Arc Guard System™ – TVOC-2
Installation and maintenance guide
Table of content, Installation and maintenance guide, Arc Guard System, TVOC-2

<table>
<thead>
<tr>
<th>Chapter 1: About Arc Guard System</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2: Safety</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>Applicable safety standards</td>
<td>10</td>
</tr>
<tr>
<td>Safety standards</td>
<td>10</td>
</tr>
<tr>
<td>Safety signs</td>
<td>12</td>
</tr>
<tr>
<td>General</td>
<td>12</td>
</tr>
<tr>
<td>Warning!</td>
<td>12</td>
</tr>
<tr>
<td>Note!</td>
<td>12</td>
</tr>
<tr>
<td>Work in safety manner</td>
<td>13</td>
</tr>
<tr>
<td>Safety manner</td>
<td>13</td>
</tr>
<tr>
<td>Handling the Arc Monitor</td>
<td>13</td>
</tr>
<tr>
<td>Storage</td>
<td>14</td>
</tr>
<tr>
<td>Limitation of liability</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3: Arc Monitor functions</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>15</td>
</tr>
<tr>
<td>Overview of Arc Monitor</td>
<td>16</td>
</tr>
<tr>
<td>1: Arc Monitor</td>
<td>17</td>
</tr>
<tr>
<td>2: Human Machine Interface, HMI</td>
<td>17</td>
</tr>
<tr>
<td>4: DIP switch</td>
<td>18</td>
</tr>
<tr>
<td>5: Detector Inputs</td>
<td>18</td>
</tr>
<tr>
<td>6: Current Sensing Unit input</td>
<td>18</td>
</tr>
<tr>
<td>7: Current Sensing Unit output</td>
<td>18</td>
</tr>
<tr>
<td>8: External HMI connection</td>
<td>18</td>
</tr>
<tr>
<td>10: Solid state tripping contacts</td>
<td>19</td>
</tr>
<tr>
<td>11: Signal Relays</td>
<td>19</td>
</tr>
<tr>
<td>12: Detectors</td>
<td>19</td>
</tr>
<tr>
<td>13: Extension</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4: Installation</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>21</td>
</tr>
<tr>
<td>Installation procedure</td>
<td>21</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>21</td>
</tr>
<tr>
<td>Tools required</td>
<td>22</td>
</tr>
<tr>
<td>Mounting and connecting the Arc Monitor to the system</td>
<td>22</td>
</tr>
</tbody>
</table>
Getting started 23
 Introduction 23
 Receiving and checking 23
 List of contents 23
 Intermediate storage 23
Mounting 24
 Introduction 24
 Placing Arc Monitor 24
 Mounting Arc Monitor 24
 Mounting on wall 25
 Mounting on a DIN rail 25
 Mounting the HMI 26
 Mounting the HMI on door 26
 Mounting the Optical detector 27
 Example 1, positioning Optical detector in a switch gear 28
 Example 2, Mounting Optical detector in an apertures cubicle 29
 Example 3, Mounting in a circuit breaker cubicle 30
 Connecting optical detectors 32
 Connecting extension module (option) 33
 Connecting CSU cable 34
Electrical connections 35
 Introduction 35
 Connecting HMI 35
 Connecting optical detector 35
 Connecting extension module (option) 35
 Connecting Current Sensing Unit (option) 35
 Electrical connections 36
 Connecting the Arc Monitor 37
Configurations 39
 Introduction 39
 DIP switches 39
 Breaker trip 40
 DIP switches 3 and 4 to position 0 40
 DIP switch 3 in position 0, DIP switch 4 to position ON 40
 DIP switch 3 to position ON and DIP switch 4 to position 0. 41
 DIP switches 1, 2, 3 and 4 to position ON 41
 Manual/Auto reset configuration 42
 Current Sensing Unit (option) 43
 No CSU connected 43
 One (1) CSU connected 44
 Two (2) CSU connected 44
 Power on to the Arc Monitor 45
 Checking power on Arc Monitor 45
 Add/Remove module from the Arc Monitor or changing configuration 46
Settings

Introduction
Start-Up Sequence
Step 1: Setting menu language
Available languages
Step 2: Setting time
Step 3: Confirming connected modules
Step 4: Checking DIP Switches
Step 5: Final confirmation

Controlling

Introduction
Testing the installation

Chapter 5: Maintenance

Introduction
Maintenance

Chapter 6: Trouble shooting

Introduction
Requirements
Troubleshooting
Handling Error log
Diagnostics
Error event
Error Log
Error indication
Attending errors
Viewing error log
List of error codes

ABB support

Introduction
Contact information
Providing information
Chapter 7: Human Machine Interface, functions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>61</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>61</td>
</tr>
<tr>
<td>Overview HMI module</td>
<td>62</td>
</tr>
<tr>
<td>1: LED signals</td>
<td>62</td>
</tr>
<tr>
<td>2: HMI Display</td>
<td>63</td>
</tr>
<tr>
<td>3: Soft keys</td>
<td>63</td>
</tr>
<tr>
<td>HMI menu structure</td>
<td>63</td>
</tr>
<tr>
<td>Menu and languages</td>
<td>63</td>
</tr>
<tr>
<td>HMI start menu</td>
<td>63</td>
</tr>
<tr>
<td>1 Trip Log</td>
<td>64</td>
</tr>
<tr>
<td>Trip notification window</td>
<td>64</td>
</tr>
<tr>
<td>Checking the trip log</td>
<td>65</td>
</tr>
<tr>
<td>2 Diagnostics</td>
<td>65</td>
</tr>
<tr>
<td>2.1 System Status</td>
<td>66</td>
</tr>
<tr>
<td>2.2 Perform Diagnostics</td>
<td>66</td>
</tr>
<tr>
<td>2.3 Error Log</td>
<td>67</td>
</tr>
<tr>
<td>3 Configuration</td>
<td>67</td>
</tr>
<tr>
<td>3.1 View Modules</td>
<td>68</td>
</tr>
<tr>
<td>3.2 View DIP switches</td>
<td>69</td>
</tr>
<tr>
<td>3.3 Revision information</td>
<td>70</td>
</tr>
<tr>
<td>4 Language</td>
<td>71</td>
</tr>
<tr>
<td>5 Set Time and Date</td>
<td>71</td>
</tr>
<tr>
<td>Factory reset</td>
<td>71</td>
</tr>
</tbody>
</table>

Chapter 8: Technical data

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>76</td>
</tr>
<tr>
<td>Applications, Diagrams</td>
<td>76</td>
</tr>
<tr>
<td>Circuit diagrams</td>
<td>79</td>
</tr>
</tbody>
</table>

Chapter 9: Ordering list

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>81</td>
</tr>
</tbody>
</table>
Installation and maintenance guide, Arc Guard System, TVOC-2

This is the installation and maintenance guide for Arc Guard System, TVOC-2.

Document number: 1SFC1700011M0201
Edition: 01
Revision: 01
Issue date: 2010-05

Data subject to change without notice.

We reserve all rights to this document, even in the event that a patent is issued and a different commercial proprietary right is registered. Improper use, in particular reproduction and dissemination to third parties, is not permitted.

This document has been carefully checked. If the user nevertheless detects any errors, he or she is kindly asked to notify us as soon as possible.

The data contained in this manual is intended solely for the product description and is not to be deemed to be a statement of guaranteed properties. In the interests of our customers, we constantly seek to ensure that our products are developed to the latest technological standards. As a result, there may be some differences between the Arc Monitor and the information in this manual.

Author’s address
ABB AB, Ceve-Control
S-721 61 Västerås
Sweden
Tel: + 46 (0) 21 32 07 00
Fax: + 46 (0) 21 12 60 01

http://www.abb.com/lowvoltage

© ABB AB, Division Low Voltage Products, Ceve control
Chapter 1: About Arc Guard System

Introduction

Arc Guard System™ TVOC-2 quickly detects an arc and trips the incoming circuit-breaker. Using light as the main condition, Arc Guard System™ trips instantaneously. Thanks to this key functional advantage, it overrides all other protections and delays, which is crucial when reaction times need to be measured in milliseconds. The Arc Guard System consists of the Arc Monitor and optical sensor used for detection of the arc. For some special applications, an additional current sensing unit can be added. This a measure to prevent unintentional tripping from strong light, for example, the sun.

