Insulation monitoring relay CM-IWN.5 For unearthed AC, DC and mixed AC/DC systems up to $U_n = 400 \text{ V}$ AC and 600 V DC

The CM-IWN.x serves to monitor insulation resistance in accordance with IEC 61557-8 in unearthed IT AC systems, IT AC systems with galvanically connected DC circuits, or unearthed IT DC systems with a voltage up to 400 V AC and 600 V DC. The measuring range can be extended up to 690 V AC and 1000 V DC by using the coupling unit CM-IVN. It can be configured to the requirements of the applications and therefore used multi-functional.

Characteristics

- For monitoring the insulation resistance of unearthed IT systems up to $U_{\rm n}$ = 400 V AC and 600 V DC
- According to IEC/EN 61557-8 "Electrical safety in low voltage distribution systems up to 1000 V a.c. and 1500 V d.c. – Equipment for testing, measuring or monitoring of protective measures – Part 8: Insulation monitoring devices for IT systems"
- Specifically for applications with high system leakage capacitances, for example in photovoltaic environments
- Rated control supply voltage 24-240 V AC/DC
- Prognostic measuring principle with superimposed square wave signal
- Two measuring ranges 1-100 k Ω and 2-200 k Ω
- One (1 x 2 c/o) or two (2 x 1 c/o) threshold values $R_{an}1/R1^{1)}$ (final switch-off) and $R_{an}2/R2^{1)}$ (prewarning) configurable²⁾
- Precise adjustment of the threshold values in 1 k Ω steps (R1) and 2 k Ω steps (R2)
- Interrupted wire detection configurable
- Non-volatile fault storage configurable
- Open- or closed-circuit principle configurable
- 45 mm (1.77 in) width

3 LEDs for status indication
¹⁾ term acc. to IEC/EN 61557-8
²⁾ R2 only active with 2 x 1 c/o configuration

Order data

Insulation monitoring relay

AL	21 51 52 5	
	ABB	CM-IWN
	Rts-value KR Rx+Rx1+Rx2	HI Rasel RI
S C C C C C C C C C C C C C C C C C C C	R1.2-value k2	R2.2-volue k2
22	12 14 1+	VS

CDC 251 068 S0011

Approvals

	UL 508,	CAN/CSA	C22.2	No.14
--	---------	---------	-------	-------

- GL GL
- CB IEC/EN 60947-5-1, CB scheme pending
- @ GB14048.5 2001, CCC pending
- 🕑 GOST

Marks

CE CE C-Tick

Туре	Nominal voltage U _n of the distribution system to be monitored	Rated control supply voltage	System leakage capacitance, max.	Order code
CM-IWN.5	0-400 V AC / 0-600 V DC	24-240 V AC/DC	1000 μF	1SVR 650 660 R0400

Accessories

Туре	Description	Order code
CM-IVN	Coupling unit for connection of the CM-IWN.x to systems with voltages U_n up to 690 V AC and 1000 V DC	1SVR 650 669 R9400
ADP.02	Adapter for screw mounting	1SVR 440 029 R0100
MAR.02	Marker label for devices with DIP switches	1SVR 430 043 R0000
COV.02	Sealable transparent cover	1SVR 440 005 R0100

Functions

Operating controls

1 Configuration and setting

Front-face rotary switches to adjust the threshold value: R1.1 for R1 tens figure:

0, 10, 20, 30, 40, 50, 60, 70, 80, 90 k Ω in ten k Ω steps R1.2 for R1 units figure:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 k Ω in one k Ω steps

R2.1 for R2 tens figure:

0, 20, 40, 60, 80, 100, 120, 140, 160, 180 k Ω in twenty k Ω steps

R2.2 for R2 units figure:

2, 4, 6, 8, 10, 12, 14, 16, 18, 20 k Ω in two k Ω steps

2 Test and reset button

3 Status indication U: green LED - control supply voltage F: red LED - fault message

R: yellow LED - relay status

4 Function selection and marker label See "DIP switches" on page 7

Application / monitoring function

The CM-IWN.x serves to monitor insulation resistance in accordance with IEC 61557-8 in unearthed IT AC systems, IT AC systems with galvanically connected DC circuits, or unearthed IT DC systems.

The insulation resistance between system lines and system earth is measured. If this falls below the adjustable threshold values, the output relays switch into the fault state.

The device can monitor control circuits (single-phase) and main circuits (3-phase).

