an operating anomaly in the internal memory on which the inverter statistics are stored.</td>
</tr>
<tr>
<td>green:</td>
<td>• Buffer battery discharged</td>
</tr>
<tr>
<td>yellow:</td>
<td>The buffer battery is low and the inverter does not maintain the time setting.</td>
</tr>
<tr>
<td>red:</td>
<td>• Initial configuration failure</td>
</tr>
<tr>
<td></td>
<td>The inverter is in locked state due to a failure in the initial configuration of the equipment, such as the standard network setting for the country of installation.</td>
</tr>
<tr>
<td>green:</td>
<td>• Self-test not carried out (for Italian grid standards only)</td>
</tr>
<tr>
<td>yellow:</td>
<td>Self-test operation failure.</td>
</tr>
<tr>
<td>red:</td>
<td>• Incompatibility of the device firmware versions</td>
</tr>
<tr>
<td></td>
<td>The firmware versions of the various devices comprising the equipment are incompatible and are being updated (this is an automatic operation).</td>
</tr>
<tr>
<td>green:</td>
<td>• Temperature sensor anomaly detected</td>
</tr>
<tr>
<td>yellow:</td>
<td>Updating the firmware from an SD card</td>
</tr>
<tr>
<td>red:</td>
<td>The equipment firmware is being updated from an SD card.</td>
</tr>
<tr>
<td>* lighting of the LEDs in sequence</td>
<td>Firmware programming failure</td>
</tr>
<tr>
<td></td>
<td>There has been a failure in programming the firmware, of one or more internal devices of the equipment, to the equipment from an SD card.</td>
</tr>
<tr>
<td>green:</td>
<td>Updating the firmware from an SD card completed</td>
</tr>
<tr>
<td>yellow:</td>
<td>The equipment firmware has been successfully updated from an SD card.</td>
</tr>
<tr>
<td>red:</td>
<td>Updating the firmware from an SD card has failed</td>
</tr>
<tr>
<td></td>
<td>The equipment firmware update from an SD card has failed.</td>
</tr>
<tr>
<td>green:</td>
<td>Remote OFF activated</td>
</tr>
<tr>
<td>yellow:</td>
<td>The Remote Off command has been activated.</td>
</tr>
<tr>
<td>red:</td>
<td>The unit will not connect to the network until the remote ON command has been activated.</td>
</tr>
</tbody>
</table>
Description of the internal Webserver

The inverter is equipped with an advanced integrated webserver and user interface that allow a full access to all configuration and commissioning parameters from any electronic device (laptop, tablet and smartphone).

Access to the internal Webserver

To access the internal webserver is required to connect a device equipped with wireless connection (such as tablet, laptop or smartphone).

Depending on the connection method chosen during the inverter commissioning phase (“Station Mode” or “AP Mode”) it’s required to follow one of the two procedures described below:

Connection to the inverter in “Station Mode”

• Enable the wireless connection on the device (tablet, smartphone or laptop) and connect it to the same wireless network to which the inverter is connected.

• Open an internet browser (recommended browser: Chrome versions from v.55, Firefox versions from v.50) and enter the links (corresponding to the IP Address assigned by the router to the inverter, or the “Host Name”) provided during the commissioning phase to access the login page.

In order to use the “Host Name” as an alternative to the dynamic IP address, the Wi-Fi router to which the board is connected (when operating in “Station Mode”) must provide the Domain Name System (DNS) service (contact the network administrator for further information regarding the presence or absence of the DNS service in the Wi-Fi router or how to enable it). In this way, even if the IP address assigned to the inverter should change over time, (dynamic IP), it will always be possible to use the same “Host Name” which will remain unchanged over time.

The IP address assigned may vary for reasons connected to the wireless home router setup (for example, a very brief DHCP lease time). If verification of the address is required, it is usually possible to obtain the client list (and the corresponding IP addresses) from the wireless router administration panel.

If the “Host Name” was lost, it could be obtained writing this url:

http://ABB-XX-XX-XX-XX-XX-XX.local
replacing the “X” with the hex digits of the wireless MAC address of the inverter (it can be found on the “Wireless Identification Label” placed on the side of the inverter or applied during the commissioning phase to the quick installation guide on cover page).
Connection to the inverter in “AP Mode”

• Enable the wireless connection on the device which is being used for the board setup (tablet, smartphone or PC) and connect it to the Access Point created by the inverter system: the name of the wireless network created by the system that the connection should be established with, will be:

ABB-XX-XX-XX-XX-XX-XX

where “X” is a hex digit of the wireless MAC address (MAC address can be found on the “Wireless Identification Label” placed on the side of the inverter or applied during the commissioning phase to the quick installation guide on cover page).

• When required digit the network password ABBSOLAR

After 24 hours which the inverter is power-on, the access point default password “ABBSOLAR” will be disabled and any subsequent access to the internal webserver will be possible only using the PRODUCT KEY (printed on the “Wireless identification label” and applied during the commissioning phase to the quick installation guide on cover page) as access point password.

• Open an internet browser (recommended browser: Chrome versions from v.55, Firefox versions from v.50) and enter the pre-set IP address 192.168.117.1 to access the login page.
Login page

After you have connected the device to the inverter and you access to the login page, login with the username and password created during the commissioning phase.

User and password are CASE SENSITIVE.

If the Password is lost click on “Forgot your password?” to obtain the access to the webserver (and it will be possible to change the password) by entering the PRODUCT KEY (printed on the “Wireless identification label” and applied during the commissioning phase to the quick installation guide on cover page).

The language of the internal webserver could be changed in any moment by clicking on the right status bar:
Webserver menu structure

The following screenshots are related from a laptop visualization, may differ from smartphone or tablet visualization.

The Webserver is divided in six main sections, available on the left sidebar:

MAIN: Main section of webserver dedicated to viewing the summary informations related the status and the production informations of the inverter and photovoltaic plant.

SETUP: Section dedicated to AC and DC line parameters configurations.

EVENTS: Section dedicated to viewing Alarms and Warnings event log.

USER: Section dedicated to User management.

NETWORK: Section dedicated to inverter communication settings and configurations.

TOOLS: Section dedicated to main service tools configurations.

INFORMATION: Section dedicated for general informations about the embedded webserver.
MAIN section

In the **MAIN** section it’s possible to access the following sub-menus:

- Dashboard
- Status Summary

Dashboard

In the **Dashboard** sub-menu you can view the main informations related the status and the production informations of the inverter and photovoltaic plant and alarm/warning active events.

Status Summary

In the **Status Summary** sub-menu you can view the detailed informations related the status and the production informations of the system.
SETUP section

In the SETUP section it’s possible to access the following sub-menus:
- Setup DC Side
- Setup AC Side

Setup DC Side

In the Setup DC Side sub-menu you can setup the parameter related to the Input DC side:

1. VStart1
 This parameter is used to set the Vstart activation voltage for the input channel 1 if they are configured independently (If parallel you will see only a single “Vstart” parameter for both channels). This voltage imposes a minimum input voltage on the inverter above which connection to the grid will be attempted.

2. VStart2
 This parameter is used to set the Vstart activation voltage for the input channel 2 if they are configured independently (If parallel you will see only a single “Vstart” parameter for both channels). This voltage imposes a minimum input voltage on the inverter above which connection to the grid will be attempted.

3. VStart3
 This parameter is used to set the Vstart activation voltage for the input channel 2 if they are configured independently (If parallel you will see only a single “Vstart” parameter for both channels). This voltage imposes a minimum input voltage on the inverter above which connection to the grid will be attempted.

We advise changing the activation voltage only if really necessary and to set it to the correct value: the photovoltaic generator sizing tool available on the ABB website will indicate whether Vstart needs changing and what value to set it to.

4. Input Mode
 This settings allows you to set the input configuration mode. In particular:
 - Independent: Independent configuration of the two input channels. This configuration is set by default.
 - Parallel: Parallel configuration of the input channels (single input channel). Other hardware settings must be set on the inverter to set this mode. Refer to the paragraph “Parallel channel configuration”.
5. UV Protection Time
This section of the menu allows you to set the time for which the inverter stays connected to the grid after the input voltage has dropped below the Under Voltage limit (set at 70% of Vstart).
This value can be set from 1 to 3600 seconds (60 seconds is the default setting).

5. Multiple Max Scan Enable
This settings allows you to Enables/disables the scan for identifying the maximum power point of the system.

6. Multiple Max Scan Period
This settings allows you to set the time between scans. Remember that the shorter the scan interval the greater the loss of production, due to the fact that energy is transferred to the grid during the scan but not at the maximum power point. Each scan takes roughly 2 seconds.

7. MPPT Noise amplitude
By changing this settings you can choose the amplitude of the DC perturbation introduced to establish the optimal operating point.

Setup AC Side
In the Setup AC Side sub-menu you can setup the parameter related to the Output AC side:

Changing the above-mentioned parameters may prevent disconnection from the grid if the new values exceed those given in the standards of the country of installation. If these parameters are changed to values outside the standard range, an interface protection must be installed external to the inverter in accordance with the requirements of the country of installation.

1. Grid Protection
By editing these settings it’s possible to enable/disable and change the grid protection intervention thresholds parameters.

2. Grid Connection
By editing these settings it’s possible to change the grid connection thresholds parameters to which the inverter have to connect to the grid.

3. High Frequency Derating
By setting these parameters it’s possible to change the output derating behavior of the inverter related to the grid frequency parameters.

4. Setup Average Vgrid Derating
By setting these parameters it’s possible to change the output derating behavior of the inverter related to the average voltage parameters of the grid.
In the **EVENTS** Section it’s possible to view the Alarm and Warning events list that it can be custom filtered by type or by entering a matching word.

Clicking on any event to view his details.

<table>
<thead>
<tr>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC grid overvoltage - W004 - WARNING</td>
</tr>
</tbody>
</table>
USER section

In the USER section it’s possible to logout from webserver and return to the login page, or to access the following sub-menus:

- **Edit Email and Password**
- **Admin Plus**
- **User Management**

Edit Email and Password

In the **Edit Email and Password** sub-menu you can change the e-mail and password related to the user which is used to login to the webserver:

Admin Plus

By accessing to the **Admin Plus** sub-menu you can obtain the “Admin Plus” user privileges which allow you to change the grid standard of the inverter, after 24 hours while the inverter is operating, and the **Country Standard** sub-menu on **TOOLS** section is locked.

To access on the internal webserver with the “Admin Plus” user privileges it’s required to enter a security token that it can be obtained by registering on the website https://registration.abbsolarinverters.com. Refer to the dedicated section on this topic in the manual.

User Management

By accessing to the **User Management** sub-menu it’s possible to edit all the users already created and create new users (both with admin or User privileges).
In the **NETWORK** section it's possible to access the following sub-menus:

- **RS485**
- **WLAN Status**
- **Modbus TCP**
- **Debug Settings**

RS485

In the **RS485** sub-menu it's possible to adjust the settings relating to the RS485 communication serial line:

- **RS485 Node Address**: It allows you to set the address for serial communication of the individual inverters connected to the RS485 line. The UP and DOWN buttons scroll through the numerical scale. (The addresses that can be assigned are 2 to 63).

- **RS485 Baud Rate**: It allows you to set the Baud Rate (2400/4800/9600/19200/34800/57600/115200).

- **RS485 Protocol Type**: It allows you to set the type of protocol to be used for the RS485 line.
 - "Protocol Aurora Server": it's the proprietary ABB serial protocol usually used for back-compatibility or by service personnel.
 - "Modbus Sunspec Server": General purpose communication protocol to be selected to enable monitoring and control.
 - "Modbus Meter Interface": communication protocol to be selected for enable communication with the supported external meter.
 - **RS485 Parity Mode**: It allows you to set the Parity bit (No Parity, Even Parity, Odd Parity).
WLAN Status

In the WLAN Status sub-menu it’s possible to view the status of the two wireless channels of the inverter, and to disconnect the channel 2.

- Channel 1: “Access Point mode”: Only local communication is enabled in this mode; In particular, the WLAN acts like an «access point» generating a wireless network to which the user can connect locally, configure the inverter / photovoltaic system, using the direct access to the embedded Webserver.

- Channel 1 “Station Mode”: In this operating mode is possible to connect the inverter to a Wi-Fi router; in this condition remote monitoring is enabled accessing to Aurora Vision® CLOUD platform.
In case of channel 2 in “Station Mode”, it’s required to enter the wireless network parameters (set on the router) and follow the subsequent procedure:

- **IP Selection Mode: DHCP or Static:**
 If you select the DHCP function (default setup) the router will automatically assign a dynamic IP address to the inverter whenever it tries to connect to the user network.

 With Static, the user can assign a fixed IP address to the system. The data which has to be entered in order for IP static address assigning to take place will appear. Complete the additional fields at the bottom of the screen (all the fields are mandatory with the exception of the secondary DNS server).

- **SSID (name of wireless network):**
 Identify and select your own (home) wireless network from all those shown in the SSID field (you can carry out a new search of the networks that can be detected with the Update button ![Update button]). Once the network has been selected, confirm.

- **Password (wireless network password):**
 Enter the password for the destination network (if necessary) and start the connection attempt (it will take a few seconds).

Click on “Connect”
Once the inverter is associated with a wireless network, the user must switch the tablet/smartphone/PC to the same wireless network which the inverter is connected.

Please do not close this page and switch Wireless network

In order to proceed, you should connect to the following Wireless Network without closing this page:

HOME_Network

The operation could take 5 minutes

Once the tablet/smartphone/PC device is switched to the local wireless network a new message will confirm that the connection is acquired.

Connection acquired

The inverter is connected to the network

HOME_Network

The device is available at the following addresses:

- IP Address: 192.168.1.23

Please take note of them.

Click the “Next” button” to complete the setup of “Station Mode”

In order to use the “Host Name” as an alternative to the dynamic IP address, the Wi-Fi router to which the board is connected (when operating in “Station Mode”) must provide the Domain Name System (DNS) service (contact the network administrator for further information regarding the presence or absence of the DNS service in the Wi-Fi router or how to enable it). In this way, even if the IP address assigned to the inverter should change over time, (dynamic IP), it will always be possible to use the same “Host Name” which will remain unchanged over time.

The IP address assigned may vary for reasons connected to the wireless home router setup (for example, a very brief DHCP lease time). If verification of the address is required, it is usually possible to obtain the client list (and the corresponding IP addresses) from the wireless router administration panel.
Modbus TCP

In the **Modbus TCP** sub-menu it's possible to enable exchanging of data with third party monitoring and control systems over wireless channel in compliance with Sunspec register map, by setting “ON” the “Modbus TCP Server” parameter.