The basic function acts in three phases:

- **Detection** is light passing through an optical sensor.
- **Recognition** is the Arc Monitor determining the intensity of light.
- **Action** is the trip contact closing.
About Arc Guard System
Chapter 2: Safety

Introduction

This chapter describes the safety principles and procedures to be used when working with the Arc Guard System or the Arc Monitor. It does not cover how to design for safety nor how to install safety related equipment.

The chapter first presents applicable safety standards. Finally the chapter finishes with information about how to work in safety manner.
Safety

Applicable safety standards

Safety standards

This product was developed, designed and certified with regard to improved reliability and integrity by using safety principles and structures according to IEC 61508, SIL2. The Arc Monitor has improved safety to fulfill the safety standards specified in the following directives:

<table>
<thead>
<tr>
<th>Directive:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006/95/EC</td>
<td>Low voltage equipment</td>
</tr>
<tr>
<td>2004/108/EC</td>
<td>Electromagnetic compatibility</td>
</tr>
</tbody>
</table>

Notice

This product has been designed for environment A. Use of this product in environment B may cause unwanted electromagnetic disturbances in which case the user may be required to take adequate mitigation measures.

- Environment A relates to low-voltage non public or industrial networks, locations and installations including highly disturbing sources.

- Environment B relates to low-voltage public networks such as domestic, commercial and light industrial locations, installations. Highly disturbing sources such as arc welders are not covered by this environment.
To ensure safety and quality the Arc Monitor has been tested according to the following standards:

<table>
<thead>
<tr>
<th>Standard:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC/61508 SIL 2</td>
<td>Functional safety of electrical programmable electronic safety-related systems</td>
</tr>
<tr>
<td>IEC/EN 60947-1</td>
<td>Low voltage switchgear and contractor - General</td>
</tr>
<tr>
<td>IEC/EN 60947-5-1</td>
<td>Low voltage switchgear and contractor - Control circuit devices and switching elements</td>
</tr>
<tr>
<td>IEC/EN 61010-1</td>
<td>Safety requirements for electrical equipment</td>
</tr>
<tr>
<td>IEC 61000-6-2 (2005)</td>
<td>Electromagnetic compatibility (EMC) - Immunity for industrial environments</td>
</tr>
<tr>
<td>IEC 61000-6-4 (2006)</td>
<td>Electromagnetic compatibility (EMC) - Emission standard for industrial environments</td>
</tr>
<tr>
<td>IEC 61326-1 (2005) IEC 61326-3-1</td>
<td>Electrical equipment for measurement and control Electrical equipment, control and laboratory use (EMC)</td>
</tr>
<tr>
<td>IEC TS 61000-6-5</td>
<td>Electromagnetic compatibility - immunity power stations and substation environments</td>
</tr>
</tbody>
</table>
Safety

Safety signs

General
This section specifies all dangers that may arise from performing the work detailed in the manual.

Warning!
The Warning symbol warns that an accident will or may occur if the instructions are not followed.

Warning!
Make sure that the supply voltage has been switched off before connecting!

Working with high voltage is potentially lethal. Persons subjected to high voltage may suffer cardiac arrest, burn injuries, or other severe injuries. To avoid these hazards, do not proceed working before removing the power to the Arc Guard System.

Arc Guard System and Arc Monitor are designed to protect people and installation equipment. Install your system components and Arc Monitor before supplying power.

DIP switches are used to activate Current Sensing Unit (CSU), auto reset and assigning trip contacts. Changing DIP switch can cause consequences with the Arc Guard System.

Make sure you understand the consequences of changing DIP switches.

See more information regarding DIP switches the chapter “DIP switches” on page - 39

Note!
The note symbol alerts to important facts and conditions.
Safety

Work in safety manner

<table>
<thead>
<tr>
<th>Safety manner</th>
<th>Safe working methods must be used to prevent injuries. The safety equipment must not be disengaged, bypassed or in any other way modified so that the safety effect ceases.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Handling the Arc Monitor</th>
<th>The Arc Monitor may only be used for the purposes mentioned in this manual. The Arc Monitor was developed, manufactured, tested and documented in accordance with applicable safety standards. If you follow the instructions regarding safety and use as described in this manual, the product will, in the normal case, neither cause personal injury nor damage to machinery and equipment. To avoid malfunctions or damage through improper handling, follow these instructions during transportation, installation and maintenance:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Transport with care. Do not drop, throw, or give the Arc Monitor a strong shock. It can cause breakage or failure.</td>
</tr>
<tr>
<td></td>
<td>- Handle with care. Do not drop, throw, or give the Arc Monitor a strong shock. It can cause breakage or failure.</td>
</tr>
<tr>
<td></td>
<td>- The Arc Monitor is installed by authorized personnel only.</td>
</tr>
<tr>
<td></td>
<td>- This manual is a part of the Arc Monitor and should always be accessible to personnel working with this product.</td>
</tr>
<tr>
<td></td>
<td>- Read and understand the manual thoroughly before performing any installation or commissioning.</td>
</tr>
<tr>
<td></td>
<td>- Excessive amounts of dust on the optical detectors can lead to a degradation of detection. When regular inspections are made, it is recommended also to inspect the detectors. Clean with dry cloth if needed.</td>
</tr>
<tr>
<td></td>
<td>- CSU is constantly sending light to the CSU input at the Arc Monitor during normal conditions (for safety and reliability reasons). The light might decrease over time and should be checked every year by a manual diagnostic test. See more information in chapter Maintenance and in HMI functions.</td>
</tr>
<tr>
<td></td>
<td>- A log is kept that indicates if the light level had decreased below a certain level. If so, the CSU should be replaced within the next 6 months.</td>
</tr>
<tr>
<td></td>
<td>- The safety of the system will not be affected if the CSU is not replaced. However, when the light level becomes too low then the Arc Monitor will recognize this as a high current situation. And then the system functions as if there was a no current condition, that is, trip on light at optical detectors only.</td>
</tr>
<tr>
<td></td>
<td>- Configuration is done with DIP switches, settings of parameters and controlling of configuration is done in the HMI.</td>
</tr>
<tr>
<td>Safety</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>Storage in original package requires a temperature range of between, -25°C (-13°F) to +70°C (158°F) and a humidity maximum 95%.</td>
</tr>
<tr>
<td>Limitation of liability</td>
<td>The safety information in this manual must not be considered as a guarantee from ABB that the equipment cannot cause accidents or injury, even if all the safety instructions have been observed.</td>
</tr>
</tbody>
</table>
Chapter 3: Arc Monitor functions

Introduction

This chapter describes the functions available in the Arc Monitor. The chapter is divided in two parts:

- Overview of the Arc Monitor.
- Functions of the Arc Monitor.
Overview of Arc Monitor

The Arc Monitor consists of:
1: Arc Monitor

The Arc Monitor is the heart in the system and handles signalling and detection. The HMI handles conditions, errors, and more. The system can be configured to trip selected breakers, depending on which sensor detects light. The DIP-switches that take care of this function also handle settings like auto-reset and Current Sensing Units. Energy is stored in the Arc Monitor for operation up to 0.2 s if the supply voltage fails. This is sufficient to close the tripping contacts even during a short time of power loss.

2: Human Machine Interface, HMI

The Human Machine Interface is used for all communication with the user and also to confirm any changes. It can be mounted both on the product and on the cabinet door. This is preferred to be able to get information about trips without opening the cabinet after a trip. The HMI has a non-erasable memory which holds trip logs and error logs even after power loss including a time stamp.

The Arc Monitor can handle a second HMI module.
Arc Monitor functions

4: DIP switch
The DIP switch is a physical switch on the Arc Monitors front. DIP switches are used to activate the CSU, auto reset and assigning trip contacts.

5: Detector Inputs
Detector inputs are used to connect the detectors to the Arc Monitor.

6: Current Sensing Unit input
The Current Sensing Unit (CSU) is an accessory needed only in those few specific applications where strong light is expected on a regular basis. Current Sensing Units are connected with an optical fibre using light as signal for normal current. If the connection is removed by accident, the system ignores the CSU and will react only on an arc flash.

Note!
DIP Switch 1 or/and 2 must be configured if the CSU is in use.

To read more about the CSU configuration; See the chapter “One (1) CSU connected” on page 44

7: Current Sensing Unit output
This output is used to pass the CSU signal forward to another Arc Monitor.

8: External HMI connection
HMI can be mounted separately or a second module can be connected (option).

Note!
Only use the included three meter (118 inch) cable for communication.