Supply systems with voltages $U_n = 0.400 \text{ V}$ AC (15-400 Hz) or 0-600 V DC can be directly connected to the measuring inputs and their insulation resistance being monitored. For systems with voltages above 400 V AC and 600 V DC the coupling unit CM-IVN can be used for the expansion of the CM-IWN.x voltage range.

Measuring principle

A pulsating measuring signal is fed into the system to be monitored and the insulation resistance calculated.

This pulsating measuring signal alters its form depending on the insulation resistance and system leakage capacitance. From this altered form the change in the insulation resistance is forecast.

When the forecast insulation resistance corresponds to the insulation resistance calculated in the next measurement cycle and is smaller than the set threshold value, the output relays are activated or deactivated, depending on the device configuration. This measuring principle is also suitable for the detection of symmetrical insulation faults.

Additional monitoring functions

When interrupted wire detection \blacksquare is activated, the CM-IWN.x automatically controls the system/measuring circuit connections L+ and L- when the system starts up. This can be repeated at any time by activating the test function. The CM-IWN.x cyclically monitors the measuring circuit connections $\frac{1}{2}$ and KE for wire interruption. In case of a wire interruption in one of the connections, the output relays switch to the fault state.

In addition, the unearthed AC-, DC- or AC/DC system is monitored for inadmissible system leakage capacitance. If the system leakage capacitance is too high, the output relays switch to the fault state.

Also incorrect settings that could cause a faulty function of the device are monitored. When the device detects such an incorrect setting, the output relays switch to the fault state.

Operating mode

The system to be monitored is connected to terminals L+ and L-. The earth potential is connected to terminals ± and KE.

Depending on the setting, the device operates according to the open-circuit principle _____ (fault state: relay energized) or closed-circuit principle _____ (fault state: relay de-energized).

Once the control supply voltage has been applied the insulation monitoring relay runs through a system test routine. The system is diagnosed and the settings are tested. If no internal or external faults are found after this test routine is completed, the output relays switch into the operational state.

All operating states are signalled by the front-face LEDs. See table "LEDs, status information and fault messages" on page 8.

Configuration 1 x 2 c/o contacts 1x2 c/o (final switch-off)

With this configuration the settings for the threshold value for prewarning (R2) have no influence on the operating function. If the measured value drops below the set threshold value, the output relays switch into the fault state. If the measured value exceeds the threshold value plus hysteresis, the output relays switch back into their original state.

Configuration 2 x 1 c/o contact 2x1 c/o (prewarning and final switch-off)

If the measured value drops below the set threshold value for prewarning the second output relay 21-22/24 switches. If the measured value drops below the threshold value for final switch-off, the first output relay 11-12/14 switches.

If the measured value exceeds the threshold value for final switch-off plus hysteresis, the first output relay 11-12/14 switches back into its original state. If the measured value exceeds the threshold value for prewarning plus hysteresis, also the second output relay 21-22/24 switches back to its original state.

Test function

The test function is only possible when there is no fault.

By pressing the front-face combined test/reset button a system test routine is executed. The output relays switch to the fault state as long as the test/reset button is pressed, the control contact S1-S3 is closed or the test functions are processed.

The test function can be activated either with the front-face combined test/reset button or with a remote test button connected as shown in the picture.

Fault storage, reset function and remote reset

When fault storage is active, the output relays remain in the fault state and only switch back to their original state after the combined test/reset button is pressed or after the remote reset (terminals S2-S3) is activated, and when the insulation resistance is higher than the set threshold value(s) plus hysteresis.

The fault storage is designed non-volatile (remanent). This means that after switch-off and return of the control supply voltage the device returns to the state it was prior to the switch-off until a reset is executed.

Depending on the configuration of DIP switch 2, there are several possibilities of resetting the device, as shown in the picture.

Measuring range expansion by using the coupling unit CM-IVN

The coupling unit CM-IVN serves to connect the CM-IWN.x to systems up to 690 V AC and 1000 V DC. Terminals VS, V1+, V1- are connections for the coupling unit.