By changing “Modbus Power Control” parameter settings to “OFF” only reading register is enabled.

Debug Settings

In the **Debug Settings** sub-menu it's possible to enable or disable the Debugging access for ABB Service purposes.
In the **TOOLS** section it’s possible to access the following sub-menus:

- Local I/O Manager
- Country Standard
- Autotest CEI 0-21
- Firmware Update
- Date/Time

Local I/O Manager

In the **Local I/O Manager** sub-menu it’s possible to enable the management of power flows in order to optimize self-consumption or avoid feeding power to the grid.

This section of the menu allows you to set the activation status of a relay (available either as contact normally open – N.O. - and as a normally closed contact -N.C.) and to configure customised alarm conditions.

This contact can be used, for example, to: activate a siren or a visual alarm, control the disconnect device of an external transformer, or control an external device. A little description of the alarm type (e.g. “alarm lamp”) is required.

Relay switching can be set in 9 different modes using the submenu **Set Alarm Type** (For the “Alarm Conf.”, “Al. Conf. Latch”, “Al. Conf. Ext.”, “GoGo Rel(Auto)” and “GoGo Rel(Slave)” it is possible to configure customised alarm conditions through the submenu **Alarm Config** and **GoGo Config**):

- **Alarm Production** - display text “Alarm-Contact (Production)”
 The relay is activated (status: switched) whenever the inverter connects to the grid; as soon as the inverter is disconnected from the grid (for whatever reason that caused disconnection), the relay is in its resting position.

- **Alarm with reset at the end of the alarm signalling process** - display text “Alarm-Contact (alarm ALL - no-latch)”:
 The relay is activated (status: switched) whenever an error (code Exxx) or warnings related to grid parameters out of range (Warning – codes W003, W004, W005, W006, W007) are present on the inverter. The alarm returns to its resting position when the alarm signal ends, i.e. before the inverter checks the grid parameters after the alarm state. This is because grid control state is not an alarm state but a state of normal operation.
Alarms for which the relay is activated

<table>
<thead>
<tr>
<th>E001</th>
<th>E002</th>
<th>E003</th>
<th>E004</th>
<th>E005</th>
<th>E006</th>
</tr>
</thead>
<tbody>
<tr>
<td>E007</td>
<td>E009</td>
<td>E010</td>
<td>E011</td>
<td>E012</td>
<td>E013</td>
</tr>
<tr>
<td>E014</td>
<td>E015</td>
<td>E016</td>
<td>E017</td>
<td>E018</td>
<td>E019</td>
</tr>
<tr>
<td>E020</td>
<td>E021</td>
<td>E022</td>
<td>E023</td>
<td>E024</td>
<td>E025</td>
</tr>
<tr>
<td>E026</td>
<td>E027</td>
<td>E028</td>
<td>E029</td>
<td>E030</td>
<td>E031</td>
</tr>
<tr>
<td>E032</td>
<td>E033</td>
<td>E034</td>
<td>E035</td>
<td>E036</td>
<td>E037</td>
</tr>
<tr>
<td>E046</td>
<td>E050</td>
<td>E053</td>
<td>E054</td>
<td>E055</td>
<td>E056</td>
</tr>
<tr>
<td>E057</td>
<td>E058</td>
<td>E077</td>
<td>E078</td>
<td>E081</td>
<td>E084</td>
</tr>
<tr>
<td>E089</td>
<td>W003</td>
<td>W004</td>
<td>W005</td>
<td>W006</td>
<td>W007</td>
</tr>
</tbody>
</table>

In the presence of W003, W004, W005, W006, W007 signalling, the alarm contact switches to then reset itself at the end of the alarm signal. This means that during the absence of grid voltage (display message “Missing Grid”) the alarm contact remains in its resting position.

• Configurable alarm with reset at the end of the alarm signalling process - display text “Alarm-Contact (alarm configurable - no-latch)”

The relay is activated (status: switched) whenever an error (code Exxx) or a warning (code Wxxx) is present from those selected from the list in the dedicated submenu **Alarm Config** of the inverter display. The contact returns to its resting position when the alarm signal ends, i.e. before the inverter checks the grid after the alarm state. This is because grid control state is not an alarm state but a state of normal operation.

Selectable alarms for which the relay is activated

<table>
<thead>
<tr>
<th>E001</th>
<th>E002</th>
<th>E003</th>
<th>E004</th>
<th>E005</th>
<th>E006</th>
</tr>
</thead>
<tbody>
<tr>
<td>E007</td>
<td>E009</td>
<td>E010</td>
<td>E011</td>
<td>E012</td>
<td>E013</td>
</tr>
<tr>
<td>E014</td>
<td>E015</td>
<td>E016</td>
<td>E017</td>
<td>E018</td>
<td>E019</td>
</tr>
<tr>
<td>E020</td>
<td>E021</td>
<td>E022</td>
<td>E023</td>
<td>E024</td>
<td>E025</td>
</tr>
<tr>
<td>E026</td>
<td>E027</td>
<td>E028</td>
<td>E029</td>
<td>E030</td>
<td>E031</td>
</tr>
<tr>
<td>E032</td>
<td>E033</td>
<td>E034</td>
<td>E035</td>
<td>E036</td>
<td>E037</td>
</tr>
<tr>
<td>E046</td>
<td>E050</td>
<td>E053</td>
<td>E054</td>
<td>E055</td>
<td>E056</td>
</tr>
<tr>
<td>E057</td>
<td>E058</td>
<td>E077</td>
<td>E078</td>
<td>E081</td>
<td>E084</td>
</tr>
<tr>
<td>E089</td>
<td>W001</td>
<td>W002</td>
<td>W003</td>
<td>W004</td>
<td>W005</td>
</tr>
<tr>
<td>W006</td>
<td>W007</td>
<td>W009</td>
<td>W011</td>
<td>W015</td>
<td>W046</td>
</tr>
<tr>
<td>W047</td>
<td>W048</td>
<td>W051</td>
<td>W058</td>
<td>W059</td>
<td></td>
</tr>
</tbody>
</table>

For the configurable relay operating mode “Alarm Conf.”, the following considerations are valid:

If the alarm condition is persistent, the alarm contact cyclically switches from its resting state to its activated state.

In the presence of W002 signalling (Input UV – input voltage below the limit of operation), the alarm contact switches to then reset itself at the end of the alarm signal. This means that during the reduced input voltage (display message “Waiting Sun”) the alarm contact remains in its resting position.

In the presence of W003, W004, W005, W006, W007 signalling, the alarm contact switches to then reset itself at the end of the alarm signal. This means that during the absence of grid voltage (display message “Missing Grid”) the alarm contact remains in its resting position.
• Crepuscolar - display text “Alarm-Contact (crepuscolar)”:
The relay is activated (status: switched) as soon as the inverter input voltage exceeds the activation voltage set.

The relay switch to rest position when the input voltage drops below 70% of the activation voltage set.

This mode is useful for disconnecting any output transformers that could have unnecessary consumption during the night.

• Alarm Latch - display text “Alarm-Contact (alarm ALL - latch)”:
The relay is activated (status: switched) whenever an error (code Exxx) or a warning (code Wxxx) is present (see the table below). When the inverter returns to the normal operating state and reconnects with the grid, the contact returns to its position of rest.

Alarms for which the relay is activated

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E001</td>
<td>E002</td>
<td>E003</td>
<td>E004</td>
<td>E005</td>
<td>E006</td>
</tr>
<tr>
<td>E007</td>
<td>E009</td>
<td>E010</td>
<td>E011</td>
<td>E012</td>
<td>E013</td>
</tr>
<tr>
<td>E014</td>
<td>E015</td>
<td>E016</td>
<td>E017</td>
<td>E018</td>
<td>E019</td>
</tr>
<tr>
<td>E020</td>
<td>E021</td>
<td>E022</td>
<td>E023</td>
<td>E024</td>
<td>E025</td>
</tr>
<tr>
<td>E026</td>
<td>E027</td>
<td>E028</td>
<td>E029</td>
<td>E030</td>
<td>E031</td>
</tr>
<tr>
<td>E032</td>
<td>E033</td>
<td>E034</td>
<td>E035</td>
<td>E036</td>
<td>E037</td>
</tr>
<tr>
<td>E046</td>
<td>E050</td>
<td>E053</td>
<td>E054</td>
<td>E055</td>
<td>E056</td>
</tr>
<tr>
<td>E057</td>
<td>E058</td>
<td>E077</td>
<td>E078</td>
<td>E081</td>
<td>E084</td>
</tr>
<tr>
<td>E089</td>
<td>W003</td>
<td>W004</td>
<td>W005</td>
<td>W006</td>
<td>W007</td>
</tr>
</tbody>
</table>

If the alarm condition is persistent, the relay will remain activated (status: switched)
• Latch configurable alarm - display text “Alarm-Contact (alarm configurable - latch)”:
The relay is activated (status: switched) whenever an error (code Exxx) or a warning (code Wxxx) is present from those selected from the list in the dedicated submenu **Alarm Config** of the inverter display (see the table below). When the inverter returns to the normal operating state and reconnects with the grid.

<table>
<thead>
<tr>
<th>Selectable alarms for which the relay is activated</th>
</tr>
</thead>
<tbody>
<tr>
<td>E001</td>
</tr>
<tr>
<td>E007</td>
</tr>
<tr>
<td>E014</td>
</tr>
<tr>
<td>E020</td>
</tr>
<tr>
<td>E026</td>
</tr>
<tr>
<td>E032</td>
</tr>
<tr>
<td>E046</td>
</tr>
<tr>
<td>E057</td>
</tr>
<tr>
<td>E089</td>
</tr>
<tr>
<td>W006</td>
</tr>
<tr>
<td>W047</td>
</tr>
</tbody>
</table>

If the alarm condition is persistent, the relay will remain activated (status: switched)

• Ext configurable alarm - display text “Alarm-Contact (alarm configurable - matrix)”:
In this mode, it is possible to configure the behaviour of the alarm relay according to an external error table which can be setup with the Aurora Manager LITE software. In the table it is possible to select the alarms or warnings for which the alarm relay is activated (status: switched); for each individual alarm it is also possible to select the “Latch” or “No Latch” mode.
Country Standard

By accessing the **Country Standard** sub-menu, you can modify the grid standard within 24 hours while the inverter is operating.

After the grid standard was set, you have 24 hours to make any changes to the grid standard value. 24 hours later, the **Country Standard** sub-menu will be locked, and any subsequent changes can only be made accessing with **Adim Plus** privileges. Refer to the dedicated section in the manual to know how to unlock the **Country Standard** sub-menu.
Autotest CEI 0-21

By accessing to the Autotest CEI 0-21 sub-menu you can launch an autotest procedures according to the grid standard CEI-021.

The conditions required to perform an Autotest are:
• The grid standard must be set to CEI-021.
• You must not intervene in any way while the test is underway
• You must check that the equipment has a stable grid connection.

Select the type of test required from the list and click on “START” button. A notification confirm request will appear.

While one of the tests is being performed, the set limits will be gradually increased/reduced (depending on the type of test) until the threshold at which the inverter is disconnected from the grid is reached. The procedures for running the Autotest comply with the legislation in force.

At the end of the tests a message will confirm the results and it will be possible to download a .pdf file report of the test that has been done.
Firmware Update

By accessing to the Firmware Update sub-menu you can upgrade the firmware of the inverter and his components selecting a Remote firmware Update or a Local firmware Update.

Perform the update during good irradiation conditions (avoid the dawn and dusk hours). An interruption of updating process could damage the inverter!

• Remote firmware Update:
 - In remote mode, the firmware will update automatically, searching the last available firmware on ABB servers, by clicking the “CHECK” button.
 - After the finish of the checking process the available release will be notified on the bottom part of the section.
 - Click on “UPDATE” button to start with the updating process.

• Local firmware Update:
By updating in local mode, the firmware have to be selected and uploaded from local folder of the used devices to access to the web server.
The latest firmware version is available from the download area of the website www.abb.com/solarinverters or from https://registration.abbsolarinverters.com

 - Click on “FW SELECT” and select the firmware package previously downloaded.
 - Click on “UPDATE” button to start with the updating process.
Date and Time

In the Date and Time sub-menu it's possible to set the date, time and time zone.

The inverter will propose these fields when the time protocol is available.

When it's not possible for the inverter to detect the time protocol, these fields have to be manually entered.
In the INFORMATION Section it’s possible to view the general informations about the embedded webserver.

it’s possible to access the following sub-menus:
• Privacy Policy
• Provider Information/Impressum
• Acknowledgments
• Release Notes
Setting Parameters

Changing certain parameters may prevent disconnection from the grid if the new values exceed those given in the standards of the country of installation. If these parameters are changed to values outside the standard range, an interface protection must be installed external to the inverter in accordance with the requirements of the country of installation.

These parameters can only be displayed with the Aurora manager Lite interface SW.