To learn more about the HMI functions; See the chapter “Human Machine Interface, functions” on page 61.
10: Solid state tripping contacts

The three solid state trip contacts, K4, K5 and K6 are used to trip the circuit breakers. This will stop the energy from feeding the arc.

At normal condition:
- K4 Open, no arc detected
- K5 Open, no arc detected
- K6 Open, no arc detected

11: Signal Relays

The Internal Relay Fault (IRF), K1 indicates the system status. At normal condition the K1 is energized and signals that no diagnostics error is detected on the Arc Guard System.

The two trip signal relays, K2 and K3 are used to signal when a trip occurs. The relays can be used to activate an alarm or to pass the trip information to a supervised system.

The signal relays are called K2 and K3.
- K2 de-energized, no arc detected
- K3 de-energized, no arc detected

If the system is configured for manual reset, K2 and K3 are energized until the user is resets them on the Human Machine Interface (HMI) in the trip notification window. If the system is configured for auto reset, K2 and K3 are energized until the arc disappears.

12: Detectors

The detectors are used to detect the intensive light from an arc and transfer it to the Arc Guard System. The detectors are using fibre-optics and are guaranteed that they will react on the correct light intensity. For this reason, the cables are not to be modified in any way.
Arc Monitor functions

13: Extension

The extension module is used to expand the system from the original 10 sensors with additional sensors. One extension can hold up to 10 sensors. The Arc Monitor can hold up to 2 extensions making it possible to mount up to 30 detectors. The standard extension is used for detector up to 30 meter length.

Note!

A separate version of the extension module is available which is intended only for 60 meter detectors.
Chapter 4: Installation

Introduction

This chapter describes how to install the Arc Monitor and set up the system. Also in this chapter are examples in placing detectors and general information concerning the products. Installation of Arc Monitor is performed in steps. After finishing one step you proceed to the next one. The sequence is mandatory.

Note!
The Arc Monitor has 10 detector inputs. If your system needs more inputs then you will need to use additional extension modules.

Installation procedure

Installation procedure consists of the following five steps:

1. Getting started
2. Mounting
3. Connecting electrical connections
4. Configuration
5. Controlling

Prerequisites

Warning!
The reader should have knowledge and follow the applicable safety laws and standards as well as local safety instructions.
Installation

Tools required

To mount the Arc Monitor the following tools are required:

- Screwdriver, 2.5 x 0.6 mm (0.98 x 0.23 inch)
- Phillips screwdriver 4.3/2
- Drill 5 mm (0.196 inch), in case of wall mounting.

Mounting and connecting the Arc Monitor to the system

This is a summarize of the complete procedure in mounting and connecting the Arc Monitor.

Warning!

Make sure that supply voltage is switched off before mounting and connecting the Arc Monitor!

To mount and connect the Arc Monitor do the following steps:

1. Mount the Arc Monitor
2. Mount and connect external HMI (option). See page 26
3. Connect extensions X2, X3 (option). See page 33
4. Place and mount the optical detectors. This installation guide contains examples for placing the detectors and information how to mount. See page 27
5. Connect optical detectors to the Arc Monitor and extensions (option).
6. Connect optical cables (option) from current sensing units, CSU to lower right hand side of base unit (X1:21-22). See page 34
7. Connect optical cable (option) to output for additional Arc Monitor (X1:23)
8. Connect electrical connections. See page 36
9. Configure the system by setting the DIP switches. See page 39
10. Supply the system with power.
11. Go through Start-Up sequence in Human Machine Interface, HMI. See page 47
12. Controlling the detectors and the system. See page 51
Getting started

Introduction
This chapter describes instructions how to receive and check the Arc Monitor. Do the following steps:

Receiving and checking
1. Turn the package with the correct side up.
2. Remove the transport casing.
3. Visually inspect the Arc Monitor.
4. Check that all items are included, according to the delivery document.

List of contents
Check the contents in this package as follow:
- Arc Monitor
- Connection cable 3 meter (118 inch) for external Human Machine Interface, HMI
- Plastic nut for mounting external HMI
- Sealing for mounting external HMI
- Label for covering HMI contact on Arc Monitor, (only if external HMI is used)
- User manual on CD
- Quick installation guide

Note!
This package is a basic start kit. If you need more according for your system needs then contact your local supplier.

Intermediate storage
Until the Arc Monitor is mounted it should be stored in its original package.
Mounting

Introduction

This chapter describes the procedure to mount and connect the Arc Monitor. The procedure is divided into following components:

- Arc Monitor
- Human Machine Interface, HMI
- Detectors
- Extension
- Current Sensing Unit, CSU

Placing Arc Monitor

The Arc Monitor can be mounted anywhere in the switchgear, for example in the breaker cubicle or in a separate control cabinet.

Mounting Arc Monitor

This section describes how to mount the Arc Monitor at its location. The Arc Monitor can be mounted on:

- A wall
- DIN Rail
Mounting on wall

Follow the steps below to mount the Arc Monitor on the wall:

1. Predrill holes in wall to fit screws M5. See figure above for dimensions.
2. Place the Arc Monitor on the wall.
3. Screw in each corner of the monitor.
4. Use a torque wrench and torque the screws to 0.9Nm.

Mounting on a DIN rail

Follow this procedure to mount the Arc Monitor on a DIN rail:

1. Hook the Arc Monitor to the DIN rail.
2. Pull the barrier down, between detector 5 and 6.
3. Snap the Arc Monitor on the rail then release the barrier.
Installation

Mounting the HMI

The HMI can be mounted separately from the Arc Monitor or an extra HMI can be added to the Arc Monitor and mounted separately.

Mounting the HMI on door

Follow this procedure to mount the HMI module, separately on the door.

Warning!

Make sure that supply voltage is switched off!

![Image of HMI mounting on door]

Before mounting:

1. drill a 25 mm (1 inch) hole through the door.

Note!

It is important to use the cable which is included in the package!

To mount the HMI on a door do the following steps:

2. Remove the HMI module from the Arc Monitor by pressing on both sides on HMI and at the same time,
3. Pull straight out from the Arc Monitor.
4. Add the sealing on the HMI.
 - Mount the HMI on front door.
 - Insert the back side of module into the door hole.
 - Tighten the plastic nut by hand. Make sure the HMI is fixed to the door.
5. Connect the communication cable between the HMI module back side and Arc Monitor right hand side.
6. Attach the label to cover HMI module hole on the Arc Monitor front if needed.
Mounting the Optical detector

This section is about optical detectors and the mounting is described using examples:

- Where to positioning the detectors.
- How the detectors are mounted on busbars system.

This section also describes how to connect the detectors to the Arc Monitor. Decide where to position the detectors on the basis of knowledge of your own system. The main issue is to cover all components that might suffer from an arc.

Warning!
Make sure that supply voltage is switched off!

Note!
Excess plastic fibre cable should be wound up and kept as a ring with a diameter of at least 100 mm (4 inches).

The plastic fibre cables are not to be bent in a loop with a radius of less than 10 mm (0.4 inches) Occasionally and 45 mm (1.8 inches) for a long period of time.
Installation

Example 1, positioning Optical detector in a switch gear

The most common positioning of the detector involves the horizontal and vertical bus bar system and the breaker cubicle. If possible, supervise each cubicle. Avoid placing the detector so that it sees normal light from the breaker. See the example below about where to positioning the detectors.

The sensor can detect arcs within a three meter (118 inch) distance.
Example 2, Mounting Optical detector in an apertures cubicle

A single detector is able to monitor the busbars in both the apparatus cubicle and the respective cable.

This is an example about how to mount optical detectors with the mounting kit.

Do the following steps to mount the detector on a busbar.

1. Attach the detector to the mounting bracket (1SFA663 006 R100x) before it is attached to the cubicle.
2. The bend of mounting bracket should point downwards.
3. Attach the detector to the upper side of the bracket. See figure below.
4. Use a 2.5 mm (0.1 inch) wide cable strap.
5. Place the strap on the rear groove of the detector head and around the notches in the mounting bracket.

6. Attach the detector bracket onto the cubicle frame. See the figure below.
7. The hole in the mounting bracket is for M5 thread rolling screws or 5.5 self tapping screws.
Example 3, Mounting in a circuit breaker cubicle

In a circuit-breaker cubicle there is a risk of detecting breaking arcs unintentionally, if the detector is placed above the busbars. In such a cubicle it is better to place the detector at the bottom, see the figure below.