Function descriptions/diagrams

Control supply voltage not applied / Output contact open / LED OFF

Control supply voltage applied / Output contact closed / LED ON

Insulation resistance monitoring w/o fault storage 🔀, auto reset, 1 x 2 c/o 🗤 🕬

Insulation resistance monitoring with fault storage E, manual reset, 1 x 2 c/o 🗤 🕫

Insulation resistance monitoring w/o fault storage 🔀, auto reset, 2 x 1 c/o 🔤

Insulation resistance monitoring with fault storage E, manual reset, 2 x 1 c/o 🔤 🕬

Connection and wiring

Connection diagram

A1 11 21 S1 S2 S3	A1-A2	Control supply voltage
S S	S1-S3	Remote test
L+ L- KE 🛓 11 21	S2-S3	Remote reset
R<+ 8	L+, L-	Measuring circuit/input, system connection
A1 A2 12 14 22 24	±, KE	Measuring circuit/input, earth connections
12 14 L+ VS V1+ V1-	VS, V1+, V1-	Connections for the coupling unit (if used)
22 24 L- KE ± A2	11-12/14	Output relay 1, open- or closed-circuit principle
	21-22/24	Output relay 2, open- or closed-circuit principle

Wiring diagrams

Always connect L+ and L- to different conductors. L+ and L- can be connected to any of the conductors. U_n \leq 400 V AC; 600 V DC (For monitoring of systems with higher voltages, use coupling unit CM-IVN.)

2-wire AC system

3-wire AC system

4-wire AC system

2-wire DC system

3-wire DC system

Configuration and settings

Rotary switches R1.1, R1.2, R2.1 and R2.2 (treshold values)

By means of four separate 10 position rotary switches \mathbb{R}_{F} with direct reading scales, the threshold values for the insulation resistance R_{F} of the systems to be monitored can be adjusted.

With the Rx.1 rotary switch the tens figure is set and with the Rx.2 rotary switch the units figure is set. The set threshold value is then the addition of the two values. For example, R1.1 set to 70 and R1.2 set to 8 leads to a threshold value for R1 of 78 k Ω .

DIP switches

	ON	OFF (default)
DIP switch 1 Operating principle of the output relays	Closed-circuit principle If closed-circuit principle is selected, the output relays are energized. They de-energize if a fault is occuring.	Open-circuit principle If open-circuit principle is selected, the output relays are de-energized. The energize if a fault is occuring.
DIP switch 2 Non-volatile fault storage	Fault storage activated (latching) If the fault storage function is activated, the output relays remain in tripped position until a reset is done either by the front-face button or by the remote reset connection S2-S3. This function is non-volatile.	Fault storage de-activated (non latching) If the fault storage function is de-activated, the output relays switch back to their original position as soon as the insulation fault no longer exists.
DIP switch 3 Interrupted wire detection	Interrupted wire detection activated With this configuration, the CM-IWN.x monitors the wires connected to L+ and L- for interruptions.	Interrupted wire detection de-activated With this configuration the interrupted wire detection is de-activated.
DIP switch 4 2 x 1 c/o, 1 x 2 c/o	2 x 1 c/o (SPDT) contact 2x1 c/o If operating principle 2 x 1 c/o contact is selected, the output relay R1 (11-12/14) reacts to threshold value R1 (final switch-off) and the output relay R2 (21-22/24) reacts to threshold value R2 (prewarning)	1 x 2 c/o (SPDT) contacts 1x2 c/o If operating principle 1 x 2 c/o contacts is selected, both output relays R1 (11-12/14) and R2 (21-22/24) react synchronously to threshold value R1 (final switch-off). Settings of the threshold value R2 have no effect on the operation.

Operating state indication

LEDs, status information and fault messages

Operational state	LED U (green)	LED F (red)	LED R (yellow)
Start-up		OFF	OFF
No fault		OFF	1)
Prewarning		ЛЛ	лл
Insulation fault (below threshold value)			1)
KE/上 wire interruption		ЛЛЛ	1)
L+/L- wire interruption during system start-up / test function		ΛΛ	1)
System leakage capacitance too high / invalid measurement result		Λ_Λ_	1)
Internal system fault	1)	MM	1)
Setting fault ²⁾		лл	лл
Test function	ากกา	OFF	1)
No fault after fault storage ³⁾		4)	ллл

¹⁾ Depending on the configuration (see "Function descriptions/diagrams" on page 4)

²⁾ Possible faulty setting: The threshold value for final switch-off is set at a higher value than the threshold value for prewarning.

³⁾ The device has triggered after an insulation fault. The fault has been stored and the insulation resistance has returned to a higher value than the threshold value plus hysteresis.