The table below shows the parameters that can be changed and the maximum range, which may change depending on country standard, of values that may be set for each:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Setting range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set U>></td>
<td>Grid over-voltage (OV) threshold (extended range)</td>
<td>Unom ... Unom x 1.3</td>
</tr>
<tr>
<td>Set U<<</td>
<td>Grid under-voltage (UV) threshold (extended range)</td>
<td>10V ... Unom</td>
</tr>
<tr>
<td>Set F>></td>
<td>Grid over-frequency (OF) threshold (extended range)</td>
<td>Fnom ... Fnom + 5Hz</td>
</tr>
<tr>
<td>Set F<<</td>
<td>Grid under-frequency (UF) threshold (extended range)</td>
<td>Fnom - 5Hz ... Fnom</td>
</tr>
<tr>
<td>Set U></td>
<td>Grid over-voltage (OV) threshold (restricted range)</td>
<td>Unom ... Unom x 1.3</td>
</tr>
<tr>
<td>Set U (10Min)</td>
<td>Over-voltage (OV) threshold (average grid voltage value)</td>
<td>Unom ... Unom x 1.3</td>
</tr>
<tr>
<td>Set U<</td>
<td>Grid under-voltage (UV) threshold (restricted range)</td>
<td>10V ... Unom</td>
</tr>
<tr>
<td>Set F></td>
<td>Grid over-frequency (OF) threshold (restricted range)</td>
<td>Fnom ... Fnom + 5Hz</td>
</tr>
<tr>
<td>Set F<</td>
<td>Grid under-frequency (UF) threshold (restricted range)</td>
<td>Fnom - 5Hz ... Fnom</td>
</tr>
<tr>
<td>Set Uconn></td>
<td>Max. permissible voltage during checks prior to grid connection</td>
<td>Unom ... Unom x 1.3</td>
</tr>
<tr>
<td>Set Fconn></td>
<td>Max. permissible frequency during checks prior to grid connection</td>
<td>Fnom ... Fnom + 5Hz</td>
</tr>
<tr>
<td>Set Time U>></td>
<td>Over-voltage U>> protection tripping time</td>
<td>0 ... 80000mS</td>
</tr>
<tr>
<td>Set Time U<<</td>
<td>Under-voltage U<< protection tripping time</td>
<td>0 ... 80000mS</td>
</tr>
<tr>
<td>Set Time F>></td>
<td>Over-frequency F>> protection tripping time</td>
<td>0 ... 600000mS</td>
</tr>
<tr>
<td>Set Time F<<</td>
<td>Under-frequency F<< protection tripping time</td>
<td>0 ... 600000mS</td>
</tr>
<tr>
<td>Set Time U></td>
<td>Over-frequency U> protection tripping time</td>
<td>0 ... 40000mS</td>
</tr>
<tr>
<td>Set Time U<</td>
<td>Under-voltage U< protection tripping time</td>
<td>0 ... 40000mS</td>
</tr>
<tr>
<td>Set Time F></td>
<td>Over-frequency F> protection tripping time</td>
<td>0 ... 600000mS</td>
</tr>
<tr>
<td>Set Time F<</td>
<td>Under-frequency F< protection tripping time</td>
<td>0 ... 600000mS</td>
</tr>
<tr>
<td>Set time conn 1</td>
<td>Grid check time prior to connection</td>
<td>20000 ... 36000000mS</td>
</tr>
<tr>
<td>Set time conn 2</td>
<td>Grid check time prior to connection after a grid fault</td>
<td>20000 ... 36000000mS</td>
</tr>
<tr>
<td>Disable U>></td>
<td>Disables the U>> protection threshold</td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>Disable U<<</td>
<td>Disables the U<< protection threshold</td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>Disable F>></td>
<td>Disables the F>> protection threshold</td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>Disable F<<</td>
<td>Disables the F<< protection threshold</td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>Disable U></td>
<td>Disables the U> protection threshold</td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>Disable U> (10Min)</td>
<td>Disables the U> (10Min) protection threshold</td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>Disable U<</td>
<td>Disables the U< protection threshold</td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>Disable F></td>
<td>Disables the F> protection threshold</td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>Disable F<</td>
<td>Disables the F< protection threshold</td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>Disable U> (10Min)</td>
<td>Enables power derating mode due to high average grid voltage readings</td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>U> (10Min) Der.</td>
<td>Enables gradual ramping up of power after the grid connection.</td>
<td>Enabled/Disabled</td>
</tr>
<tr>
<td>Slow Ramp</td>
<td>Selects the power derating mode in the event of grid over-frequency.</td>
<td>0 Derating disabled</td>
</tr>
<tr>
<td>OF Derating</td>
<td></td>
<td>1 BDEW derating</td>
</tr>
<tr>
<td>Reset Country S.</td>
<td>Unlocks the grid standard selection (resets the 24 hours available for changing the grid standard)</td>
<td>2 VDE-AR-N derating</td>
</tr>
<tr>
<td>Accept boards</td>
<td>Used to associate a new board with the inverter (in the event of replacement)</td>
<td>3 CEI derating</td>
</tr>
</tbody>
</table>
This information is made available through the Aurora Manager Lite software.

- **Date and time:** setting necessary for the correct operation and storage of statistical data of the inverter. It is set to UTC (daylight saving time is NOT considered).

- **RS485 address (1) and (2):** settings required in the case of system monitoring via the RS485 lines; default setting on AUTO if multiple inverters are connected to the RS485 line, check that they are assigned unique addresses. The addresses that can be assigned go from 2 to 63.

- **Vstart:** Default 420 V
 This section of the menu allows you to set the Vstart voltage (for the two channels separately if they are configured independently) to suit the system requirements.

 We advise changing the activation voltage only if really necessary and to set it to the correct value: the photovoltaic generator sizing tool available on the ABB website will indicate whether Vstart needs changing and what value to set it at.

- **Alarm**
 This section of the menu allows you to set the activation status of a relay (available either as contact normally open – N.O. – or as contact normally closed – N.C.) and to configure customised alarm conditions.

 This contact can be used, for example, to: activate a siren or a visual alarm, control the disconnect device of an external transformer, or control an external device.

 The relay can be set to switch in different modes:

- **Production “PRODUCTION”**
 The production mode is the default mode.
 The relay is activated (status: switched) whenever the inverter connects to the grid; as soon as the inverter is disconnected from the network (for whatever reason that caused disconnection), the relay is in its resting position.
• Alarm with reset at the end of the alarm signalling process "Alarm"

The relay is activated (status: switched) whenever an error (code Exxx) or warnings related to grid parameters out of range (Warning – codes W003, W004, W005, W006, W007) are present on the inverter. The alarm returns to its resting position when the alarm signal ends, i.e. before the inverter checks the grid parameters after the alarm state. This is because grid control state is not an alarm state but a state of normal operation.

Alarms for which the relay is activated

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E001</td>
<td>E002</td>
<td>E003</td>
<td>E004</td>
<td>E005</td>
</tr>
<tr>
<td>E007</td>
<td>E009</td>
<td>E010</td>
<td>E011</td>
<td>E012</td>
</tr>
<tr>
<td>E014</td>
<td>E015</td>
<td>E016</td>
<td>E017</td>
<td>E018</td>
</tr>
<tr>
<td>E020</td>
<td>E021</td>
<td>E022</td>
<td>E023</td>
<td>E024</td>
</tr>
<tr>
<td>E026</td>
<td>E027</td>
<td>E028</td>
<td>E029</td>
<td>E030</td>
</tr>
<tr>
<td>E032</td>
<td>E033</td>
<td>E034</td>
<td>E035</td>
<td>E036</td>
</tr>
<tr>
<td>E046</td>
<td>E050</td>
<td>E053</td>
<td>E054</td>
<td>E055</td>
</tr>
<tr>
<td>E057</td>
<td>E058</td>
<td>E077</td>
<td>E078</td>
<td>E081</td>
</tr>
<tr>
<td>E089</td>
<td>W003</td>
<td>W004</td>
<td>W005</td>
<td>W006</td>
</tr>
</tbody>
</table>

In the presence of W003, W004, W005, W006, W007 signalling, the alarm contact switches to then reset itself at the end of the alarm signal. This means that during the absence of grid voltage (display message “Missing Grid”) the alarm contact remains in its resting position.

• Configurable alarm with reset at the end of the alarm signalling process "Alarm (Conf.)"

The relay is activated (status: switched) whenever an error (code Exxx) or a warning (code Wxxx) is present from those selected from the list in the dedicated submenu Alarm Config. The contact returns to its resting position when the alarm signal ends, i.e. before the inverter checks the grid after the alarm state. This is because grid control state is not an alarm state but a state of normal operation.

Selectable alarms for which the relay is activated

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E001</td>
<td>E002</td>
<td>E003</td>
<td>E004</td>
<td>E005</td>
</tr>
<tr>
<td>E007</td>
<td>E009</td>
<td>E010</td>
<td>E011</td>
<td>E012</td>
</tr>
<tr>
<td>E014</td>
<td>E015</td>
<td>E016</td>
<td>E017</td>
<td>E018</td>
</tr>
<tr>
<td>E020</td>
<td>E021</td>
<td>E022</td>
<td>E023</td>
<td>E024</td>
</tr>
<tr>
<td>E026</td>
<td>E027</td>
<td>E028</td>
<td>E029</td>
<td>E030</td>
</tr>
<tr>
<td>E032</td>
<td>E033</td>
<td>E034</td>
<td>E035</td>
<td>E036</td>
</tr>
<tr>
<td>E046</td>
<td>E050</td>
<td>E053</td>
<td>E054</td>
<td>E055</td>
</tr>
<tr>
<td>E057</td>
<td>E058</td>
<td>E077</td>
<td>E078</td>
<td>E081</td>
</tr>
<tr>
<td>E089</td>
<td>W001</td>
<td>W002</td>
<td>W003</td>
<td>W004</td>
</tr>
<tr>
<td>W006</td>
<td>W007</td>
<td>W009</td>
<td>W011</td>
<td>W015</td>
</tr>
<tr>
<td>W047</td>
<td>W048</td>
<td>W051</td>
<td>W058</td>
<td>W059</td>
</tr>
</tbody>
</table>
For the configurable relay operating mode “Alarm Conf.”, the following considerations are valid:

If the alarm condition is persistent, the alarm contact cyclically switches from its resting state to its activated state.

In the presence of W002 signalling (Input UV – input voltage below the limit of operation), the alarm contact switches to then reset itself at the end of the alarm signal. This means that during the reduced input voltage (display message “Waiting Sun”) the alarm contact remains in its resting position.

In the presence of W003, W004, W005, W006, W007 signalling, the alarm contact switches to then reset itself at the end of the alarm signal. This means that during the absence of grid voltage (display message “Missing Grid”) the alarm contact remains in its resting position.

• **Crepuscular “Crepuscular”**:
The relay is activated (status: switched) as soon as the inverter input voltage exceeds the activation voltage set.

The relay is in its rest position when the input voltage drops below 70% of the activation voltage set.

This mode is useful for disconnecting any output transformers that could have unnecessary consumption during the night.

• **Alarm Latch (“Alarm Latch”)**
The relay is activated (status: switched) whenever an error (code Exxx) or a warning (code Wxxx) is present (see the table below). When the inverter returns to the normal operating state and reconnects with the grid, the contact returns to its position of rest.

Alarms for which the relay is activated

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E001</td>
<td>E002</td>
<td>E003</td>
<td>E004</td>
<td>E005</td>
</tr>
<tr>
<td>E006</td>
<td>E007</td>
<td>E009</td>
<td>E010</td>
<td>E011</td>
</tr>
<tr>
<td>E012</td>
<td>E013</td>
<td>E014</td>
<td>E015</td>
<td>E016</td>
</tr>
<tr>
<td>E017</td>
<td>E018</td>
<td>E019</td>
<td>E020</td>
<td>E021</td>
</tr>
<tr>
<td>E022</td>
<td>E023</td>
<td>E024</td>
<td>E025</td>
<td>E026</td>
</tr>
<tr>
<td>E027</td>
<td>E028</td>
<td>E029</td>
<td>E030</td>
<td>E031</td>
</tr>
<tr>
<td>E032</td>
<td>E033</td>
<td>E034</td>
<td>E035</td>
<td>E036</td>
</tr>
<tr>
<td>E037</td>
<td>E038</td>
<td>E046</td>
<td>E047</td>
<td>E048</td>
</tr>
<tr>
<td>E049</td>
<td>E050</td>
<td>E051</td>
<td>E052</td>
<td>E053</td>
</tr>
<tr>
<td>E054</td>
<td>E055</td>
<td>E056</td>
<td>E057</td>
<td>E058</td>
</tr>
<tr>
<td>E059</td>
<td>E060</td>
<td>E061</td>
<td>E062</td>
<td>E063</td>
</tr>
</tbody>
</table>

If the alarm condition is persistent, the relay will remain activated (status: switched)
Latch configurable alarm (display text “Al. Conf. Latch”)

The relay is activated (status: switched) whenever an error (code Exxx) or a warning (code Wxxx) is present from those selected from the list in the dedicated submenu *Alarm Config* (see the table below). When the inverter returns to the normal operating state and reconnects with the grid.

Selectable alarms for which the relay is activated

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E001</td>
<td>E002</td>
<td>E003</td>
<td>E004</td>
<td>E005</td>
</tr>
<tr>
<td>E007</td>
<td>E009</td>
<td>E010</td>
<td>E011</td>
<td>E012</td>
</tr>
<tr>
<td>E014</td>
<td>E015</td>
<td>E016</td>
<td>E017</td>
<td>E018</td>
</tr>
<tr>
<td>E020</td>
<td>E021</td>
<td>E022</td>
<td>E023</td>
<td>E024</td>
</tr>
<tr>
<td>E026</td>
<td>E027</td>
<td>E028</td>
<td>E029</td>
<td>E030</td>
</tr>
<tr>
<td>E032</td>
<td>E033</td>
<td>E034</td>
<td>E035</td>
<td>E036</td>
</tr>
<tr>
<td>E046</td>
<td>E050</td>
<td>E053</td>
<td>E054</td>
<td>E055</td>
</tr>
<tr>
<td>E057</td>
<td>E058</td>
<td>E077</td>
<td>E078</td>
<td>E081</td>
</tr>
<tr>
<td>E089</td>
<td>W001</td>
<td>W002</td>
<td>W003</td>
<td>W004</td>
</tr>
<tr>
<td>W006</td>
<td>W007</td>
<td>W009</td>
<td>W011</td>
<td>W015</td>
</tr>
<tr>
<td>W047</td>
<td>W048</td>
<td>W051</td>
<td>W058</td>
<td>W059</td>
</tr>
</tbody>
</table>

If the alarm condition is persistent, the relay will remain activated (status: switched)

Ext configurable alarm (display text “Al. Conf. Ext.”)

In this mode, it is possible to configure the behaviour of the alarm relay according to an external error table which can be setup with the Aurora Manager LITE software. In the table it is possible to select the alarms or warnings for which the alarm relay is activated (status: switched); for each individual alarm it is also possible to select the “Latch” or “No Latch” mode.

Remote control: Default OFF

This section allows you to enable/disable the connection/disconnection of the inverter to/from the grid through the relevant control signal (R ON/OFF).

Disable: the connection/disconnection of the inverter to/from the grid is dictated by the input (voltage from the photovoltaic generator) and output (grid voltage) parameters of the inverter.

Enable: the connection/disconnection of the inverter to/from the grid is dictated by the state of the R ON/OFF signal compared to the GND COM signal, as well as by the input (voltage from the photovoltaic generator) and output (grid voltage) parameters of the inverter.
Reactive power: NO default regulation.

This section of the menu may be used to manage the supply of reactive power into the grid. There are 5 possible types of management:

- **No regulation**: no regulation of reactive power. To enable this mode, select Enable and then OK.

- **Cos-phi fixed**: Sets the power rating to a fixed value. To enable this mode, select Enable and then OK.

 When enabled, **Set value** will appear, allowing you to set the value of Cos-Phi (as either Over or Under excited, from 1.000 to 0.800)

- **Cos-phi = f(P)**: Power rating as a function of the active power supplied by the inverter. To enable this mode, select Enable and then OK.

 When it has been enabled, **Load std curve** will appear, allowing you to set the following regulation curve:

 The curve can be modified using the Aurora Manager LITE configuration software

- **Q = f(U)**: reactive power as a function of the grid voltage measured by the inverter. To enable this mode, select Enable and then OK.