- Use the same mounting bracket as for top mounting but the bend is turned upwards and the detector placed on the upper side.
- Drill a hole 20 mm (0.79 inches) in front of the busbars, where the detector can be located.
If many cables are connected to the terminals on the lower side of the circuit-breaker, the arc monitoring should have with an additional detector located just behind the front protective sheet, see the figure below.

- Attach the detector directly to the bottom side of the bracket of the protective cover with a cable strap.
Installation

Connecting optical detectors

Follow this steps below to connect the optical detectors to the Arc Monitor.

Warning!
Make sure that supply voltage is switched off!

1. Remove the protection plug.

Note!
Only remove protection plug from connection to use. Protection plugs are needed to protect the detector inputs from dust and light.

2. Connect optical detectors to lower side of arc monitor. Detector inputs are X1:1-10 (for Extension 1, X2:1-10 and Extension 2, X3:1-10)
Connecting extension module (option)

Follow this steps to connect extension module to the Arc Monitor:

Warning!
Make sure that supply voltage is switched off!

1. Remove the protection part.
2. Mount the extension module into the contact of the Arc Monitor.
3. Secure the extension module using screwdriver torque 0.6 NM.

To connect second extension module:

1. Remove the protection part from the second extension module.
2. Mount the extension module into the contact of the Arc Monitor.
3. Secure the extension module using screwdriver torque 0.6 NM.
4. Cover the X2 text with label X3 which comes with the additional extension module.
Connect the CSU cable:

Follow these steps to connect CSU cable to the Arc Monitor:

Warning!
Make sure that supply voltage is switched off!

Follow these steps to connect CSU cable:

1. Remove the protection plug.
2. Connect current sensing cable to lower side right side of Arc Monitor by pressing.

Current sensing units (CSU) inputs are X1: 21, 22.
Current sensing units (CSU) outputs are X1: 23.

Note!
Before the system is ready to use, a DIP switch configurations are needed.

For more information, see the chapter “Configurations” on page 39.
Electrical connections

Introduction

This chapter describes how to connect the electrical connections to the Arc Monitor and to the Arc Guard System.

Warning!

Make sure that supply voltage is switched off!

Connecting HMI

To read about connecting HMI; See the chapter “Mounting the HMI on door” on page - 26.

Connecting optical detector

To read about connecting optical detector; See the chapter “Connecting optical detectors” on page - 32.

Connecting extension module (option)

To read about connecting extension modules; See the chapter “Connecting extension module (option)” on page - 33.

Connecting Current Sensing Unit (option)

To read about connecting Current Sensing Unit; See the chapter “Connecting CSU cable” on page - 34.
Installation

Electrical connections

Electrical connections are:

1. Internal Relay Fault, (IRF, K1)
2. Trip Signal relays, (K2, K3)
3. Trip contact, (K4, K5, K6)
4. Power supply

They are situated on top of the Arc Monitor. See the figure below.
Connecting the Arc Monitor

Warning!

Make sure that supply voltage has been switched off!

First connect the trip signal relays and trip contacts. Follow the steps below:

1. Connect wires for Internal Relay Fault, IRF, trip signal relays (K2, K3) and trip contacts (K4, K5, K6).
2. Use a torque of 0.5 NM
3. Use a screwdriver 2.5 x 0.6 mm (0.98 x 0.23 inches)
4. Cabel area 0.2 - 2.5 mm² (0.078 x 0.98 inches²).
1. Connect cable for IRF, K1 to terminal number, 14, 12, 11.
2. Connect cable for K2 to terminal number 24, 22, 21.
3. Connect cable for K3 to terminal number 34, 32, 31.
4. Connect cable for K4 to terminal number 43, 44.
5. Connect cable for K5 to terminal number 53, 54.
6. Connect cable for K6 to terminal number 63, 64.

Connect Power Supply.

To connect the power supply do the following steps:

1. Connect wires for power supply, use a torque of 0.4 NM.
2. Use screwdriver 2.5 x 0.6 mm (0.98 x 0.23 inches).
3. Cable area 0.2 - 2.5 mm² (0.078 x 0.98 inch²).
4. Connect the cable for the power supply. 100-240V AC/ 100-250V DC.
Installation

Configurations

Introduction

Arc Monitor can be configured to trip selected breakers depending on which optical detector or CSU is connected. This configuration is done with a DIP switch.

Warning!

Make sure that supply voltage is switched off!

DIP switches

The DIP switches are located on the front left hand on the Arc Monitor. There are 8 DIP switches. Only DIP switches 1, 2, 3, 4 and 6 are activated.

As default all DIP switches are set to position 0.
Breaker trip

The trip contacts are located on top of the Arc Monitor. See figure below.

- DIP switches 3 and 4 configure trip contacts, K4, K5 and K6.
- All detectors, X1, X2 and X3, operate the trip signal relays K2 and K3.
- Adjust the DIP switches to achieve the desired breaker configuration K4, K5, K6.

DIP switches 3 and 4 to position 0

DIP switches 3 and 4 in position 0 is the default state (factory settings).

- Any detector on X1, X2 or X3 operates trip contacts, K4, K5 and K6.

DIP switch 3 in position 0, DIP switch 4 to position ON

Set DIP switch 3 to position 0 and DIP switch 4 to position ON.

- Detectors X1 operate trip contact K4.
- Detectors X2 operate trip contact K5.
- Detectors X3 operate trip contact K6.
DIP switch 3 to position ON and DIP switch 4 to position 0.

Set DIP switch 3 to position ON and DIP switch 4 to position 0.

- Detectors X1: 1-3 operate trip contact K4.
- Detectors X1: 4-6 operate trip contact K5.
- Detectors X1: 7-10 and all detectors on X2 and X3, operate trip contact K6.

DIP switches 1, 2, 3 and 4 to position ON

Set DIP switches 1, 2, 3 and 4 to position ON. In this configuration two CSU are connected.

See more information the chapter “Two (2) CSU connected” on page - 44

- Any detector with combination of over current condition in CSU 21, operates trip contacts K4 and K5.
- Any detector with combination of over current condition in CSU 22, operates trip contacts K5 and K6.
Installation

Manual/Auto reset configuration

The signal relays K2 and K3 can be configured to react as trip contacts (auto reset) or to be de-energized by manual reset on the HMI.

Configuration Auto reset, set DIP switch 6 to position ON.

Configuration Manual reset, set DIP switch 6 to position 0.
Current Sensing Unit (option)

DIP switch (A) 1 and 2 configure the CSU input (B) 21, 22 to the Arc Monitor.

No CSU connected

When there is no CSU connected to the Arc Monitor then set the DIP switch 1 and 2 to position 0.
DIP switch 1 and 2 in position 0 is the default state (factory settings).
Installation

One (1) CSU connected

If there is one (1) CSU connected to the CSU input X1, 21 then set the DIP switch 1 to position ON.

Two (2) CSU connected

If there are two (2) CSUs connected to the CSU input 21 and 22 then set the DIP switch 1 and 2 to position ON.

Note!
The CSU cable is connected before configuration is made.

For more information how to connect CSU cables, see the chapter “Connecting CSU cable” on page 34.
Installation

Power on to the Arc Monitor

Warning!

Working with high voltage is potentially lethal.

Before switching the power supply on follow the steps below:

1. Check your installation.
2. Check that electrical connections are orderly connected.
3. Check that the configuration is set for your system.
4. Make sure the supply voltage is suitable (100-240V AC/DC 50/60Hz).
5. Make sure you do not leave any working tools in the switching gear.

When the Arc Monitor is connected to supply voltage, then it is on.

Checking power on Arc Monitor

When the Arc Monitor is on check the following:

- Green LEDs "Power" on left side of detector inputs is lit.
- Green LED "Power" on HMI is lit.
- HMI is showing text.
Add/Remove module from the Arc Monitor or changing configuration

Warning!
Make sure that supply voltage is switched off!

To add/remove a module to the system do the steps below:
1. Remove power to the Arc Monitor.
2. Physically add/remove a module to the Arc Monitor.
3. Ensure DIP Switches are set correctly.
4. Power on.
5. Follow Start-Up sequence.

The Arc Monitor requires configuration of the system and its modules to work.
The Human Machine Interface, HMI automatically guide the user through a Start-Up Sequence.

Note!
For more information concerning Start-Up Sequence, See the chapter “Settings” on page - 47.
Settings

Introduction
This chapter describes the five mandatory steps to succeed in setting the system. All settings are done in the Human Machine Interface, HMI. Settings are made only with the power on.