4) Depending on the fault

Application example

Technical data

Data at T_a = 25 $^\circ\text{C}$ and rated values, unless otherwise indicated

Input circuits

Input circuit - Supply circuit		A1 - A2
Rated control supply voltage Us		24-240 V AC/DC
Rated control supply voltage tolerance		-15+10 %
Typical current / power consumption	24 V DC	55 mA / 1.3 VA
	115 V AC	20 mA / 2.3 VA
	230 V AC	15 mA / 3.5 VA
Rated frequency $\rm f_s$		DC or 15-400 Hz
Frequency range AC		13.5-440 Hz
Power failure buffering time	min.	20 ms
Start-up time t _s		See "Typical start-up times" on page 13.
Input circuit - Measuring circuit		L+, L-, 圭, KE
Monitoring function		insulation resistance monitoring of IT systems (IEC/EN 61557-8)
Measuring principle		prognostic measuring principle with superimposed
		square wave signal
Nominal voltage U_{n} of the distribution system to be monitored		0-400 V AC / 0-600 V DC
Voltage range of the distribution system to be monitored		0-460 V AC / 0-690 V DC (tolerance +15 %)
Rated frequency f_{N} of the distribution system to be monitored		DC or 15-400 Hz
Tolerance of the rated frequency f _N		13.5-440 Hz
System leakage capacitance C _e	max.	1000 μF
Extraneous DC voltage U_{fg} (when connected to an AC system)	max.	460 V DC
Voltage range expansion of the measuring input with coupling		use connection terminals V1+, V1-, VS
unit CM-IVN		max. length of connection cable 40 cm
Number of possible response / threshold values		2
Adjustment range of the specified response value R_{an}	minmax. R1	1-100 kΩ
(threshold)	minmax. R2	2-200 k Ω (activated/de-activated by DIP switch)
Adjustment resolution	R1	1 kΩ
	R2	2 kΩ
Tolerance of the adjusted threshold value / Relative percentage	at 1-15 k Ω R_{F}	$\pm 1~k\Omega$ / in combination with CM-IVN $\pm 1.5~k\Omega$
uncertainty A	at 15-200 k Ω $\textrm{R}_{\textrm{F}}$	±8 %
at -5+45 °C, $U_n = 0.115$ %, $U_s = 85.110$ %, t_N , t_s , $C_e = 1\mu$ F		
Hysteresis related to the threshold value		25 %; min. 2 kΩ
Internal Impedance Z _i	at 50 Hz	155 K2
		185 KD
Measuring voltage Um		24 V
Iolerance of measuring voltage Um		+10 %
		U. 15 MA
Response time t _{an}		
pure AC system	$0.5 \times R_{an}$ and $C_e = 1 \mu F$	max. IU s
DC system or AC system with connected rectifiers		max. 15 s
nepeat accuracy (constant parameters)		
voltage tolerance		< 0.00 % OF IUII SCALE
Accuracy of R (measured value) within the operation	at 1-10 k 0 P	50/K
temperature range	at 10-200 kΩ R-	0.05 % / K
		avalanche diode
iransient over voltage protection (± - terminal)		

Input circuit - Control circuits		S1 - S2 - S3
Control inputs - volt free	S1-S3	remote test
	S2-S3	remote reset
Maximum switching current in the control circuit		1 mA
Maximum cable length to the control inputs		50 m - 100 pF/m (164 ft - 30.5 pF/ft)
Minimum control pulse length		150 ms
No-load voltage at the control input		≤ 24 V DC

User interface

Indication of operational states		
Control supply voltage	U	green LED
Fault message	F	red LED
Relay status	R	yellow LED

Details see table "LEDs, status information and fault messages" on page 8 and "Function descriptions/diagrams" on page 4

Operating elements and controls		
Adjustment of threshold value R1	R1.1	rotary switch, 10 k Ω steps for the tens figure
	R1.2	rotary switch, 1 k Ω steps for the units figure
Adjustment of threshold value R2	R2.1	rotary switch, 20 k $\!\Omega$ steps for the tens figure
	R2.2	rotary switch, 2 k $\!\Omega$ steps for the units figure
Configuration of	DIP switch 1	operating principle of the output relays
	DIP switch 2	non volatile fault storage
	DIP switch 3	interrupted wire detection
	DIP switch 4	2 x 1 c/o, 1 x 2 c/o