 When it has been enabled, **Load std curve** will appear, allowing you to set the following regulation curve:

 The curve can be modified using the Aurora Manager LITE configuration software
• **UV Protection Time:** Default 60 sec.
This section of the menu allows you to set the time for which the inverter stays connected to the grid after the input voltage has dropped below the Under Voltage limit (set at 70% of Vstart). ABB sets the time to 60 sec. The user can set it to any time from 1 to 3600 sec.
Example: with UV Prot. Time set at 60 seconds, if voltage Vin drops below 70% of Vstart at 9:00, the inverter stays connected to the grid (taking power from it) until 9:01.

• **MPPT scan:** Default ON (active) allows maximum power point tracking to be carried out.
This section allows you to set the parameters of the maximum power point tracking (MPPT) function. This function is useful when there are areas of shade on the PV generator, which may create several points of maximum power on the operating curve.

- **Multi-max scan:** by setting this parameter, you can enable/disable the scan, decide the frequency with which the scan is carried out and override it manually.

- **Enable/Disable:** Enables/disables the scan for identifying the maximum power point of the system.

- **Scan Interval:** this allows you to set the time between scans. It should be borne in mind that the shorter the scan interval the greater the loss of production, due to the fact that energy is transferred to the grid during the scan but not at the maximum power point. Each scan takes roughly 2 seconds.

• **Power reduction:** Default 100%.
This section allows you to adjust the limit to the active power that the inverter can feed into the grid by setting the percentage of nominal power at which the limit should be triggered.
Setting it to 100% resets the default maximum power, which in some installation country standards may be 110% of nominal power.
Inverter switch-off

Some parts may be very hot and could cause burns.

Some inverter parts may be subject to voltages that could be hazardous for the operator. Before performing any work on the inverter, follow the procedure for turning off the inverter.

AC and DC wiring box version (Standard)

• Open the DC disconnect switch and the AC disconnect switch installed by the Client on the outside of the inverter.

• Disconnect any power supplies that may be connected to the configurable relay.

 Before attempting any work on the inverter, wait enough time for the stored energy to be discharged

• Remove the front covers

Under these conditions the wiring box does not have any hazardous voltages and all areas may be freely accessed.
DC (-S / -SX / -SX2) and AC (-SX) wiring box version

1. Open the DC disconnect switch and the AC disconnect switch installed on the covers of the two wiring boxes.

2. Disconnect any power supplies that may be connected to the configurable relay.

3. Before attempting any work on the inverter, wait enough time for the stored energy to be discharged.

4. Remove the front covers.

5. Under these conditions both wiring boxes have hazardous voltages highlighted by the symbol while the other areas may be freely accessed.

6. Open the DC disconnect switch and the AC disconnect switch installed by the Client on the outside of the inverter.

7. Under these conditions the wiring box does not have any hazardous voltages and all areas may be freely accessed.
General conditions

Routine and periodic maintenance operations must only be carried out by specialized staff with knowledge of how to perform these tasks.

Maintenance operations must be performed with the apparatus disconnected from the grid (power switch open) and the photovoltaic panels obscured or isolated, unless otherwise indicated.

For cleaning, *DO NOT use rags made of filamentary material or corrosive products that may corrode the equipment or generate electrostatic charges.*

Avoid temporary repairs. All repairs should be carried out using only genuine spare parts. The maintenance technician is to promptly report any anomalies.

DO NOT allow the equipment to be used if problems of any kind are found.

Always use personal protective equipment (PPE) provided by the employer and comply with local safety regulations.
Routine maintenance

Routine maintenance operations should not be considered obligatory, but rather as recommended in order to maintain the efficiency of the PV system.

It is recommended that maintenance operations are only performed by qualified personnel or ABB personnel (under a servicing contract). The maintenance schedule may vary depending on the environmental conditions of the installation premises.

Table: routine maintenance

<table>
<thead>
<tr>
<th>Annual visual inspections</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Check that the inverter is operating properly, without any alarm signals</td>
</tr>
<tr>
<td>• Ensure all labels and safety symbols are visible</td>
</tr>
<tr>
<td>• Check the integrity of the cables, connectors and cable glands outside the inverter</td>
</tr>
<tr>
<td>• Check that the environmental conditions have not changed dramatically from those on installation.</td>
</tr>
<tr>
<td>• Check there are no obstacles (animals, insects, leaves or anything which could reduce the heat exchanging capacity of the heat sink) at the top, at the bottom and between the fins.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annual operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Check the tightening of the cable glands and the screw terminal blocks</td>
</tr>
<tr>
<td>• Check the front cover is secured to the wiring boxes</td>
</tr>
<tr>
<td>• If there is no monitoring system, check the record of alarms and errors using the indications provided in the manual in order to check recent notification of recent malfunctions.</td>
</tr>
<tr>
<td>• For the models with AC+DC disconnect switch, it is recommended that once a year the disconnect switch is operated a number of times (at least 10) to keep the contacts clean and prevent oxidation. This operation must be carried out in periods with low input power or at night.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annual cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Clean the equipment; verify, in particular, clean the lower array of the cooling fan assembly and the heat sink.</td>
</tr>
</tbody>
</table>
Troubleshooting

Operations on the inverter to identify and address any faults may only be performed by the installer or by qualified personnel.

Internal Webserver and wireless communication troubleshooting

The following table gives a list of main and most common errors or problems relating to the wireless communication between inverter and user devices.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible causes</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The internal webserver cannot be accessed.</td>
<td>ADMIN or USER password forgotten.</td>
<td>Reset the passwords by clicking on “Forgot your password”; The passwords can be reset after having entered the “Product Key” code that can be found on the “Wireless Identification Label”.</td>
</tr>
<tr>
<td>The signal between the inverter and the wireless router to which the board wants to connect is too weak.</td>
<td></td>
<td>Modify the position of the wireless antenna, the inverter or the router. Make sure that the inverter has not been installed near obstacles which could affect the communication with the wireless router (for example: metal cages or walls, walls in reinforced concrete, electromagnetic fields).</td>
</tr>
<tr>
<td>The inverter is able to identify a wireless network but is unable to connect to it.</td>
<td>Make sure that the inverter has not been installed near obstacles which could affect the communication with the wireless router (for example: metal cages or walls, walls in reinforced concrete, electromagnetic fields). Move the router as close as possible to the inverter. Install a wireless signal repeater in order to extend the network to which the inverter is to be connected; then connect the inverter to the repeater.</td>
<td></td>
</tr>
<tr>
<td>The wireless network to which the inverter is to be connected, could require the user to enter a username and password to allow navigation (for example, with a public wireless network or a hotel).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Inverter has not identified the wireless network to which connection is required.</td>
<td>Set the wireless network to which the inverter is to be connected (visible network), then identify and connect the Inverter to the wireless network as normal.</td>
<td></td>
</tr>
<tr>
<td>The signal between the inverter and the wireless router to which the board wants to connect is too weak.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wrong Inverter Date/Time settings.</td>
<td>Check if Date/Time has correctly set on the inverter; correct it if necessary.</td>
<td></td>
</tr>
<tr>
<td>Alternating difficulties in the local connection to the internal webserver.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The wireless board does not communicate correctly with the inverter inside of which it is installed (inconsistency in the detected data read by the board), or when working in “Access Point Mode”, it’s not possible to access the internal webserver.</td>
<td>Request a service intervention to check that the inverter wireless board is working correctly.</td>
<td></td>
</tr>
<tr>
<td>The wireless connection signal between the device in use and the router or the Inverter, may not have sufficient power or it may be disturbed by obstacles which affect the communication.</td>
<td>Make sure that the signal between the wireless devices which interact with the inverter are sufficiently high and that any obstacles such as metal cages or walls, walls in reinforced concrete or strong electromagnetic fields do not affect communication.</td>
<td></td>
</tr>
<tr>
<td>Problem</td>
<td>Possible causes</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Although the Inverter has been configured correctly in “Station Mode” and works correctly on the local network, no data has been transmitted to the Aurora Vision®.</td>
<td>The MAC address used to register the inverter on the Aurora Vision® platform is not the same as the actual address associated with the inverter. The wireless network to which the inverter is connected, could be protected by a Firewall which prevents the remote exchange of data with the Aurora Vision® platform.</td>
<td>Make sure that the MAC address registered on the Aurora Vision® platform is actually the one associated with the inverter. If it is not, modify the registered MAC address. Contact the network administrator in order to have the Firewall configured so that the remote exchange of data between the Inverter and the Aurora Vision® platform is allowed.</td>
</tr>
<tr>
<td>It is not possible to access the Internal webserver using the IP address when the inverter is operating in “Station Mode – DHCP”.</td>
<td>An incorrect dynamic IP address is being used to access the Internal Webserver or the IP address could have been modified by the wireless router to which the inverter is connected. The IP Address used to access the Internal Webserver was lost.</td>
<td>Access the Internal Webserver using via “AP Mode” (refer to dedicated section to know how to connect via “AP Mode”) and read the current IP Address in ‘NETWORK > WLAN’ section. Access the Internal Webserver using the “HostName” that could be obtained writing this url http://ABB-XX-XX-XX-XX-XX-XX.local replacing the “X” with the hex digits of the wireless MAC address of the inverter (it can be found on the “Wireless Identification Label” placed on the side of the inverter or applied during the commissioning phase to the quick installation guide on cover page). The DNS or multicast service must be enabled on router. Note: This connection method doesn’t work on Android devices. Access the inverter display menu WLAN Logger>Info>View IP to obtain the IP Address assigned by the router to the inverter. If possible, access the pages of the wireless router web server to which the inverter is connected and read the new dynamic IP address assigned to the Inverter.</td>
</tr>
<tr>
<td>Using an Android devices, a notification advise that internet connection is missing when trying to connect to the Access Point wireless network created by the inverter and ask for connection confirmation.</td>
<td>Known behavior of Android devices. Android OS always check if internet connection are available and ask for confirmation if it’s not present.</td>
<td>Confirm the connection request in the notification of Android devices by clicking “Yes”. Allow the popup opening in the browser settings of the Ios devices (A notification will advise you for enable popup when trying to view the pdf autotest report).</td>
</tr>
<tr>
<td>It is not possible to view the Pdf Autotest report using an Ios device.</td>
<td>Pop-up opening is not allowed on Ios browser.</td>
<td></td>
</tr>
</tbody>
</table>
Alarm Messages of the Inverter

In order to understand and resolve warning (Wxxx) or error (Exxx) signals that appear in the Alarm section of the internal webserver or on the inverter’s display, follow the table given in the following paragraph.

The equipment can notify errors/warnings in the Alarm section of the internal webserver or on the display (where present) only if the input voltage is greater than the Vdcmin voltage (POWER Led flashing or lit; see chapter on operation).

The messages and related codes are shown in the Alarm section of the internal webserver or on the display.

The following table gives the complete list of errors/warnings relating to string inverters. Some error/warning codes may not be used depending on the inverter model installed.