Start-Up Sequence
Installation of the Arc Monitor requires configuration of the system and its modules to work. This start-up is mandatory. The same start-up occurs when operating the Arc Monitor for the first time and when adding/removing modules for the Arc Monitor. The Human Machine Interface (HMI) automatically go through the different configuration steps. To do the Start-Up sequence follow the steps below:

1. Set language of the system menu
2. Set time and date
3. Confirm connected modules
4. Check DIP Switches
5. Final confirmation

Note!
The system will not require the Start-Up sequence in the event of a power loss.

Step 1: Setting menu language
This is the first step to make the system work after installing the Arc Monitor. Use this procedure to choose the language of the system menu during start-up.

In the Start-Up menu do the following:

1. Mark the language to use and press OK.
2. Confirm by pressing YES.
Available languages

Languages available in the system are:
- english (us/uk)

Step 2: Setting time

This is the second step to make the system work after installing the Arc Monitor. Use this procedure to set the time and date in the system.

In window, 3.4 Set Time do the following:
1. Scroll to correct hour, press OK.
2. Scroll to correct minutes, press OK.
3. Scroll to correct day, press OK.
4. Scroll to correct month, press OK.
5. Scroll to correct year, press OK.

Step 3: Confirming connected modules

This is the third step to make the system work after installing the Arc Monitor. Use this procedure to confirm connected modules during start up.

In window, 3.1.1 View connected do the following:
1. Check the list of modules and if all modules are included, press Yes.
2. If all modules not are included, press No. See next step 3, below.

Warning!

Make sure that supply voltage is switched off!

3. Remove the power and check the connections to the modules.
4. Power on.
5. Start-Up sequence will start again with step 1, page 47, Setting menu language.
Step 4: Checking DIP Switches

This is the fourth step to make the system work after installing the Arc Monitor. Use this procedure to check the DIP switches.

In window, 3.2 View DIP Switch do the steps below:

1. Check the DIP Switch and scroll with right arrow to next switch.
2. Check through all DIP switches menus.
3. The last switch menu, 3.2 View DIP display,

<table>
<thead>
<tr>
<th>3.2 View DIP Switch OK?</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 10 01</td>
</tr>
<tr>
<td>Switches are not used</td>
</tr>
</tbody>
</table>

4. DIP Switch OK? If all DIP Switches are OK, press Yes.
5. If some of the DIP switches are not OK, Press NO. See next step 6, below.

Warning!
Make sure that supply voltage is switched off!

6. Remove power and check the DIP switch.
7. Power on.
8. Start-Up sequence will start again with step 1, page 47, Setting menu language.
Installation

Step 5: Final confirmation

This is the fifth step to make the system work after installing the Arc monitor. Use this procedure to confirm that all Start-Up settings are done.

In the Start-up menu do the steps below:

1. Press OK. All settings done. The system is now ready to run accordingly and will return to Start window.

2. Check that the green LEDs "Power" on left side of extension modules on Arc Monitor is lit.

3. Check that the Green LED "Power" on HMI is lit.

4. Check that HMI is showing text.

Note!

After completed Start-Up Sequence at the first time installation the complete system needs checking.

This includes checking that the detectors and HMI works as intended.

For more information how to check the detectors and HMI, See the chapter “Controlling” on page 51.
Controlling

Introduction

Note!
Do the test after installation and before the Arc Monitor is used!
This test is done for each installed detector and the Arc Monitor. The test will check that the detectors react to a simulated arc and the HMI will display a notification window showing which detector and which circuit breaker is tripped. The breaker that is connected to the Arc Monitor should trip.
Use a camera flash to simulate an arc. At normally sensitivity the Arc Monitor will react to the flash.

Note!
Flash specifications to simulate an arc, 16 (m) guide no. 21 DIN/100 ASA.

Testing the installation
Repeat the following steps to check all installed detectors separately:
1. Simulate an arc by using a camera flash.
2. Set the camera flash to approximately 0.5 ms.
3. Place the camera flash at a distance between 1.5 - 2 meters (60-80 inches) from the detector.
4. Make sure no object is standing in the way.
5. Point the camera flash towards the detector.
6. Press the flash test button.

Do the following steps to check the Arc Monitor:
1. Check the HMI display.
2. If the detector reacts correctly and causes a trip then it should show on the HMI display as a notification window.
3. The notification window shows, Trip has Occurred, which detector, which trip contact, at what time and date.
4. The breaker that is connected to the Arc Monitor should trip, depending on the configuration.
5. At the notification window, If manual reset is configured, press Reset. If auto reset is configured, press Menu.
Installation
Chapter 5: Maintenance

Introduction

The Arc Guard System requires maintenance once every year. The yearly maintenance includes checking detectors, The Arc Monitor and the light from CSU (option).

Maintenance

To check the detectors and the Arc Monitor repeat the following steps:

1. Simulate an arc by using a camera flash.
2. Set the camera flash to approximately 0.5 ms.
3. Place the camera flash at a distance between 1.5 - 2 meters (60-80 inches) from the detector.
4. Make sure no object is standing in the way.
5. Point the camera flash towards the detector.
6. Press the flash test button.

Do the following steps to check the Arc Monitor:

1. Check the HMI display.
2. If the detector reacts correctly and causes a trip then it should show on the HMI display as a notification window.
3. The notification window shows, Trip has Occurred, which detector, which trip contact, at what time and date.
4. The breaker that is connected to the Arc Monitor should trip, depending on the configuration.
5. At the notification window, If manual reset is configured, press Reset. If auto reset is configured, press Menu.
Note!
In order to prevent a shut-down of the whole switchgear during the maintenance process, replace the breakers which are connected to the Arc Monitor with test breakers. This can be done by replacing the terminal to K4, K5, K6 with the test breakers.

Do remember to replace the test breakers with terminal breaker K4, K5, K6 after testing!

The maintenance procedure to check the detectors and Arc Monitor is the same as for a Start-Up of the system for the first time.

Note!
See in chapter Installation, “Controlling” on page 51

To check the light from Current Sensing Unit, CSU.
Perform a manual diagnostic via the HMI to check if the light from CSU is degenerating. This will show as a notification window in HMI with an Error code.

Note!
See “2.2 Perform Diagnostics” on page 68, about how to perform a manual diagnostics.
See “List of error codes” on page 57, about error codes.
Chapter 6: Trouble shooting

Introduction

This chapter describes how to handle errors in the system and what measures to take. That includes the handling error log, list of error codes and how to contact ABB.

Requirements

Trouble shooting should be done by authorized personnel who are familiar with the Arc Guard System, the setup as well as the environment where it is located.

Troubleshooting

Trouble shooting should take into consideration:

- History, including events just before an arc
- Situation, circumstances when an arc occurred
- Environment, temperature, vibrations, power supply, electrical/magnetic disturbances
- How an arc is indicated and nature of its occurrence
- The different Arc Guard System modules and all connections

Handling Error log

This section presents diagnostics and describes how to handle the error log. It includes view logs and error codes.

Diagnostics

The Arc Guard Systems is often operated without any personnel present. The error logging function is a way to store information about past events for future reference in order to facilitate trouble shooting. Performing diagnostics is a check on the system status and its error events.

Error event

An error event indicates an error in the system. Example of error events is:

- Overcurrent for a long time period.
- Optical detectors that detect light for a long time period.
- DIP switch is changed physically while Arc Monitor is powered.
Trouble shooting

- HMI display has lost contact and can not communicate with Arc Monitor.

Error Log

During diagnostics the error events are logged in the Error Log. In the Error Log the error events are represented by error messages. Each message includes a code that gives information about the specific occurred event and the time stamp it occurred.

The log is a circular buffer. It stores nine error events. The oldest will be overwritten.

Error indication

When a system error occurs the HMI displays a notification window.

The window displays are:

- System Error
- See TVOC-2 manual
- Error code
- Time and Date

<table>
<thead>
<tr>
<th>System Error</th>
<th>See TVOC-2 manual</th>
<th>134 0 0 0 0 0</th>
<th>14:02 3-Feb-2009</th>
</tr>
</thead>
</table>

The error codes are written in 6 columns. Every column can show a number between 0 - 255

| 134 0 0 0 0 0 | 14:02 3-Feb-2009 |

See List of error codes, “List of error codes” on page - 57

Attending errors

The error will exist until it is attended to and proper measures are taken. Then, when the Arc Monitor runs a diagnostics the error will disappear.
Trouble shooting

Viewing error log

To view the Error Log do the steps below:

1. From the Start window, press Menu.
2. In the Menu, select 2. Diagnostics and press OK.
3. Select 2.3 Error Log and press OK.
4. The Error Log window displays Error code, Time, and Date.
7. Press Back to return to Start window.