Output circuits

Kind of output	11-12/14	1st relay
	21-22/24	2nd relay
		2 x 1 or 1 x 2 c/o (SPDT) contacts configurable
Operating principle		open- or closed-circuit principle ¹⁾ configurable
Contact material		AgNi alloy, Cd free
Rated voltage (VDE 0110, IEC 60947-1)		250 V AC / 300 V DC
Min. switching voltage / Min. switching	current	24 V / 10 mA
Max. switching voltage / Max. switching	current	see "Load limits curves" on page 14
Rated operational current ${\rm I}_{\rm e}$	AC12 (resistive) at 230 V	4 A
(IEC/EN 60947-5-1)	AC15 (inductive) at 230 V	3 A
	DC12 (resistive) at 24 V	4 A
	DC13 (inductive) at 24 V	2 A
AC rating	Utilization category (Control Circuit Rating Code)	B 300, pilot duty
(UL 508)		general purpose (250 V, 4 A, cos φ 0,75)
	max. rated operational voltage	250 V AC
	max. continuous thermal current at B 300	4 A
	max. making/breaking apparent power at B 300	3600/360 VA
Mechanical lifetime		30 x 10 ⁶ switching cycles
Electrical lifetime (AC12, 230 V, 4 A)		0.1 x 10 ⁶ switching cycles
Max. fuse rating to achieve short-	n/c contact	6 A fast-acting
circuit protection	n/o contact	10 A fast-acting
Conventional thermal current Ith (IEC/EN	60947-1)	4 A

1) Closed-circuit principle: Output relay(s) de-energize(s) if measured value falls below the adjusted threshold value Ran

Open-circuit principle: Output relay(s) energize(s) if measured value falls below the adjusted threshold value Ran

General data

•		
MTBF		on request
Duty time		100 %
Dimensions (W x H x D)		45 x 78 x 100 mm (1.78 x 3.07 x 3.94 in)
Weight	gross weight	0.258 kg (0.569 lb)
	net weight	0.231 kg (0.509 lb)
Mounting		DIN rail (IEC/EN 60715), snap-on mounting without
		any tool
Mounting position		any
Minimum distance to other units	vertical	not necessary
	horizontal	10 mm (0.39 in) at U _n > 400 V
Degree of protection ho	ousing / terminal	IP50 / IP20

Electrical connection

Wire size	fine-strand with(out) wire end ferrule	2 x 0.75-2.5 mm² (2 x 18-14 AWG)
	rigid	2 x 0.5-4 mm² (2 x 20-12 AWG)
Stripping length		7 mm (0.28 in)
Tightening torque		0.6-0.8 Nm (5.31-7.08 lb.in)

Environmental data

		-
Ambient temperature ranges	operation	-25+60 °C
	storage	-40+85 °C
	transport	-40+85 °C
Climatic category	IEC/EN 60721-3-3	3K5 (no condensation, no ice formation)
Damp heat, cyclic	IEC/EN 60068-2-30	6 x 24 h cycle, 55 °C, 95 % RH
Vibration, sinusoidal	IEC/EN 60255-21-1	Class 2
Shock, half-sine	IEC/EN 60255-21-2	Class 2

Isolation data

***************************************		***************************************
Rated impulse withstand voltage $\mathrm{U}_{\mathrm{imp}}$ between	supply circuit / measuring circuit	6 kV
all isolated circuits	supply circuit / output circuits	6 kV
(IEC/EN 60947-1, IEC/EN 60664-1,	measuring circuit / output circuits	6 kV
VDE 0110-1)	output circuit 1 / output circuit 2	4 kV
Pollution degree		3
(IEC/EN 60664-1, VDE 0110-1)		
Overvoltage category		Ш
(IEC/EN 60664-1, VDE 0110-1)		
Rated insulation voltage U _i	supply circuit / measuring circuit	600 V
(IEC/EN 60947-1, IEC/EN 60664-1, VDE 0110-1)	supply circuit / output circuits	300 V
	measuring circuit / output circuits	600 V
	output circuit 1 / output circuit 2	300 V
Basic insulation for rated control supply	supply circuit / measuring circuit	400 V AC / 600 V DC
voltage (IEC/EN 60664-1, VDE 0110-1)	supply circuit / output circuits	250 V AC / 300 V DC
	measuring circuit / output circuits	400 V AC / 600 V DC
	output circuit 1 / output circuit 2	250 V AC / 300 V DC
Protective separation	supply circuit / output circuits	250 V AC / 250 V DC
(IEC/EN 61140, IEC/EN 50178)	supply circuit / measuring circuit	250 V AC / 250 V DC
	measuring circuit / output circuits	250 V AC / 250 V DC
Test voltage between all isolated circuits,	supply circuit / output circuits	2.32 kV, 50 Hz, 2 s
routine test	supply circuit / measuring circuit	2.32 kV, 50 Hz, 2 s
(IEC/EN 60255-5, IEC/EN 61010-1)	measuring circuit / output circuits	2.53 kV, 50 Hz, 1 s
••••••••••••••••••••••••••••••••••••••		