<table>
<thead>
<tr>
<th>Error code</th>
<th>Error message</th>
<th>Name of Alarm and Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>- No code</td>
<td>Ground F</td>
<td>Ground fault of photovoltaic generator: The alarm is generated when a leakage current to ground is detected in the DC section of the system.</td>
<td>• Measure the isolation resistance using a megohmmeter positioned in the photovoltaic array (positive terminal short-circuited at the negative pole) compared to ground. The measurement is strongly influenced by the environmental conditions, so must be made under the same conditions in which the error occurred. - If the value measured is lower than 1 megaohm, a check must be carried out by a technician/installer on the photovoltaic generator to identify and eliminate the problem. - If the value measured is higher than 1 megaohm and the error signal persists, contact customer assistance.</td>
</tr>
<tr>
<td>- No code</td>
<td>NEW SYSTEM PART REFUSED!</td>
<td>Lack of linkage of the new system part: The components inside the inverter (e.g. display, fuse board, communication and control board, etc.) are not inter-linked. This occurs following the replacement of one of the components inside the inverter.</td>
<td>• Link the components inside the inverter by accessing the “Settings > Service > Accept boards” (refer to the procedure given in this manual). - If the signal persists also following the linking of the components, contact customer assistance.</td>
</tr>
<tr>
<td>- No code</td>
<td>SET COUNTRY or NO NATION:</td>
<td>Indicates that in the installation phase the grid standard was not set on the inverter.</td>
<td>• Set the grid standard of the country of installation following the instructions given in this manual for the inverter. - If the signal persists also after the grid standard has been set, contact customer assistance.</td>
</tr>
<tr>
<td>- No code</td>
<td>Missing Grid</td>
<td>The inverter does not detect grid voltage (AC side).</td>
<td>• Check the grid voltage on the inverter’s AC terminal block. - Should it be absent, check any protection work on the line and the presence of grid voltage on the supply point.</td>
</tr>
<tr>
<td>- No code</td>
<td>Memory fault</td>
<td>The inverter has detected a communication problem with the memory board on which the inverter saves the daily value of energy produced.</td>
<td>• Remove the memory board and check the welding of all the connector's terminals. Subsequently reinsert the memory board and check that it is correctly inserted into the dedicated slot. - If the signal persists also following the above checks, contact customer assistance.</td>
</tr>
<tr>
<td>- No code</td>
<td>Waiting Sun</td>
<td>The inverter goes into the “Waiting Sun” stage when, following a W001 and/or W002 warning, the voltage from the photovoltaic generator is less than the activation voltage (Vstart).</td>
<td>• Check the input voltage on the inverter. - If it does not exceed Vstart, check for the presence of sufficient irradiation and the correct composition of the system. - If it exceeds Vstart, contact customer assistance.</td>
</tr>
<tr>
<td>- W001</td>
<td>Sun Low</td>
<td>Insufficient irradiation (Low input voltage on switching on the inverter): Incorrect configuration of the PV generator or an “on the limit” configuration for the inverter's minimum input voltage.</td>
<td>• Check the input voltage on the inverter. - If it does not exceed Vstart, check for the presence of sufficient irradiation and the correct composition of the system. - If it exceeds Vstart, contact customer assistance.</td>
</tr>
<tr>
<td>- W002</td>
<td>Input UV</td>
<td>Insufficient irradiation (Low input voltage on switching off): Incorrect configuration of the photovoltaic generator or an “on the limit” configuration for the inverter’s minimum input voltage.</td>
<td>• Check the input voltage on the inverter. - If it does not exceed Vstart, check for the presence of sufficient irradiation and the correct composition of the system. - If it exceeds Vstart, contact customer assistance.</td>
</tr>
<tr>
<td>Error code</td>
<td>Name of Alarm and Cause</td>
<td>Solution</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------</td>
<td>----------</td>
<td></td>
</tr>
</tbody>
</table>
| - W003 | Parameters of grid voltage outside range:
This error signal occurs when during the inverter's normal operation the grid parameters exceed the limits set by the operator.
- Grid voltage absent (after the signal the inverter goes to "Missing Grid")
- Unstable grid voltage (values too low or too high)
- Unstable grid frequency | • Check the grid voltage on the inverter.
- Should it be absent, check for absence of grid voltage on the supply point.
- If, on the other hand, the voltage tends to rise (when the inverter is connected) there is high line or grid impedance.
• Check the grid voltage also on the supply.
- If it is high, it means that there is high grid impedance. In this case, ask the operator to adjust the grid voltage. If the operator authorises a change to the inverter's parameters, agree the new limits with customer assistance
- If the voltage at the point of supply is much lower than that measured on the inverter, it is necessary to adjust the line (inverter-contactor).
- If the voltage and the grid frequency come back within the limits (also when the inverter is connected to the grid), contact customer assistance |
| - W004 | Grid overvoltage:
This error signal occurs when during the inverter's normal operation the grid voltage exceeds the maximum limit set by the operator. | • Check the grid voltage on the inverter.
If the voltage tends to rise (when the inverter is connected), there is a problem of high line or grid impedance.
• Check the grid voltage also on the supply.
- If it is high, it means that there is high grid impedance. In this case, ask the operator to adjust the grid voltage. If the operator authorises a change to the inverter's parameters, agree the new limits with customer assistance
- If the voltage at the point of supply is much lower than that measured on the inverter, it is necessary to adjust the line (inverter-contactor).
- If the voltage and the grid frequency come back within the limits (also when the inverter is connected to the grid), contact customer assistance |
| - W005 | Grid undervoltage:
This error signal occurs when during the inverter's normal operation the grid voltage exceeds the minimum limit set by the operator. | • Check the grid voltage on the inverter.
• Check the grid voltage also on the supply.
- If it is high, it means that there is high grid impedance. In this case, ask the operator to adjust the grid voltage. If the operator authorises a change to the inverter's parameters, agree the new limits with customer assistance
- If the voltage at the point of supply is much lower than that measured on the inverter, it is necessary to adjust the line (inverter-contactor).
- If the voltage and the grid frequency come back within the limits (also when the inverter is connected to the grid), contact customer assistance |
| - W006 | Grid over-frequency:
This error signal occurs when during the inverter's normal operation the grid frequency exceeds the maximum limit set by the operator. | • Check the grid frequency in the inverter.
• Check the grid frequency also on the supply.
- If it is high, it means that there is high grid impedance. In this case, ask the operator to adjust the grid frequency. If the operator authorises a change to the inverter's parameters, agree the new limits with customer assistance
- If the voltage and the grid frequency come back within the limits (also when the inverter is connected to the grid), contact customer assistance |
| - W007 | Grid under-frequency:
This error signal occurs when during the inverter's normal operation the grid frequency exceeds the minimum limit set by the operator. | • Check the grid frequency in the inverter.
• Check the grid frequency also on the supply.
- If it is high, it means that there is high grid impedance. In this case, ask the operator to adjust the grid frequency. If the operator authorises a change to the inverter's parameters, agree the new limits with customer assistance
- If the voltage and the grid frequency come back within the limits (also when the inverter is connected to the grid), contact customer assistance |
| - W010 * | Fan Fail:
This error occurs when there is a malfunction in the fans inside the inverter. | • Error inside the inverter and cannot be checked externally.
- If the alarm repeats persistently, contact customer assistance. |
| - W011 | Low “Bulk” voltage (DC-DC circuit):
The alarm (which is a warning and not an error) is generated when the voltage at the heads of the bulk capacitors does not reach the threshold for the operation of the inverter (internal unchangedable threshold). | • Raise the value of the activation voltage (Vstart) so as to have sufficient power from the PV generator at the time of the inverter's grid connection.
• Check the input voltage on the inverter.
- If it does not exceed Vstart, check for the presence of sufficient irradiation and the correct composition of the system.
- If it exceeds Vstart, contact customer assistance. |
<table>
<thead>
<tr>
<th>Error code</th>
<th>Name of Alarm and Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>W012</td>
<td>Battery Low: The inverter has detected a backup battery voltage that is too low.</td>
<td>• Check that the date/time are set correctly and, if they are not, set them. Subsequently arrange to completely switch off the inverter (on both AC and DC) and wait a few minutes. Finally, restart the inverter and check whether the date/time are now correctly set or whether they have reset to 01/01/2000. In this case replace the battery with the inverter completely switched off (isolate AC and DC side) being careful to maintain the polarity</td>
</tr>
<tr>
<td>W013</td>
<td>Clock Fail: The alarm occurs when there is a difference of more than 1 minute in the time shown on the display or via the advanced configuration software compared to the internal time of the microprocessors and indicates a malfunction of the clock circuit.</td>
<td>• Error inside the inverter and cannot be checked externally. - If the alarm repeats persistently, contact customer assistance.</td>
</tr>
<tr>
<td>W015</td>
<td>Disconnection due to Anti-Islanding: The inverter has been improperly connected to an island grid.</td>
<td>• Check that the grid to which the inverter is connected is not an island grid. - If the grid to which the inverter is connected is an island grid, switch the inverter off and then on again: if the problem persists, contact customer assistance.</td>
</tr>
<tr>
<td>W017</td>
<td>Error recorded in measuring string currents: Damaged string protection fuse(s)</td>
<td>• Check with a multimeter the state of the fuses (positioned on the fuse boards). - If one or more fuses is open, arrange to replace them and check that the input current on the string(s) does not exceed the rating of the fuses (should parallel strings have been made outside the inverter). - If there are no damaged string fuses and the inverter continues to show the alarm message check whether the settings to be made via the Aurora Manager software are correct (presence or absence of one or more input strings).</td>
</tr>
<tr>
<td>W018</td>
<td>Intervention of overvoltage surge arresters on DC side: Overvoltage surge arresters situated on the DC side are damaged.</td>
<td>• Observe the inspection window on each surge arrester (DC side). If it is red, the surge arrester is damaged and the cartridge must be replaced. - If the alarm status persists, even if all the surge arresters have a green inspection window, contact customer assistance.</td>
</tr>
<tr>
<td>W019</td>
<td>Intervention of overvoltage surge arresters on AC side: Overvoltage surge arresters situated on the AC side are damaged.</td>
<td>• Observe the inspection window on each surge arrester (AC side). If it is red, the surge arrester is damaged and the cartridge must be replaced. - If the alarm status persists, even if all the surge arresters have a green inspection window, contact customer assistance.</td>
</tr>
<tr>
<td>W021</td>
<td>Activation of reduction in power: Indicates that one of the power limitations described in the paragraph "Power limitation messages" has been triggered.</td>
<td>• Check which power limitation code is active and, on the basis of that, carry out the necessary checks that might relate to various factors including: - settings by the user - high grid frequency - high grid voltage - anti-islanding - low grid voltage - high internal temperature - high input voltage</td>
</tr>
<tr>
<td>W022</td>
<td>Variation in means of managing reactive power: Variation in the means of managing reactive power; this change can be made through the display or advanced configuration software.</td>
<td>The variation in the means of managing reactive power is done directly by the customer/installer and is not an error. The information is only saved on the historic record of the events memorised by the inverter</td>
</tr>
<tr>
<td>W023</td>
<td>Variation in the inverter’s date and time: Variation of the inverter’s date and time; this change can be made through the display or advanced configuration software.</td>
<td>• The variation in the inverter’s date and time is done directly by the customer/installer and is not an error. The information is only saved on the historic record of the events memorised by the inverter</td>
</tr>
</tbody>
</table>
Error code

<table>
<thead>
<tr>
<th>Error message</th>
<th>Name of Alarm and Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>- W024 *</td>
<td>Zeroing of the statistical energy data memorised in the EEPROM: Reset of the energy data saved in the inverter; this operation can be handled through the display or advanced configuration software.</td>
<td>The zeroing of the partial energy values memorised by the inverter is done directly by the customer/installer and is not an error. The information is only saved on the historic record of the events memorised by the inverter.</td>
</tr>
<tr>
<td>- W025</td>
<td>Deactivation of reduction in power: Indicates that the inverter has come out of one of the power limitation states described in the paragraph "Power limitation messages".</td>
<td>This type of warning does not need any check</td>
</tr>
<tr>
<td>- W026 *</td>
<td>Reset of the Arc Fault error: Manual reset of the Arc Fault error; this operation can be made through the display or advanced configuration software.</td>
<td>The reset of the Arc Fault error is done directly by the customer/installer and is not an error. The information is only saved on the historic record of the events memorised by the inverter</td>
</tr>
<tr>
<td>- W027 *</td>
<td>Resetting of the Latch alarm conditions: Manual reset of the Latch alarm conditions; this operation can be made through the display or advanced configuration software.</td>
<td>The reset of the Latch alarm conditions is done directly by the customer/installer and is not an error. The information is only saved on the historic record of the events memorised by the inverter</td>
</tr>
<tr>
<td>- W030</td>
<td>METER device communication problem: Error detected on the RS485 serial communication line between the inverter and the energy meter (METER).</td>
<td>Check the serial communication line connections between the inverter and the METER. Particularly check the signal correspondence, the correct installation of the conductors and that there are no breaks in the cables.</td>
</tr>
<tr>
<td>- W031</td>
<td>Battery unit communication problem: Error detected on the internal communication line between the inverter unit and the battery unit.</td>
<td>Check the serial communication line connections between the inverter unit and the battery unit. Particularly check the connectors have been installed correctly and that there are no breaks in the cables connecting the two units.</td>
</tr>
<tr>
<td>- W036</td>
<td>Problem inside battery unit 1: Problem inside battery unit. This condition can be transitory with automatic reset at the end of the alarm situation</td>
<td>Error inside the inverter and cannot be checked externally.</td>
</tr>
<tr>
<td>- W037</td>
<td>Error inside battery unit 1: Problem inside battery unit. This condition can be transitory with automatic reset at the end of the alarm situation</td>
<td>Error inside the inverter and cannot be checked externally.</td>
</tr>
<tr>
<td>- W039</td>
<td>Problem inside battery unit 2: Problem inside battery unit. This condition can be transitory with automatic reset at the end of the alarm situation</td>
<td>Error inside the inverter and cannot be checked externally.</td>
</tr>
<tr>
<td>- W040</td>
<td>Error inside battery unit 2: Problem inside battery unit. This condition can be transitory with automatic reset at the end of the alarm situation</td>
<td>Error inside the inverter and cannot be checked externally.</td>
</tr>
<tr>
<td>- W042</td>
<td>Problem inside battery unit 3: Problem inside battery unit. This condition can be transitory with automatic reset at the end of the alarm situation</td>
<td>Error inside the inverter and cannot be checked externally.</td>
</tr>
<tr>
<td>- W043</td>
<td>Error inside battery unit 3: Problem inside battery unit. This condition can be transitory with automatic reset at the end of the alarm situation</td>
<td>Error inside the inverter and cannot be checked externally.</td>
</tr>
<tr>
<td>- W045</td>
<td>Disconnection of system from grid: Warning of disconnection of system from electrical grid (no DC input voltage) because of dead battery pack or no demand from domestic loads</td>
<td>Check that, when the warning occurs, the battery pack is dead and/or there have been no energy demands from domestic loads for more than 10 minutes.</td>
</tr>
</tbody>
</table>

Warning

- If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.
- If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.
- If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.
- If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.
- If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.
Error code
- **W046** - Grid conn. fault
 - **Yellow LED**
 - Name of Alarm and Cause: Connection to the grid unsuccessful
 - The alarm is logged when a Missing grid or Input UV error occurs or due to the manual disconnection of the inverter during the grid connection sequence.
 - Solution: • Once the error occurs, the inverter tries to return to normal operation. If the problem persists after a number of attempts to connect the inverter, switch the inverter off and then on again.
 - • If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.

- **W047** - Update Incomplete
 - **Yellow LED**
 - Name of Alarm and Cause: FW update method unsuccessful
 - The alarm occurs when a firmware update has not been completed.
 - Solution: • Complete any pending firmware updates.
 - • If the problem persists once the firmware updates have been completed, switch the inverter off and on again.
 - • If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.

- **W048** - Periodic GridOff
 - **Yellow LED**
 - Name of Alarm and Cause: Automatic disconnection from the grid due to time limit:
 - If the inverter exceeds the set grid connection time limit set by the grid standard, it will automatically have to carry out a disconnection and reconnection to the grid to carry out the Riso test.
 - Solution: • The presence of this alarm is not an error as the automatic disconnection is prescribed by safety regulations.
 - • If the inverter disconnects in a shorter time than expected, contact customer assistance.

- **W049** * Global-Settings Event
 - **Yellow LED**
 - Name of Alarm and Cause: Variation of the grid standard
 - Variation of the inverter's grid standard; this change can be made through the display or advanced configuration software.
 - Solution: • The variation in the inverter's grid standard is done directly by the customer/installer and is not an error. The information is only saved on the historic record of the events memorised by the inverter.

- **W051** - Exit from Stand Alone connection
 - **Yellow LED**
 - Name of Alarm and Cause: Exit from Stand-alone mode:
 - The alarm is logged when the "Stand Alone" mode is deactivated or the inverter reconnects to the grid (this can only be seen if the Stand Alone accessory board has been installed).
 - Solution: • Deactivation of the Stand Alone mode is done directly by the customer/installer or automatically by the inverter and is not an error.

- **W053** - SOH Low
 - **Yellow LED**
 - Name of Alarm and Cause: State of health (SOH) of battery pack low:
 - Indicates that the SOH level of the battery pack (during normal operation) is close to the threshold below which it cannot be used. The alarm is displayed for SOH values between 51 and 63%.
 - Solution: • Indicates that the useful life of the battery is about to end as with SOH values of below 50% it should be replaced.

- **W054** - SOH Low (Fault)
 - **Yellow LED**
 - Name of Alarm and Cause: Battery pack blocked through low state of health (SOH):
 - Indicates that the SOH level of the battery pack (during normal operation) is below the threshold for use. The alarm is displayed for SOH values below 50%.
 - Solution: • Indicates that the useful life of the battery is over and it must be replaced.

- **W055** - Battery Low (0%)
 - **No LED**
 - Name of Alarm and Cause: State of charge (SOC) of battery pack low:
 - Indicates that the battery is completely dead.
 - Solution: • Where permitted by the regulations of the country where it is installed, it is advisable to force the battery to recharge using the electrical grid (charge in AC). Otherwise it is necessary to have good energy production and low absorption of domestic loads to carry out the recharging of the battery (charge in DC).