List of error codes

The error codes and description of the codes are discussed in the following list:

Note!

This is not a complete error code list!
This list only shows some of the most simple error codes in which the user may be able to take actions on their own.

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
<th>Recommended actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 2 0 0</td>
<td>DIP switch settings are changed during run-time.</td>
<td>1) Set settings back as it was before, after a while the System Error pop-up window will disappear and the IRF will be energized again.</td>
</tr>
</tbody>
</table>
Troubleshooting

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
<th>Recommended actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 7 2 0 0 0</td>
<td>CSU21: 1) Optional cable is damaged. 2) Overcurrent longer than 10s. 3) Detector input damage at Arc Monitor. 4) LED at CSU is damaged.</td>
<td>Check that optional cable from CSU is not damaged or crushed. Check current level setting if setting is too low, then CSU is indicating overcurrent too long time period. Increase level and see that you get light from CSU, if no light from CSU then LED at CSU is damaged. If none of this then detector input at Arc Monitor is corrupt.</td>
</tr>
<tr>
<td>0 8 0 0 0 0</td>
<td>CSU22: 1) Optional cable is damaged 2) Overcurrent longer than 10s 3) Detector input damage at Arc Monitor 4) CSU LED damage</td>
<td>See Error code 0 8 0 0 0 0.</td>
</tr>
<tr>
<td>2 0 0 0 0 0</td>
<td>CSU21: Degenerated LED at CSU. The CSU LED degeneration will only be tested by a manual Diagnostic Test (2.2 Perform Diagnostics) made from HMI. CSU LED degeneration will not be tested by periodically diagnostics.</td>
<td>CSU should be replaced due to degenerated LED at CSU.</td>
</tr>
<tr>
<td>4 0 0 0 0 0</td>
<td>CSU22: Degenerated LED at CSU. Diagnostic test will only be triggered by a manual Diagnostic Test made from HMI.</td>
<td></td>
</tr>
<tr>
<td>8 0 0 0 0 0</td>
<td>Lost contact with HMI.</td>
<td></td>
</tr>
<tr>
<td>3 2 0 0 0 0</td>
<td>Long light detection.</td>
<td>A light detector has detected light during more than 10s. Can the light detector have been damaged or is there constantly light leaking into the cabinet.</td>
</tr>
<tr>
<td>Error code</td>
<td>Description</td>
<td>Recommended actions</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0 1 0 0 0 0</td>
<td>X3 present, is not the correct module. Extension module can have been switched. Wrong ID of Extension module. X2 and X3 can have been switched.</td>
<td>Check if the Extension module can have switched places.</td>
</tr>
<tr>
<td>0 2 0 0 0 0</td>
<td>No contact with X3, module can have dropped off.</td>
<td>Check the Extension module.</td>
</tr>
<tr>
<td>0 0 2 0 0 0</td>
<td>X2 present, not correct module. Extension modules can be switched.</td>
<td>Check if the Extension module can have switched places.</td>
</tr>
<tr>
<td>0 0 4 0 0 0</td>
<td>No contact with X2, module can have dropped off.</td>
<td>Check the extension module, X2.</td>
</tr>
</tbody>
</table>
Trouble shooting

ABB support

Introduction

If you have problem with your Arc Guard System, contact ABB for support.

Contact information

ABB AB
Cewe Control
SE-721 61 VÄSTERÅS, Sweden
Telephone +46 21 32 07 00
Telefax +46 21 12 60 00
www.abb.com/lowvoltage

Providing information

To get faster support when contacting ABB support it is beneficial to be prepared to answer the following questions:

- Description of how the error occurred.
- Which Arc Guard System modules are used, setup and configuration.
- Readings on LEDs and display.
- Output signals.
- What is the general situation.
- Application, location, ambient conditions.
- What has happened, situation before error, any event that happened in connection with error.
- Have you done trouble shooting? What did you check?
- Which are your findings?

Note!

It is also important to know the serial number.

See label on Arc Monitor.

To get the Arc Monitors Revision Information, see chapter HMI functions, “2 Diagnostics” on page 65
Chapter 7: Human Machine Interface, functions

Introduction

The Human Machine Interface, HMI is used for all communication with the user and also to confirm any changes.

If power is lost (max 48 hours) the Time and Date will be restored. After very long power interruptions the Time and Date are set to a default value and needed to be set by the user.

This chapter consists of the following sections:

- Overview HMI
- HMI functions
- HMI Menus

Prerequisites

Note!

The reader should have knowledge and act according to applicable safety laws and standards as well as local safety instructions.
Human Machine Interface, functions

Overview HMI module

The HMI module consists of:

1. LED signals
 The three LED signals are used for visual signalling and they are:
 - **Power LED**
 - Green light in LED indicates that power is on.
 - No light in LED signals no power to HMI.
 - **Trip LED**
 - Red light indicates Trip.
 - **Error LED**
 - No light in LED indicates that no error is detected in the Arc Guard system.
 - Red light in LED signals that error is detected in the system and the Internal Relay Fault (IRF), K1 is not energized.
Human Machine Interface, functions

2: HMI Display
HMI display Start window, Name of Arc Guard System, Time and Date.

The bottom of display shows the tasks assigned to the four soft keys.

3: Soft keys
The four soft keys are used to navigate in the menu. Each key is assigned a task, displayed in the window.

HMI menu structure
The menu is structured in five head categories. Each category is divided into subcategories. Some subcategories have sub-sub categories. All categories are numbered accordingly to the structure.

Menu and languages
The Arc Monitor includes a menu shown in the display. You choose language for the menu. During start-up you are prompted to choose language, but at any time you can change the language.
Languages available in the system menu are:
- English (us/uk)

HMI start menu
The Start menu display following head categories.
1 Trip Log
2 Diagnostics
3 Configuration
4 Language
5 Set Time and Date
1 Trip Log

When the optical detectors detect arcs, the Arc Monitor reacts. The system will trip the trip contacts according to the configuration on the DIP switches. Arc Monitor is designed to save information about an arc in the Trip Log. The Trip Log can store seven trips in a circular buffer, the oldest will be overwritten.

This section describes how to handle the Trip Log.

Trip notification window

When a trip occurs a notification window will be displayed on the display.

The notification window display the following:

- Which detector reacted.
- Which trip contact tripped.
- Time and Date the arc occurred.

To reset the Trip Signal Relays, K2 and K3 do the following steps:

1. In the notification window press Reset.
2. The notification window disappears and the system returns to Start window.
3. The trip is stored in the Trip Log.

Note!

If Auto reset of K2 and K3 is configured at the DIP switches, the notification window will appear at a trip but there is no need to reset. Then press Menu to return to Start window.
Checking the trip log

To check the Trip Log from the Start Menu do the following steps:

1. Select 1. Trip Log
2. Press OK
3. The Trip Log window displays:
 - Trip Log 1 (3), one of three in the trip log list
 - Which detector(s) detects an arc
 - Which breaker tripped
 - Time and Date of event

Three detectors can be listed in the same window.

4. Press Back to return to Start window.
5. Scroll down with key arrow to see earlier trip events.

2 Diagnostics

The Arc Guard System does automatic periodical control of the system.

Diagnostics menu consists of three subcategories:

- 2.1 System Status
- 2.2 Perform Diagnostics
- 2.3 Error Log
Human Machine Interface, functions

2.1 System Status
The system status displays the status of the system after a diagnostic is made. The window displays the following:
• System OK
• Diagnostics performed
• Time and Date

2.2 Perform Diagnostics
In addition to the system's automatic diagnostic, it is possible to do a manual one. To perform a manual diagnostic do the following steps:
1. From Start window, press Menu
2. Select 2. Diagnostics and press OK
3. In the 2. Diagnostics menu, select 2.2 Perform Diagnostics
4. Press OK for diagnostic test now
5. The window displays Performing diagnostics tests...
If the system is OK, the window will display:

- 2.1 System status.
- System OK.
- Diagnostics performed.
- Time and Date.