Standards

Product standard	IEC/EN 61557-8, IEC/EN 60255-6
Other standards	EN 50178
Low Voltage Directive	2006/95/EC
EMC Directive	2004/108/EC
RoHS Directive	2002/95/EC

Electromagnetic compatibility

Interference immunity to		IEC/EN 61000-6-1, IEC/EN 61000-6-2, IEC/EN 61326-2-4
electrostatic discharge	IEC/EN 61000-4-2	Level 3, 6 kV / 8 kV
radiated, radio-frequency, electromagnetic field	IEC/EN 61000-4-3	Level 3, 10 V/m (1 GHz) / 3 V/m (2 GHz) / 1 V/m (2.7 GHz)
electrical fast transient/burst	IEC/EN 61000-4-4	Level 3, 2 kV / 5 kHz
surge	IEC/EN 61000-4-5	Level 3, installation class 3, supply circuit and
		measuring circuit 1 kV L-L, 2 kV L-earth
conducted disturbances, induced by radio-frequency	IEC/EN 61000-4-6	Level 3, 10 V
fields		
voltage dips, short interruptions and voltage variations	IEC/EN 61000-4-11	Level 3
harmonics and interharmonics	IEC/EN 61000-4-13	Level 3
Interference emission		IEC/EN 61000-6-3, IEC/EN 61000-6-4
high-frequency radiated	IEC/CISPR 22, EN 55022	Class B
high-frequency conducted	IEC/CISPR 22, EN 55022	Class B
•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••

Technical diagrams

Typical start-up times

R _F overall	250 µF	500 µF	750 µF	1000 µF
[kOhm)		Start-up	time [s] *)	
10	80	80	205	205
20	80	205	205	265
24	205	205	205	745
28	205	205	745	745
33	205	205	745	745
50	205	745	745	745
66	205	745	745	745
100	265	745	745	745
200	745	745	745	2785

*) incl. first measuring cycle

Certain parameters, such as voltage variations and frequency fluctuation etc., may have an impact on these start-up times. The initialization of the CM-IWN.5 with default values can result in a start-up time (incl. first measuring cycle) that is shorter than the later maximum duration of a measuring cycle.

Typical measuring times

The indicated time values are the pure measuring times in a stable system, not considering the start-up times. Certain parameters, such as voltage variations and frequency fluctuation etc., may have an impact on these measuring times. When an insulation fault occurs, the maximum reaction time until the output relays switch is 2 times the typical measuring time, provided that no other parameters in the system change.

R _F overall	1 μF	20 µF	250 µF	500 µF	750 μF	1000 µF
[kOhm)			Measurin	g time [s]		
1	4	4	6	10	18	18
10	4	6	65	130	254	254
20	4	10	65	254	254	505
24	4	10	130	254	254	505
28	4	10	130	254	505	505
33	4	10	130	254	505	505
50	4	18	254	505	1010	1010
66	4	18	254	505	1010	1010
100	4	34	254	505	1010	1010
120	4	34	505	1010	1010	1010
140	4	34	505	1010	1010	2016
160	4	34	505	1010	1010	2016
180	4	34	505	1010	1010	2016
200	4	34	505	1010	1010	2016

Load limits curves

AC load (resistive)

Derating factor F at inductive AC load

DC load (resistive)

Contact lifetime

Dimensional drawings

in **mm** and *inches*

CM-IWN.x - Insulation monitoring relay

Accessories

ADP.02 - Adapter for screw mounting

MAR.02 - Marker label

COV.02 - Sealable transparent cover

Further documentation

Document title	Document type	Document number
Electronic products and relays	Technical catalogue	2CDC 110 004 C020x
CM-IWN.1, CM-IWN.5	Instruction sheet	1SVC 650 020 M0000

You can find the documentation on the internet at www.abb.com/lowvoltage -> Control Products -> Electronic Relays and Controls.

Contact us

ABB STOTZ-KONTAKT GmbH P. O. Box 10 16 80 69006 Heidelberg, Germany Phone: +49 (0) 6221 7 01-0 Fax: +49 (0) 6221 7 01-13 25 E-mail: info.desto@de.abb.com

You can find the address of your local sales organisation on the ABB home page http://www.abb.com/contacts -> Low Voltage Products and Systems

Note:

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB AG.

Copyright© 2012 ABB All rights reserved