- **W056** - Power Engage
 - **Yellow LED**
 - Name of Alarm and Cause: Problem with battery pack (power) connection cables:
 - Error detected on the power cables between the inverter unit and the battery unit.
 - Solution: • Check the power line connections between the inverter unit and the battery unit. Particularly check the connectors have been installed correctly and that there are no breaks in the cables connecting the two units.
 - • Error inside the inverter and cannot be checked externally.
 - • If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.

- **W058** - System Frozen
 - **Yellow LED**
 - Name of Alarm and Cause: Converter in locked state:
 - The converter lock state is connected to an installation phase in which the start-up and grid connection conditions are not yet present.
 - Solution: • Complete the commissioning phase of the inverter.
 - • If the problem persists (once the commissioning phase has been completed and the inverter has been switched off and back on again), contact customer assistance.
<table>
<thead>
<tr>
<th>Error code</th>
<th>Name of Alarm and Cause</th>
<th>Solution</th>
</tr>
</thead>
</table>
| W059 | Overload on Stand-alone output: | - Disconnect one or more loads from the Stand Alone output.
- If the problem persists (once all loads have been disconnected and the inverter has been switched off and back on again), contact customer assistance. |
| W060 | State of health (SOH) of battery pack low: | - Indicates that the useful life of the battery is about to end as with SOH values of below 50% it should be replaced. |
| W061 | Battery pack blocked through low state of health (SOH): | - Indicates that the useful life of the battery is over and it must be replaced. |
| W062 | Disconnection of the battery did not occur: | - Error inside the inverter and cannot be checked externally.
- If the problem persists (once the inverter has been switched off and back on again), contact customer assistance. |
| W063 | Forced disconnection from grid: | - This warning is not of an error but is a message informing that the inverter has been forced to disconnect from the grid to go into stand-alone mode |
| W064 | Update of battery unit firmware failed: | - Redo the battery unit firmware update procedure.
If the error warning is shown again contact customer assistance to check the new firmware’s compatibility. |
| E001 | Input over-current (photovoltaic generator): | - Check whether the composition of the PV generator enables input current which exceeds the maximum threshold allowed by the inverter and that the configuration of the inputs (independent or in parallel) is carried out correctly.
- If both checks are positive, contact customer assistance. |
| E002 | Input overvoltage (photovoltaic generator): | - It is necessary to measure the input voltage inside the inverter with a voltmeter.
- If it is higher than the maximum voltage of the operating range, the alarm is genuine and it is necessary to check the configuration of the PV generator. If the voltage has also exceeded the maximum input threshold the inverter could be damaged.
- If it is lower than the maximum voltage of the operating range, the alarm is caused by an internal malfunction and it is necessary to contact customer assistance. |
| E003 | DSP initialisation error: | - Error inside the inverter and cannot be checked externally.
- If the problem persists (once the inverter has been switched off and back on again), contact customer assistance. |
<table>
<thead>
<tr>
<th>Error code</th>
<th>Error message</th>
<th>Name of Alarm and Cause</th>
<th>Solution</th>
</tr>
</thead>
</table>
| - E004 | - Bulk OV | “Bulk” over-voltage (DC-DC circuit): Error inside the inverter. The alarm is raised when the voltage at the heads of the bulk capacitors exceeds the Over Voltage threshold (internal unchanged threshold). | • The alarm may be triggered by causes external to the inverter.
- An excessive input voltage can be recorded as a condition for bulk over voltage. In this case it is advisable to check the inverter's input voltage and should this value be close to the input OV threshold, review the configuration of the photovoltaic generator.
- Excessive grid voltage could cause the bulk voltage to rise in uncontrolled fashion with a consequent protection intervention and hence generation of the alarm. In these cases the alarm is transient and the inverter automatically restarts
- The alarm may be triggered by causes inside the inverter and in this case it is necessary to contact customer assistance. |
| - E005 | - Comm.Error | Communication error inside the inverter: The alarm occurs when there are communication problems between the control devices inside the inverter. | • Error inside the inverter and cannot be checked externally.
- If the problem persists (once the inverter has been switched off and back on again), contact customer assistance. |
| - E006 | - Output OC | Output overcurrent: The alarm occurs when the inverter's output current exceeds the inverter's threshold for maximum output current. | • Error inside the inverter and cannot be checked externally.
- If the problem persists (once the inverter has been switched off and back on again), contact customer assistance. |
| - E007 | - IGBT Sat | Saturation recorded on the IGBT components: The alarm appears when one of the active devices of the inverter is in saturation state. | Once the error appears, the inverter attempts to resume normal operation.
- Should the alarm occur sporadically, it may be caused by a brusque transition of the grid voltage or of the input voltage, but is not due to a malfunction by the inverter.
- If the error is connected to an internal fault, it will continue to appear and so it is necessary to contact customer assistance. |
| - E009 | - Internal error | Error inside the inverter: Error inside the inverter | • Error inside the inverter and cannot be checked externally.
- If the problem persists (once the inverter has been switched off and back on again), contact customer assistance. |
| - E010 | - Bulk Low | Low “Bulk” voltage (DC-DC circuit): The alarm can be caused by excessive heat dissipated by the components of the inverter itself
- The alarm is generated solely when the inverter is configured with parallel inputs. In this particular configuration the inverter checks the input voltage of each of the two channels and if the two voltages differ by more than 20Vdc, the alarm is raised . | • If the error signal occurs sporadically, it may be due to causes external to the inverter (limited irradiation and so limited power availability from the PV generator).
- If the problem occurs systematically even in conditions of high irradiation and with input voltage which is significantly higher than the activation voltage, contact customer assistance. |
| - E011 | - Ramp Fail | Long wait for “Booster” regime to start: Error internal to inverter relating to start up time for DC-DC circuit regime (Booster) | • Error inside the inverter and cannot be checked externally.
- If the problem persists (once the inverter has been switched off and back on again), contact customer assistance. |
| - E012 | - DcDc Fail | Error in the “Booster” circuit (DC-DC side) recorded by the “Inverter” circuit (DC-AC side): Error inside the inverter regarding the operation of the DC-DC circuit part (Booster). | • Error inside the inverter and cannot be checked externally.
- If the problem persists (once the inverter has been switched off and back on again), contact customer assistance. |
| - E013 | - Wrong Mode | Incorrect configuration of inputs (set in parallel rather than independent): The alarm is generated solely when the inverter is configured with parallel inputs. In this particular configuration the inverter checks the input voltage of each of the two channels and if the two voltages differ by more than 20Vdc, the alarm is raised . | • Check that the setting of the “IN MODE” switch is specifically set to “PAR” and that the bridges between the two input channels have been included.
- If the configuration of the inverter is correct, check that the input strings have the usual number of standard panels of the usual brand and with the same inclination/orientation.
- If both the configuration of the inverter and the characteristics of the PV generator conform with the specifications, contact customer assistance. |
| - E014 | - Over Temp. | Excessive temperature inside the inverter: External temperature over 60°C. This parameter also depends on the power which the inverter must supply since the measurement of temperatures is done internally and is influenced by the heat dissipated by the components of the inverter itself | • Check that the inverter is not exposed to direct sunlight. Wait for the temperatures to which the inverter is exposed to return to the operating range and for the inverter to cool down.
- If the problem persists (once the ambient temperature has returned to within the range), contact customer assistance. You must remember to wait for the time necessary to allow the inverter to cool down. |
<table>
<thead>
<tr>
<th>Error code</th>
<th>Name of Alarm and Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>- E015</td>
<td>Breakdown recorded on the “Bulk” capacitor; Error inside the inverter regarding a problem in the bulk capacitors.</td>
<td>• Error inside the inverter and cannot be checked externally. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>- Bulk Cap Fail</td>
<td>Yellow LED</td>
<td></td>
</tr>
<tr>
<td>- E016</td>
<td>Error in the “Inverter” circuit (DC-AC side) recorded by the “Booster” circuit (DC-DC side): The alarm is generated when a problem is detected in the inverter circuit part (DC/AC).</td>
<td>• Error inside the inverter and cannot be checked externally. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>- Inverter Fail</td>
<td>Yellow LED</td>
<td></td>
</tr>
<tr>
<td>- E017</td>
<td>Long wait for “Inverter” regime to start up: Error internal to inverter relating to start-up time for the DC-AC circuit regime (Inverter) The alarm can be caused by causes external to the inverter: a reduced input voltage on the inverter (just above the activation voltage) but which is not accompanied by a sufficient availability of power from the photovoltaic generator (typical condition of the stages with limited irradiation)</td>
<td>- If the error signal occurs sporadically, it may be due to causes external to the inverter (limited irradiation and so limited power availability from the PV generator). - If the problem occurs systematically even in conditions of high irradiation and with input voltage which is significantly higher than the activation voltage, contact customer assistance.</td>
</tr>
<tr>
<td>- Start Timeout</td>
<td>Yellow LED</td>
<td></td>
</tr>
<tr>
<td>- E018</td>
<td>High leakage current measured on the DC side (photovoltaic generator): The alarm is generated when, during normal operation of the inverter, a leakage current to ground is detected in the DC section of the system. It is also possible that the inverter generates the alarm E018 message also due to AC leakage currents connected to the capacitive nature of the photovoltaic generator compared to ground.</td>
<td>• Measure the isolation resistance using a megohmmeter positioned in the photovoltaic array (positive terminal short-circuited at the negative pole) compared to ground. The measurement is strongly influenced by the environmental conditions, so must be made under the same conditions in which the error occurred. - If the value measured is lower than 1 megaohm, a check must be carried out by a technician/installer on the photovoltaic generator to identify and eliminate the problem. - If the value measured is higher than 1 megaohm and the error signal persists, contact customer assistance.</td>
</tr>
<tr>
<td>- Ground Fault</td>
<td>Red LED</td>
<td></td>
</tr>
<tr>
<td>- E019</td>
<td>Failure of test on sensor to measure the leakage current (DC side): Before connecting to the grid the inverter runs a self-test regarding the sensor for the leakage current. The test is carried out by “forcing” the leakage current, a current with a known value: the microprocessor compares the value read with the known value. The error is generated if the comparison between the read value and the known value during the test does not fall within the allowed tolerance.</td>
<td>• Error inside the inverter and cannot be checked externally. By its nature, the alarm only occurs prior to connection to the grid - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>- Self Test Error 1</td>
<td>Yellow LED</td>
<td></td>
</tr>
<tr>
<td>- E020</td>
<td>Failure of the test on the relay of the “Booster” (DC-DC circuit): Before connecting to the grid, the inverter carries out some internal tests. One of these tests concerns the correct operation of the booster relay. The test is carried out by “forcing” the switching of the relay and checking its operation. The error is generated if a problem is found in actioning the relay.</td>
<td>• Error inside the inverter and cannot be checked externally. By its nature, the alarm only occurs prior to connection to the grid - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>- Self Test Error 2</td>
<td>Yellow LED</td>
<td></td>
</tr>
<tr>
<td>- E021</td>
<td>Failure of the test on the inverter’s relay (DC-AC circuit): Before connecting to the grid, the inverter carries out some internal tests. One of these tests concerns the correct operation of the inverter relay. The test is carried out by “forcing” the switching of the relay and checking its operation. The error is generated if a problem is found in actioning the relay.</td>
<td>• Error inside the inverter and cannot be checked externally. By its nature, the alarm only occurs prior to connection to the grid - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>- Self Test Error 1</td>
<td>Yellow LED</td>
<td></td>
</tr>
</tbody>
</table>

By its nature, the alarm only occurs prior to connection to the grid - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.
Error code

- **- E022**
 - **Self Test Error 4**
 - Yellow LED

Name of Alarm and Cause

Timeout of the tests undertaken on the relays inside the inverter:
Execution time for the self-test carried out on the relay of the DC_AC (inverter) circuit too high. It may indicate a problem connected to the aforementioned relays.

Solution

- Error inside the inverter and cannot be checked externally.
- If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.

Error code

- **- E023**
 - **DC in error**
 - Yellow LED

Name of Alarm and Cause

Feeding of direct current to grid outside of range:
The error is generated if the direct component of the current supplied to the grid exceeds the threshold of 0.5% of the rated operating current.

In any case, the inverter does not stop because of the E023 error, but tries to connect to the grid again. The sporadic repetition of the error is a sign of serious grid distortions or sharp irradiation changes, while systematic repetition of the error signal will indicate a breakdown on the inverter.

Solution

Once the error appears, the inverter attempts to resume normal operation.
- Should the error occur sporadically, it may be caused by a brusque transition of the grid voltage or of the input voltage, but is not due to a malfunction by the inverter.
- If the error is connected to an internal fault, it will continue to appear and so it is necessary to contact customer assistance.

Error code

- **- E024**
 - **Internal error**
 - Yellow LED

Name of Alarm and Cause

Error inside the inverter:
Error inside the inverter.

Solution

- Error inside the inverter and cannot be checked externally.
- If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.

Error code

- **- E025**
 - **Riso Low**
 - Yellow LED

not visualised on display

Name of Alarm and Cause

Low value of isolation resistance:
Before connecting to the grid the inverter measures the isolation resistance of the PV generator compared to ground. Should the measurement of the isolation resistance be below 1Mohm, the inverter does not connect to the grid and shows the "Riso Low" error. The causes may be:
- Damaged PV panel(s).
- Junction box(es) of the panels not correctly sealed, so as to permit infiltration by water and/or humidity;
- Problems in connections between panels (not perfectly fit);
- Poor quality of cable joints;
- Presence in the DC section of unsuitable or damaged overvoltages or sharp irradiation changes outside the inverter (reduced ignition voltage compared to the characteristics of the strings of the PV generator);
- Presence of humidity inside any junction box circuits at the negative pole) compared to ground. The measurement is strongly influenced by the environmental conditions, so must be made under the same conditions in which the error occurred.
- If the value measured is lower than 1 megaohm, a check must be carried out by a technician/installer on the photovoltaic generator to identify and eliminate the problem.
- If the value measured is higher than 1 megaohm and the error signal persists, contact customer assistance.

Solution

- Measure the isolation resistance using a megohmmeter positioned in the photovoltaic array (positive terminal short-circuited at the negative pole) compared to ground. The measurement is strongly influenced by the environmental conditions, so must be made under the same conditions in which the error occurred.
- If the value measured is lower than 1 megaohm, a check must be carried out by a technician/installer on the photovoltaic generator to identify and eliminate the problem.
- If the value measured is higher than 1 megaohm and the error signal persists, contact customer assistance.