<table>
<thead>
<tr>
<th>2.1 System status</th>
</tr>
</thead>
<tbody>
<tr>
<td>System OK</td>
</tr>
<tr>
<td>Diagnostics performed</td>
</tr>
<tr>
<td>15:09 28-Feb-2009</td>
</tr>
</tbody>
</table>

6 Press OK to return to Start window.

If the system is not OK, a notification window appears displaying following:

- System Error
- See TVOC-2 manual.
- Error code.
- Time and Date.

<table>
<thead>
<tr>
<th>System Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>See TVOC-2 manual</td>
</tr>
<tr>
<td>134 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>14:02 3-Feb-2009</td>
</tr>
</tbody>
</table>

1 Press Menu to return to Start window.
2 The error is stored in the Error Log.

Note!

See chapter Troubleshooting, “Error Log” on page - 56 for information regarding Error Log.
2.3 Error Log

In the Error Log are the nine latest system error events stored, the oldest will be overwritten.

Note!

See chapter Troubleshooting “Error Log” on page 56 for more information about system errors.

3 Configuration

Configuration consists of three subcategories as follows:

3.1 View Modules.
3.2 View DIP switches.
3.3 Revision Information.

3.1 View Modules

View Modules displays which modules are connected to the Arc Monitor. To see the View Modules do the following steps:

1. From Start window, press Menu.
2. Select 3. Configuration, press OK.
3. Select 3.1 View Modules, press OK.

This figure shows the window, 3.1 View Modules, with the modules connected to the Arc Monitor.
3.2 View DIP switches

3.2 View DIP switches display information how the configuration are made to the DIP switches. To see the View DIP switches do the following steps:

1. From Start window, press Menu.
2. Select 3. Configuration, press OK.
3. Select 3.2 View DIP Switch, press OK.

The 3.2 View DIP menu displays:
- 3.2 View DIP.
- DIP switches settings.
- Status line.

The figure below is an example which describes how to read the DIP switches settings in HMI.

The eight numbers reflect the 8 DIP switches.
The two first numbers 1 0, in line are the CSU connections on the DIP switch.
Number 1 in number 10 shows that the setting is ON.
This example shows that the CSU connection 21 is connected. CSU 22 is not in use.

4. Press arrow to scroll forward/backward, see all DIP switches.
Human Machine Interface, functions

5 Press Back to return to 3. Configuration.
6 Press Back to return to Start window.

3.3 Revision information

Revision Information displays connected modules to the Arc Guard System and latest revision of each module. This includes, software, hardware, and ID number.

This information is required when contacting ABB for support.

To view revision information about the module follow the steps below:

1 From Start window, press Menu.
2 Select 3. Configuration, press OK.
3 Select 3.3 Revision information, press OK.
4 The 3.3 Revision information displays connected modules.

5 To view Revision Information.
6 Select chosen module, press OK.
7 The 3.3.1 the module, display:
 • 3.3.1 Arc Monitor (in this case)
 • The modules software
 • The modules hardware
 • The modules ID number
4 Language

If you understand the current menu language, follow the steps to set the language of the system menu:

In the Main menu:

1. Select 4 Language, press OK.
2. Select the language to use, press OK.

Note!

If you do not understand the menu language, use factory reset.

5 Set Time and Date

Use this procedure to set the time and date in the system.

In the Set Time menu do the steps below:

1. Scroll to correct hour, press OK.
2. Scroll to correct minutes, press OK.
3. Scroll to correct day, press OK.
4. Scroll to correct month, press OK.
5. Scroll to correct year, press OK to return to Start window.

Factory reset

Making the factory reset will force the HMI to start the Start-Up sequence. Press and hold the 2 soft keys in the middle for more then 10 s.

This will force the HMI to start the Start-Up sequence.
Human Machine Interface, functions
Chapter 8: Technical data

Common technical data

<table>
<thead>
<tr>
<th>Overvoltage category</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollution degree</td>
<td>3</td>
</tr>
</tbody>
</table>

Power supply

- **Rated operation voltage** U_e 100 - 250 V DC
 100-240 V AC 50-60 Hz
- **Rated insulation voltage** U_i 250 V with reinforced insulation
- **Rated impulse withstand voltage** U_{imp} 4 kV

Output contacts

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
<th>U_i</th>
<th>U_e</th>
<th>U_{imp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>11, 12, 13</td>
<td>IRF signal 250 V</td>
<td>250 V</td>
<td>250 V AC 50-60 Hz, 250 V DC</td>
<td>4 kV</td>
</tr>
<tr>
<td>21, 22, 23</td>
<td>Signal relay 250 V</td>
<td>250 V</td>
<td>250 V AC 50-60 Hz, 250 V DC</td>
<td>4 kV</td>
</tr>
<tr>
<td>31, 32, 34</td>
<td>Signal relay 250 V</td>
<td>250 V</td>
<td>250 V AC 50-60 Hz, 250 V DC</td>
<td>4 kV</td>
</tr>
<tr>
<td>43, 44</td>
<td>Trip contact 250 V</td>
<td>250 V</td>
<td>250 V AC 50-60 Hz, 250 V DC</td>
<td>4 kV</td>
</tr>
<tr>
<td>53, 54</td>
<td>Trip contact 250 V</td>
<td>250 V</td>
<td>250 V AC 50-60 Hz, 250 V DC</td>
<td>4 kV</td>
</tr>
<tr>
<td>63, 64</td>
<td>Trip contact 250 V</td>
<td>250 V</td>
<td>250 V AC 50-60 Hz, 250 V DC</td>
<td>4 kV</td>
</tr>
<tr>
<td>73, 74</td>
<td>50 V</td>
<td>50 V DC</td>
<td>0.5 kV</td>
<td></td>
</tr>
</tbody>
</table>

Environmental specifications

- **Permissible ambient temperature in operation**: -25 to +55 °C
- **Permissible ambient temperature in transportation and storage**: -25 to +70 °C
- **Humidity**: Maximum 95%
- **Altitude**: 2000 meter above sea level
- **Degree of protection**: IP20 Arc Monitor/IP54 HMI front side

Safety parameters for application according to IEC61508

- **Life time**: 10 years
- **PFD**: 3.49×10^{-3}
Technical data

Optical inputs and outputs
- **Optical detectors**: 10 inputs (without extensions)
- **Current signal from CSU**: 2 inputs X21, X22 (optical)
- **Forward current signal to another Arc Monitor**: 1 output: X1.23 (optical)

Trip contacts (K4, K5, K6)
- **Solid state contacts**: 3 NO solid state type IGBT
- **Rated voltage**: 250 V AC/DC
- **Make and carry for 0.2 s**: 30 A
- **Make and carry for 1 s 0.15% duty ratio**: 10 A
- **Breaking capacity**
 - 250 V: 1.5 A AC - 15
 - 110 V: 3 A DC - 13
 - 48 V: 3 A DC - 13

Signal relay (K2, K3)
- **Manual or auto resetable**: 2 CO gold-plated contacts
- **Rated voltage**: 250 V AC/DC
- **Continuous carry Ith**: 5 A
- **Make and carry for 0.2 s**: 30 A
- **Make and carry for 3 s 10% duty ratio**: 15 A
- **Breaking capacity**
 - 250 V: 3 A AC - 15
 - 110 V: 0.6 A DC - 13
 - 48 V: 2 A DC - 13

Internal Relay Fault (IRF, K1)
- **Self supervision alarm relay**: 1 CO gold-plated contact
- **Rated voltage**: 250 V AC/DC
- **Continuous carry Ith**: 5 A
- **Make and carry for 3 s**: 8 A
- **Breaking capacity**
 - 250 V: 1.5 A AC - 15
 - 110 V: 0.3 A DC - 13
 - 48 V: 0.5 A DC - 13

Reinforced insulation between separate contacts.