Error code

- **- E026**
 - **Vref Error**
 - Yellow LED

Name of Alarm and Cause

Internal reference voltage outside of range:
Wrong measurement of reference voltage inside inverter.

Solution

- Error inside the inverter and cannot be checked externally.
- If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.

Error code

- **- E027**
 - **Error Meas V**
 - Yellow LED

Name of Alarm and Cause

Grid voltage outside of range:
Error in the internal measurement of grid voltage (set by law) to have a redundant measurement (2 measurements on the same parameter made by two different circuits).

Solution

- Error inside the inverter and cannot be checked externally.
- If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.

Error code

- **- E028**
 - **Error Meas F**
 - Yellow LED

Name of Alarm and Cause

Grid frequency outside of range:
Error in the internal measurement of the grid frequency (imposed by regulations) to have a measurement redundancy (2 measurements on the same parameter carried out by two different circuits).

Solution

- Error inside the inverter and cannot be checked externally.
- If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.

Error code

- **- E029**
 - **Mid Bulk OV**
 - Yellow LED

Name of Alarm and Cause

Internal overvoltage on the measurement of the "Mid bulk":
Error inside the inverter (only triphase models).

Solution

- Error inside the inverter and cannot be checked externally.
- If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.

Error code

- **- E030**
 - **Error Meas leak**
 - Yellow LED

Name of Alarm and Cause

High leakage current (DC side):
- Error on the internal measurement (performed when the inverter is connected to the grid) of the DC side (PV generator) leakage current with respect to ground (required by regulations) to have a measurement redundancy (2 measurements of the same parameter carried out by two independent circuits).

Solution

- Error inside the inverter and cannot be checked externally.
- If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.
<table>
<thead>
<tr>
<th>Error code</th>
<th>Name of Alarm and Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>E031</td>
<td>Output relay damaged: Measurement of internal voltage on heads of the output relay outside of range. There is too great a difference in voltage between the input and output of the grid connection relay.</td>
<td>• Error inside the inverter and cannot be checked externally. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>E032</td>
<td>Imbalanced output currents: Measurement of the unbalance in the output voltage (made across the three phases) outside of range (only in three-phase models)</td>
<td>• Error inside the inverter and cannot be checked externally. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>E033</td>
<td>Low ambient temperature: Temperature outside the inverter below -25°C</td>
<td>• Wait for the temperatures to which the inverter is exposed to return to the operating range. - If the problem persists, contact customer assistance. You must remember to wait for the time necessary to allow the inverter to warm up.</td>
</tr>
<tr>
<td>E034</td>
<td>“IGBT” circuitry not ready: Error inside the inverter</td>
<td>• Error inside the inverter and cannot be checked externally. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>E035*</td>
<td>Inverter awaiting “remote ON” command: The inverter has been switched off remotely (remote OFF) and remains in waiting state for the signal that will switch it on again (remote ON).</td>
<td>• Switch the inverter back on remotely. If the unit does not switch on, disable the remote on/off function and switch the equipment off completely and then switch it on again. - If the problem persists (once the Remote ON/OFF function has been reactivated), contact customer assistance.</td>
</tr>
<tr>
<td>E036</td>
<td>Average of the measurements of grid voltage outside of range: The average value of the grid voltage (sampled every 10 minutes) does not fall within the permitted ranges. The grid voltage in the point connected to the inverter is too high. This may be caused by a grid impedance that is too high. In the final stage of the timeout, the inverter limits the power to check whether the grid voltage has stabilised into regular parameters. If this does not happen, the inverter disconnects from the grid</td>
<td>• Check the grid voltage in the connection point to the inverter. - If the grid voltage differs from the range due to the conditions of the distribution grid, ask the operator to adjust the grid voltage. If the operator authorises a change to the inverter’s parameters, agree the new limits with customer assistance.</td>
</tr>
<tr>
<td>E037</td>
<td>Low value of the isolation resistance (only with the “Amorphous” mode activated): This error can appear only if the “Amorphous” mode is enabled. This function is enabled only in inverters equipped with grounding kit and is used to monitor the voltage at the ends of the grounding resistor. The error appears when the voltage at the ends of the resistor connected between ground and pole of the photovoltaic generator exceeds 30V for more than 30 minutes or 120V for more than one second.</td>
<td>• Check for the presence and correct contact between the two terminals of the grounding resistance installed inside the inverter - Measure the isolation resistance using a megohmmeter positioned in the photovoltaic array (positive terminal short-circuited at the negative pole) compared to ground. The measurement is strongly influenced by the environmental conditions, so must be made under the same conditions in which the error occurred. - If the measured value is greater than 1 megohm, a check must be carried out by a technician/installer on the photovoltaic generator to identify and eliminate the problem. - If the measured value is higher than 1 megohm and the error signal persists, contact customer assistance.</td>
</tr>
<tr>
<td>E038</td>
<td>Error during the automatic check of the string voltages (only in models with the “fuse-control” board): In some inverter models it is possible to carry out the check test of the polarity of the strings connected to the input (e.g.: TRIO-20.0/27.6kW). This error signal occurs when, during the test stage, an inverted string is recorded</td>
<td>• Section the inverter and check the polarity of the string(s) which the inverter has recorded as inverted. - Once all the strings have been correctly connected, activate the system once again; the inverter will once again check the correct polarity of the string inputs at the end of which it will carry out the checks for the grid connection. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>E039</td>
<td>Error in the “AC feed-forward” circuit: Error inside the inverter</td>
<td>• Error inside the inverter and cannot be checked externally. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>E040</td>
<td>Arc Fault protection activated: Possible photovoltaic arc detected on the DC side.</td>
<td>• If it is the first time this problem has occurred, press the ESC button for 5 seconds and wait for the unit to restart. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>E041</td>
<td>Error inside the inverter.</td>
<td>• Error inside the inverter and cannot be checked externally. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>Error code</td>
<td>Name of Alarm and Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>E053</td>
<td>Arc Fault board autotest failed: Problem detected during the AFDD board autotest phase.</td>
<td>• Error inside the inverter and cannot be checked externally. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>E054</td>
<td>Arc Fault communication error: Error on the RS485 serial communication detected between the inverter and the AFDD board.</td>
<td>• Error inside the inverter and cannot be checked externally. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>E055</td>
<td>Arc Fault board parameter reading error: Error in the parameter reading by the system.</td>
<td>• Error inside the inverter and cannot be checked externally. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>E056</td>
<td>Excessive temperature measured inside the inverter's wiring box: High internal temperature. This error relates to the temperature measured on external boxes (e.g. TRIO-20.0/27.6kW).</td>
<td>• Check that the inverter is not exposed to direct sunlight. Wait for the temperatures to which the inverter is exposed to return to the operating range and for the inverter to cool down. - If the problem persists (once the ambient temperature has returned to within the range), contact customer assistance. Remember to wait the time needed to allow the inverter to cool down</td>
</tr>
<tr>
<td>E057</td>
<td>Input voltage (Vin) higher than booster voltage (Vbulk): The error occurs if the input voltage exceeds the Bulk voltage (voltage on the DC-DC circuit inside the inverter)</td>
<td>• It is necessary to measure the input voltage inside the inverter with a voltmeter. - If it is higher than the maximum voltage of the operating range, the alarm is genuine and it is necessary to check the configuration of the PV generator. If the voltage has also exceeded the maximum input threshold the inverter could be damaged. - If it is lower than the maximum voltage of the operating range, the alarm is caused by an internal malfunction and it is necessary to contact customer assistance.</td>
</tr>
<tr>
<td>E058</td>
<td>Error in the check of Pin vs Pout: The error occurs if the difference between the measured value of input power and that of output power is greater than the limit imposed internally to the inverter.</td>
<td>• Error inside the inverter and cannot be checked externally. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>E059</td>
<td>Emergency (stop) button activated: This code marks the activation of the emergency button (button pressed). This warning is activated only where there is DC or AC voltage as, if the emergency button is pressed while it is operating only by battery, it causes the whole system to shut down.</td>
<td>• Check that the emergency button has been pressed and if necessary deactivate it. - If the warning persists even though the button has been deactivated, contact customer assistance.</td>
</tr>
<tr>
<td>E060</td>
<td>Error in the “Charger” circuit: Error internal to inverter relating to the bulk voltage of the circuit linked to battery charger</td>
<td>• Error inside the inverter and cannot be checked externally. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>E061</td>
<td>Overvoltage of "battery charger" ("Charger" circuit): Error inside the inverter. The alarm is raised when the battery charger voltage exceeds the overvoltage threshold (internal unchangeable threshold).</td>
<td>• The error might continue when the battery is disconnected (e.g. activation of emergency button). - If the message persists and is not linked to the battery being disconnected, contact customer assistance.</td>
</tr>
<tr>
<td>E062</td>
<td>Overcurrent of "battery charger" ("Charger" circuit): Error inside the inverter.</td>
<td>• Error inside the inverter and cannot be checked externally. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>E063</td>
<td>Error internal to inverter linked to the battery pack charger circuit ("Charger" circuit):</td>
<td>• Error inside the inverter and cannot be checked externally. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>E064</td>
<td>Communication error inside the inverter: The alarm occurs when there are communication problems between the control devices inside the inverter.</td>
<td>• Error inside the inverter and cannot be checked externally. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>E065</td>
<td>Communication error inside the inverter:</td>
<td>• Error inside the inverter and cannot be checked externally. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>E066</td>
<td>Communication error inside the inverter:</td>
<td>• Error inside the inverter and cannot be checked externally. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>E067</td>
<td>Communication error inside the inverter:</td>
<td>• Error inside the inverter and cannot be checked externally. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
<tr>
<td>E068</td>
<td>Communication error inside the inverter:</td>
<td>• Error inside the inverter and cannot be checked externally. - If the problem persists (once the inverter has been switched off and back on again), contact customer assistance.</td>
</tr>
</tbody>
</table>

8 - Maintenance
<table>
<thead>
<tr>
<th>Error code</th>
<th>Error message</th>
<th>Name of Alarm and Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>E079</td>
<td>Wrong Sequence</td>
<td>Incorrect Phases connection (Only triphase models) The phases have not been connected correctly to the AC output</td>
<td>• Invert two of the phases of the network wiring to the AC terminal block of the inverter.</td>
</tr>
<tr>
<td>E081</td>
<td>Internal Error</td>
<td>Inverter fault / Incomplete inverter closing: Fault inside the inverter or incomplete inverter closing (front cover missing or not tightened, cable glands missing or incorrectly tightened, environmental protection IP65 not guaranteed)</td>
<td>• If the problem has occurred during the installation phase or during the inverter maintenance phase (therefore the cover has been removed or the cable glands have been acted upon), carry out the following operations: - Disconnect the AC grid and DC input from the inverter and check for the front cover and all the cable glands, also checking their correct tightening to ensure environmental protection IP65; reconnect the AC grid and the DC input and attempt to switch the inverter on; if the problem persists, contact customer assistance: - If the front cover and all cable glands are present, disconnect the AC grid and DC input from the inverter and wait 15 minutes at a safe distance, then open the inverter cover and if no smoke/smell of burning is present, check the integrity of the components or the presence of moisture or other abnormal conditions; reconnect the AC grid and DC input and attempt to switch on the inverter; if the problem persists contact customer assistance. • If the problem has occurred after installation or after an inverter maintenance phase (therefore the cover has NOT been removed or the cable glands have NOT been acted upon), disconnect the AC grid and the DC input from the inverter and contact customer assistance.</td>
</tr>
<tr>
<td>E084</td>
<td>BackFeed OC</td>
<td>Return current to photovoltaic field: The error occurs if the input voltage is particularly low (typically in the evening in conditions of low irradiation) and indicates a return current from the inverter to the photovoltaic panels).</td>
<td>If the error occurs in the evening or in conditions of low irradiation, it must not be considered a problem but a protection intervention for the photovoltaic field. - If the error occurs with good irradiation conditions, switch the inverter off and back on again; if the error persists, contact customer assistance.</td>
</tr>
<tr>
<td>E086</td>
<td>Batt. 1 - F2</td>
<td>Error battery pack 1 unusable: Indicates that the battery pack is unusable and must be replaced.</td>
<td>• Error inside battery pack 1 and cannot be checked externally. - If the problem (once the system has been switched off and back on) persists, contact customer assistance.</td>
</tr>
<tr>
<td>E087</td>
<td>Batt. 2 - F2</td>
<td>Error battery pack 2 unusable: Indicates that the battery pack is unusable and must be replaced.</td>
<td>• Error inside battery pack 2 and cannot be checked externally. - If the problem (once the system has been switched off and back on) persists, contact customer assistance.</td>
</tr>
<tr>
<td>E088</td>
<td>Batt. 3 - F2</td>
<td>Error battery pack 3 unusable: Indicates that the battery pack is unusable and must be replaced.</td>
<td>• Error inside battery pack 3 and cannot be checked externally. - If the problem (once the system has been switched off and back on) persists, contact customer assistance.</td>
</tr>
<tr>
<td>E089</td>
<td>Wrong Wiring</td>
<td>Incorrect grid wiring connection on Stand Alone: The error occurs if the grid cables have been incorrectly connected to the Stand Alone output.</td>
<td>• Check that the cables on the Stand Alone output have been installed correctly.</td>
</tr>
</tbody>
</table>
Power limitation messages

The equipment can signal possible output power limitations which may occur on the basis of:
- settings made by the user
- settings required by the grid standard of the country of installation
- protective devices inside the inverter

The signals and the messages can only be verified using the Aurora Manager LITE software.

The following table gives the complete list of power limitation messages relating to string inverters.
Some messages may not be used depending on the inverter model installed.

<table>
<thead>
<tr>
<th>Message on display</th>
<th>Name of Derating and Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>- LIMxxx% CODE:00</td>
<td>Power limitation:</td>
<td>• Check the limitation value in “Settings > Power Reduction”.</td>
</tr>
<tr>
<td></td>
<td>The message indicates that the user has set an output power limitation for the inverter. LIM xxx% = Power reduction percentage. Examples: LIM 100% = no power limitation. LIM 50% = limitation to 50% of the output nominal power.</td>
<td></td>
</tr>
<tr>
<td>- LIMxxx% CODE:01</td>
<td>Power limitation for over-frequency:</td>
<td>• Check the limitation value set in “Settings > Service Power > OF Derating”.</td>
</tr>
<tr>
<td></td>
<td>The message indicates that the user has set a power limitation due to over frequency in order to reduce the maximum output power of the inverter when the grid frequency exceeds certain limits. LIM xxx% = Power reduction percentage. Examples: LIM 100% = no power limitation. LIM 50% = limitation to 50% of the output nominal power.</td>
<td></td>
</tr>
<tr>
<td>- LIMxxx% CODE:02</td>
<td>Power limitation for over-voltage:</td>
<td>• Check the limitation value in “Settings > Service Power > U>(10min) Der.”</td>
</tr>
<tr>
<td></td>
<td>The message indicates that the user has set a power limitation due to overvoltage (parameter U > (10 min)) in order to reduce the maximum output power of the inverter when the reading of the average grid voltage exceeds certain limits. The sampling of readings is done every 10 minutes (U> (10min)). LIM xxx% = Power reduction percentage. Examples: LIM 100% = no power limitation. LIM 50% = limitation to 50% of the output nominal power.</td>
<td></td>
</tr>
<tr>
<td>- LIMxxx% CODE:03</td>
<td>Anti-islanding power limitation:</td>
<td>• If the inverter remains connected to the grid and the limitation is active, contact customer assistance.</td>
</tr>
<tr>
<td></td>
<td>The message indicates that a power limitation is active since an “islanding” condition has been recorded. LIM xxx% = Power reduction percentage. Examples: LIM 100% = no power limitation. LIM 50% = limitation to 50% of the output nominal power.</td>
<td></td>
</tr>
<tr>
<td>- LIMxxx% CODE:04</td>
<td>Power limitation due to low grid voltage:</td>
<td>• Check that the grid voltage is lower than the minimal voltage. Should this condition persist, contact the grid operator to resolve the problem.</td>
</tr>
<tr>
<td></td>
<td>The message indicates that an output power limitation may occur since a low grid voltage (AC) condition has been recorded. LIM xxx% = Power reduction percentage. Examples: LIM 100% = no power limitation. LIM 50% = limitation to 50% of the output nominal power.</td>
<td></td>
</tr>
<tr>
<td>Message on display</td>
<td>Name of Derating and Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| - LIMxxx% CODE:05 | Power limitation due to excess temperature:
The message indicates that a power limitation is active since an excess temperature condition has been recorded inside the inverter (This parameter depends also on the power which the inverter must provide since the measurement of temperatures is taken internally and is influenced by the heat dissipated by the components of the inverter itself).
LIM xxx% = Power reduction percentage
Examples:
LIM 100% = no power limitation
LIM 50% = limitation to 50% of the output nominal power | • Check that the inverter is not exposed to direct sunlight. Wait for the temperatures to which the inverter is exposed to return to the operating range and for the inverter to cool down.
- If the problem (once the ambient temperature has returned within the range) persists, contact customer assistance. |
| - LIMxxx% CODE:06 | Power limitation for input over-voltage:
The message indicates that a power limitation is active since an input overvoltage (AC) has been recorded.
LIM xxx% = Power reduction percentage
Examples:
LIM 100% = no power limitation
LIM 50% = limitation to 50% of the output nominal power | • It is necessary to measure the input voltage inside the inverter with a voltmeter.
- If it is higher than the maximum voltage of the operating range, the alarm is genuine and it is necessary to check the configuration of the PV generator. If the voltage has also exceeded the maximum input threshold the inverter could be damaged.
- If it is lower than the maximum voltage of the operating range, the alarm is caused by an internal malfunction and it is necessary to contact customer assistance. |
Procedure for dismantling the Inverter and wiring box

The inverter consists of an Inverter part and two DC and AC Wiring Boxes which may be dismantled separately.

To dismantling and disassemble the appliance, refer to the chapters:
Mount using a support bracket
- Vertical wall mounting
- Mounting horizontally

Follow the indications for the mounting procedure but in the reverse order.

⚠️ Perform the steps for “Turning off the inverter” based on the model, before removing one of the two wiring boxes or the inverter itself.

Never open the wiring boxes in the case of rain, snow or a level of humidity >95%.
Always carefully seal all unused openings.

Even though the device is equipped with an anti-condensation valve, air with extremely high levels of humidity can lead to the creation of condensation inside the inverter.
As the inverter is almost completely insulated from the outside, condensation can also form after maintenance interventions in certain weather conditions.

⚠️ During dismantling must be installed caps on interface quick connectors on the inverter parts that are installed and exposed to the elements.

⚠️ Moreover must also be arranged the temporary ground connections to ensure the grounding of all the parts of the inverter that remain installed on the system.
Obtaining the Aurora Manager LITE credentials - Registering at the “Registration” site

In order to obtain the release credentials for advanced configuration of the inverter using the “Aurora Manager LITE” advanced configuration software, the user must:

- Go online and access https://registration.abbsolarinverters.com

- Set the desired language and click on the specific icon to start registration

- Insert the personal data requested and end the registration stage

- An email will be sent to the email address used with a link to complete the registration process.

- Once the registration process is over, a further email will be sent with the password to access the website.

The password obtained enables access also to the advanced “Installer” mode present on the configuration software for inverters. The configuration software can be downloaded in a specific section of the website https://registration.abbsolarinverters.com
Replacing DC string fuses

The string protection fuses (where present) in the inverter may need to be replaced in the following circumstances:

1. Adjustment of the fuse value on the basis of the type of PV panels used
2. Damaged fuse

Fuses are replaced using the specific fuse box which allows them to be removed easily and correctly positioned when being inserted.

Procedure for replacing string fuses:

1. Disconnect the strings by disconnecting the DC and AC disconnect switches fitted on the inverter followed by the quick fit input connectors.

 By only disconnecting the AC disconnect switch and the DC disconnect switch, the DC input voltage is still present on the fuse board. Use adequate PPE (personal protective equipment).

2. Remove the fuse to be replaced acting on the fuse box grip

3. Lift the fuse retaining clip and remove the fuse from the fuse box

4. Introduce the new fuse into the fuse box

5. Fit the fuse box into the wiring box

Once the fuse box has been fitted, check that it is in contact with the fuse board.
Replacing cooling section

Procedure for replacing cooling section:

1. Perform the “inverter switch-off” procedure before operate on the inverter

2. Remove the 4 screws of the cooling section.

3. Pull out the cooling section

4. Disconnect the 4 fan connectors

5. Take the new cooling section and connect the 4 fan connectors. During this phase pay attention to connect the fan to the correspondent cable; on each fan cable coming from the power module and on each fan are applied labels that indicates the fans number (from FAN1 to FAN4)

6. Place the new cooling section on the lower side of the power module

7. Screw the 4 fastening screws
Replacement of the buffer battery

Replacing the buffer battery a20 is carried out on the DC wiring box and may be necessary in the following circumstances:

1. LED error signal
2. Reset of the date and time settings

The battery is of the CR2032 type and is installed on the communication and control board. It can only be accessed after having removed the front cover of the DC wiring box installed to protect the areas under high voltage.

Procedure to replace the buffer battery:

1. Disconnect the inverter by disconnecting the DC and AC disconnect switches fitted on the outside of the inverter (Standard version) or the AC and DC disconnect switch (S / -SX / -SX2 versions) followed by the quick fit input connectors.

2. Open the DC disconnect switch and the AC disconnect switch installed on the covers of the two wiring boxes

3. Remove the front cover installed on the DC wiring box

4. Remove the buffer battery a20 to be replaced

5. Install the new battery, taking care to handle it with insulating gloves in order not to compromise the charge and respecting the polarity shown on the diagram on the communication and control board

6. Fit the new plastic cover above the communication and control board

7. Reconnect all the input strings and start the inverter.
Verification of ground leakage

In the presence of anomalies or report of ground fault (where provided), there may be a ground leakage from the PV generator (DC side).

To check this, measure the voltage between the positive pole and ground and between the negative pole (of the PV generator) and ground using a voltmeter whose input accepts a voltage sufficient for the dimensions of the photovoltaic generator.

Behaviour of a system without leakage

Due to the capacitive effect of the PV generator, during the first moments that the voltmeter is connected between one of the two poles and ground, it will measure a voltage of about Voc/2, which will tend to stabilize to around 0V if there is no ground leakage, as shown in the graph below:

The internal resistance of the voltmeter tends to zero the voltage present on the PV generator due to the capacitive effect.

How to make the measurement:
Behaviour of a system with leakage

If the voltage measured between one of the two poles and ground does not tend to 0V and stabilizes on a value, there is a ground leakage from the PV generator.

Example: When the measurement is made between positive pole and ground, a voltage of 200V is measured.

This means that if the system is made up of 10 modules in series and each one supplies 50V, the leakage can be located between the 4th and 5th PV module.

\[V_a = \text{voltage measured between + pole and } = 200\text{V} \]
\[V_b = \text{voltage measured between - pole and } = 300\text{V} \]

In all measurements with ⬠, the ground of the inverter is indicated.
Measuring the isolation resistance of the PV generator.

To measure the isolation resistance of the PV generator compared to ground, the two poles of the PV generator must be short-circuited (using a suitably sized selector).

Once the short-circuit has been made, measure the isolation resistance (Riso) using a megohm meter positioned between the two shorted poles and ground (of the inverter).

MODELS - TL (without isolation transformer). If the measured isolation resistance (Riso) is less than 500 MOhm, the inverter may not connect to the grid because of low isolation of the PV generator to ground.

MODELS - I (with isolation transformer). If the measured isolation resistance (Riso with floating input poles compared to ground or QF=1 with grounding of one of the two inlet poles) is lower than 0.2 MOhm, the inverter will not connect to the grid due to low isolation of the PV generator to ground.

The isolation resistance can be affected by the environmental conditions the PV generator is in (E.g.: PV modules wet from damp or rain), and therefore the measurement must be made immediately after the anomaly is detected
Storage and dismantling

Storage of the equipment or prolonged stop

If the equipment is not used immediately or is stored for long periods, check that it is correctly packed and contact ABB for storage instructions. The equipment must be stored in well-ventilated indoor areas having no characteristics that could damage the components of the equipment.

Restarting after a long or prolonged stop requires a check and, in some cases, the removal of oxidation and dust that will also have settled inside the equipment if not suitably protected.

Dismantling, decommissioning and disposal

ABB is not responsible for any loss of the equipment, or part of it, which does not take place on the basis of the regulations and laws in force in the country of installation.

The symbol of the cancelled bin (where present) indicates that the product must not be disposed of with domestic waste at the end of its useful life. This product must be delivered to the waste collection point of the local community for recycling. For further information, refer to the public body responsible for waste disposal in the country.

Inappropriate disposal of waste can have a negative impact on the environment and human health owing to potentially dangerous substances. By cooperating in the correct disposal of this product, you contribute to the reuse, recycling and recovery of the product, and the protection of our environment.

Dispose of the various types of materials that the parts of the equipment consist of in dumps that are suitable for the purpose.

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>MATERIAL OF CONSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame, brackets, supports</td>
<td>Arc-welded steel FE37, aluminium</td>
</tr>
<tr>
<td>Casing or covers</td>
<td>ABS, plastic</td>
</tr>
<tr>
<td>Paint</td>
<td>RAL</td>
</tr>
<tr>
<td>Gaskets and seals</td>
<td>Rubber / Teflon / Viton</td>
</tr>
<tr>
<td>Electrical cables</td>
<td>Copper / Rubber</td>
</tr>
<tr>
<td>Cable trays</td>
<td>Polyethylene / Nylon</td>
</tr>
<tr>
<td>Batteries</td>
<td>Nickel / Lead/Lithium</td>
</tr>
</tbody>
</table>
Port and network services used by the inverter

IP Network Services

Any network connected to the inverter must allow traffic to pass on the following ports. Network firewall rules (if present) must allow responses to the inverter over existing TCP connections.

<table>
<thead>
<tr>
<th>Direction</th>
<th>Service/Port</th>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out</td>
<td>ssh/22</td>
<td>Tcp</td>
<td>For remote debugging by ABB service personnel, the inverter utilizes encrypted SSH Remote Login Protocol. To allow service personnel remote access to the inverter, this port has to be opened in any firewall and forwarded to the inverter. (preferred)</td>
</tr>
<tr>
<td>Out</td>
<td>domain/53</td>
<td>Tcp/udp</td>
<td>The inverter must be able to resolve domain names, to ensure scalability and dynamic changes on the Internet (DNS). (required)</td>
</tr>
<tr>
<td>Out</td>
<td>https/443</td>
<td>Tcp</td>
<td>As an HTTP client, the inverter uses SSL/TLS protocol connections to Aurora Vision® servers for secure communication. The inverter uses this port for all services, including data transmission, firmware upgrade, configuration management, and remote command transmission. (required)</td>
</tr>
<tr>
<td>Out</td>
<td>dhcp/67, dhcp/68</td>
<td>Udp</td>
<td>If DHCP service is not available, static network information must be assigned to the inverter (preferred)</td>
</tr>
<tr>
<td>Out</td>
<td>ntp/123</td>
<td>Udp</td>
<td>The inverter uses this port for network time services (NTP). (preferred)</td>
</tr>
</tbody>
</table>
Network Hosts

The inverter will connect to the following hosts. Some servers owned by ABB, and others are customer or ISP servers. Servers listed as owned by “Customer IT/ISP” must be configured in the inverter using either DHCP or as static network information.

<table>
<thead>
<tr>
<th>Host</th>
<th>Purpose</th>
<th>Port</th>
<th>Owner/Manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>platform.auroravision.net</td>
<td>Data, configuration</td>
<td>TCP:443</td>
<td>ABB</td>
</tr>
<tr>
<td>gw1.auroravision.net and/or apt.fatspaniel.net</td>
<td>Inverter firmware upgrade</td>
<td>TCP:443</td>
<td>ABB</td>
</tr>
<tr>
<td>Site dependent</td>
<td>DHCP (optional)</td>
<td>UDP:67,</td>
<td>Customer IT/ISP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UDP:68</td>
<td></td>
</tr>
<tr>
<td>Site dependent</td>
<td>DNS</td>
<td>UDP:53,</td>
<td>Customer IT/ISP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCP:53</td>
<td></td>
</tr>
</tbody>
</table>

Inverter network configuration

The inverter requires a valid network configuration in order to operate. This information can either be provided by a DHCP server provided by the customers network (the default), or the inverter can be configured with static network information. Regardless of how the inverter is configured, the following information is required.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>Allows the inverter to take part in the local network. This does not need to be a public IP address. In most cases this is a private IP address.</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>Used to determine if two computers are on the same network.</td>
</tr>
<tr>
<td>Gateway</td>
<td>The IP address of the computer which will forward network traffic from the local network to an external network.</td>
</tr>
<tr>
<td>DNS Server</td>
<td>The IP address(es) of the computer(s) which resolve domain names.</td>
</tr>
</tbody>
</table>
Further information

For more information on ABB solar products and services, visit www.abb.com/solarinverters
Contact us

www.abb.com/solarinverters