- **Voltage drop**: 5 V 30 A, 3 V 3 A, 2 V 10 mA
- **Off state current**: < 1 mA at 250 V
- **Min, recommended load current**: 10 mA

- Min switching load:
 - 1 mA at 5 V DC with contacts not used for switching current
 - > 0.5 A if inductive/capacitive load before.
Technical data

<table>
<thead>
<tr>
<th>Settings and indications</th>
<th></th>
</tr>
</thead>
</table>
| Connections for HMI on Arc Monitor | 1 output RJ45 male at front side
 1 output RJ45 female at the right side | |
| Display on HMI | 52 x 26 mm graphic LCD with LED backlight | |
| Keyboard on HMI | Membrane buttons, 4 soft key | |
| LED signal on HMI | Power, Trip, Error | |
| LED signal on Arc Monitor and extension module | Power, Trip | |
| Configuration switches | 8 - pole DIP switch on Arc Monitor front | |
| Settings (HMI) | Time and display language | |
| Configuration (DIP switches) | Manual or auto reset of K2 and K3
 Use of CSU or not trip configuration | |
| Display information | Trip log, connected modules, actual configuration
 self diagnostic test result and error log | |
| Power supply | |
| Rated supply voltage, U_r | 100-240 V AC 50-60 Hz
 100-250 V DC | |
| U_r variation | AC - 20% - +10%
 DC - 25% - + 30% | |
| Rated insulation voltage, U_i | 250 V with reinforced insulation | |
| Rated impulse withstand voltage U_i | 4 kV | |
| Main MCB/fuse | Max. 10 A char. C/fuse 10 A gG | |
| Power consumption | 3 W | |
| Reaction time | |
| From light detection to trip contacts (K4, K5, K6) | Approx. 1ms (depends on light intensity) | |
| From light detection to trip signal relays (K2, K3) | < 10 ms | |
| Current condition from input to output | <0.4 ms | |
| Start-up time | |
| Trip possible | < 15 ms from power on | |
| Detector | |
| Maximum length | 30 m with AM and extension - E1
 60 m with extension - E3 | |
| Service temperature range | - 25 to + 70 °C continuous
 25 to + 85 °C short-time | |
| Smallest permissible bending radius | 45 mm after installation
 10 mm on handling | |
| Acceptable backlight intensity light without tripping | 3000 Lux | |
| Optical cable for connecting CSU to an Arc Monitor | Maximum length | 30 m |
Technical data

Dimensions
Applications, Diagrams

Example 1: Arc Guard System™ configured to trip all contacts in case of an arc.

<table>
<thead>
<tr>
<th>SA.1- SA.3</th>
<th>Switchgear</th>
</tr>
</thead>
<tbody>
<tr>
<td>K4, K5</td>
<td>Solid state tripping contacts</td>
</tr>
<tr>
<td>Q1, Q2, Q3</td>
<td>Circuit-breaker</td>
</tr>
<tr>
<td>D1, D4</td>
<td>Detectors</td>
</tr>
</tbody>
</table>
Example 2: Arc Guard system™ configured to trip different trip contacts depending on where the arc occurs.
Technical data

Circuit diagrams

Arc Monitor

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1 1-10</td>
<td>Detector input</td>
</tr>
<tr>
<td>X2 1-10</td>
<td>Extra extension module detector input (option)</td>
</tr>
<tr>
<td>X3 1-10</td>
<td>Extra extension module detector input (option)</td>
</tr>
<tr>
<td>A1, A2</td>
<td>Power supply</td>
</tr>
<tr>
<td>PE</td>
<td>Power supply</td>
</tr>
<tr>
<td>43, 44</td>
<td>Solid-state trip contact</td>
</tr>
<tr>
<td>53, 54</td>
<td>Solid-state trip contact</td>
</tr>
<tr>
<td>63, 64</td>
<td>Solid-state trip contact</td>
</tr>
<tr>
<td>11, 12, 13</td>
<td>Internal relay fault, IRF</td>
</tr>
<tr>
<td>21, 22, 24</td>
<td>Signal relays</td>
</tr>
<tr>
<td>31, 32, 34</td>
<td>Signal relays</td>
</tr>
</tbody>
</table>
Chapter 9: Ordering list

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Order code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc Monitor</td>
<td>TVOC-2-240</td>
<td>1SFA664001R1001</td>
</tr>
<tr>
<td>Including one HMI and door mounting accessories</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td>TVOC-2-E1</td>
<td>1SFA664002R1001</td>
</tr>
<tr>
<td>10 optical inputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td>TVOC-2-E3</td>
<td>1SFA664002R3001</td>
</tr>
<tr>
<td>10 optical inputs for 60 meter detector cable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMI (Human Machine Interface) additional</td>
<td>TVOC-2-H1</td>
<td>1SFA664002R1005</td>
</tr>
<tr>
<td>Detectors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable length 1 m</td>
<td>TVOC-2-DP1</td>
<td>1SFA664003R1010</td>
</tr>
<tr>
<td>Cable length 2 m</td>
<td>TVOC-2-DP2</td>
<td>1SFA664003R1020</td>
</tr>
<tr>
<td>Cable length 4 m</td>
<td>TVOC-2-DP4</td>
<td>1SFA664003R1040</td>
</tr>
<tr>
<td>Cable length 6 m</td>
<td>TVOC-2-DP6</td>
<td>1SFA664003R1060</td>
</tr>
<tr>
<td>Cable length 8 m</td>
<td>TVOC-2-DP8</td>
<td>1SFA664003R1080</td>
</tr>
<tr>
<td>Cable length 10 m</td>
<td>TVOC-2-DP10</td>
<td>1SFA664003R1100</td>
</tr>
<tr>
<td>Cable length 15 m</td>
<td>TVOC-2-DP15</td>
<td>1SFA664003R1150</td>
</tr>
<tr>
<td>Cable length 20 m</td>
<td>TVOC-2-DP20</td>
<td>1SFA664003R1200</td>
</tr>
<tr>
<td>Cable length 25 m</td>
<td>TVOC-2-DP25</td>
<td>1SFA664003R1250</td>
</tr>
<tr>
<td>Cable length 30 m</td>
<td>TVOC-2-DP30</td>
<td>1SFA664003R1300</td>
</tr>
<tr>
<td>Cable length 60 m</td>
<td>TVOC-2-DP60</td>
<td>1SFA664003R3600</td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Only to be used with TVOC-2-E3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ordering list

<table>
<thead>
<tr>
<th>Optical cable between TVOC-2 Arc Monitor and current sensing unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable length</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optical cable between two TVOC-2 Arc Monitors (transferring CSU signal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable length</td>
</tr>
</tbody>
</table>
Index

A
Add/Remove module from the Arc Monitor 46
Applicable safety standards 10
Arc Monitor 17
Arc Monitor functions 15
Available languages 48

B
Breaker trip 40

C
Checking DIP Switches 49
Checking power on Arc Monitor 45
Checking the trip log 65
Circuit diagrams 79
Configuration 68
Configurations 39
Connecting CSU cable 34
Connecting optical detectors 32
Controlling 51
Current Sensing Unit input 18
Current Sensing Unit output 18
Current Sensing Unit(option) 43
Current Sensing Unit, CSU inputs 17
Current Sensing Unit, CSU, output 17

D
Detector (option) 17
Detector Inputs 18
Detector inputs 17
Detectors 19
Diagnostics 55, 65
Diagrams 77
Dimensions 76
DIP switch 17, 18
DIP switches 39

E
Error event 55
Extension 20
Extension (option) 17
Extension unit plug in area 17
External HMI connection 18

F
Factory reset 71
Final confirmation 50

G
Getting started 23

H
Handling Error log 55
Handling the Arc Monitor 13
HMI Display 63
HMI external connection 17
HMI menu structure 63
HMI start menu 63
Human Machine Interface, HMI 17

I
Installation 21
Installation procedure 21
Intermediate storage 23
IRF 19

K
K2 and K3 19

L
Language 71
LED signals 62
Limitation of liability 14
List of contents 23
M
Maintenance 53
Manual/Auto reset configuration 42
Menu and languages 65
Mount the Arc Monitor on a DIN rail 25
Mount the Arc Monitor on the wall 25
Mounting 24
Mounting and connecting the Arc Monitor to the system 22
Mounting Arc Monitor 24
Mounting on a DIN rail 25
Mounting on wall 25
Mounting the HMI 26
Mounting the Optical detector 27

N
No CSU connected 43

O
One (1) CSU connected 44
Ordering list 81
Overview of Arc Monitor 16

P
Perform Diagnostics 66
Placing Arc Monitor 24
Power on to the Arc Monitor 45
Power supply 17

R
Receiving and checking 23
Revision information 70

S
Safety 9
Safety signs 12
Set Time ans date 71
Signal Relays 19
Soft keys 63
Solid state tripping contacts 17, 19
Storage 14
System Status 66
Testing the installation 51
Tools required 22
Trip Log 64
Trip notification window 64
Trouble shooting 55
Troubleshooting 55
Two (2) CSU connected 44

View DIP switches 69
View Modules 68

Work in safety manner 13