Grid Support Function
Rule 14h Settings Review Document for PVS-60-TL-US
General liability warnings concerning inverter use

Please refer to the Product Manual for complete installation instructions and product use.

ABB accepts no liability for failure to comply with the instructions for correct installation and will not be held responsible for systems upstream or downstream the equipment it has supplied. It is absolutely forbidden to modify the equipment. Any modification, manipulation, or alteration not expressly agreed with the manufacturer, concerning either hardware or software, shall result in the immediate cancellation of the warranty.

The Customer is fully liable for any modifications made to the system.

Given the countless array of system configurations and installation environments possible, it is essential to check the following: sufficient space suitable for housing the equipment; airborne noise produced depending on the environment; potential flammability hazards.

ABB will NOT be held liable for defects or malfunctions arising from: improper use of the equipment; deterioration resulting from transportation or particular environmental conditions; performing maintenance incorrectly or not at all; tampering or unsafe repairs; use or installation by unqualified personnel.

ABB will NOT be held responsible for the disposal of: displays, cables, batteries, accumulators etc. The Customer shall therefore arrange for the disposal of substances potentially harmful for the environment in accordance with the legislation in force within the country of installation.

Field of use, general conditions

ABB shall not be liable for any damages whatsoever that may result from incorrect or careless operations.

You may not use the equipment for a use that does not conform to that provided for in the field of use. The equipment MUST NOT be used by inexperienced staff, or even experienced staff if carrying out operations on the equipment that fail to comply with the indications in this manual and enclosed documentation.

Intended or allowed use

This equipment is a multi-string inverter designed for transforming a continuous electrical current (DC) supplied by a photovoltaic generator (PV) in an alternating electrical current (AC) suitable for feeding into the public distribution network.
Configuration through Web Server

REQUIRED TOOL: Device capable to connect to internet for example laptop or smart phone, LAN/WiFi name and password, IP configuration of the inverter, admin account password and admin-plus token (service password).

Before to proceed with the Web Server configuration you need to receive the token to enable the admin-plus account, contact the ABB service with the Serial Number and week/year of production of each inverter to be configured.

Serial Number and week/year of production can be retrieved from the inverter label or from web server.

PROCEDURE:

Connect the networking device to the same WiFi or LAN of the Inverter then open a browser and insert the inverter IP address on the browser address bar then login to the inverter with the admin account.

Select Settings and then line, the available settings through web server are shown on figure 1.

![Fig. 1: Web Server – Settings Menu](image)

SA8 (Anti Islanding Protection)

No configuration possible.

SA9 (L/HVRT)

Enter on the sub menu AC Settings ➔ Grid Protections – VRT/FRT

For each Variable OV2, OV1, UV1, UV2, UV3, the following applies:

Vgrid Voltage – En / Dis: to disable and enable the specific protection

Vgrid Voltage - Value: set the voltage threshold of the specific variable

Vgrid Trip Time: set the trip time threshold of the specific variable

When the “Momentary Cess. General En / Dis” parameter is set to “Enabled”, the activation and trigger points of the Momentary Cessation function associated to voltage transients can be adjusted within this section as follows:
L/HVRT Momentary Cess. En / Dis: to disable and enable the momentary cessation function associated to LVRT and HVRT transients.

HVRT Momentary Cess. Threshold: set the voltage threshold that triggers the momentary cessation during grid overvoltage transients

LVRT Momentary Cess. Threshold: set the voltage threshold that triggers the momentary cessation during grid undervoltage transients

NOTE: In case voltage protection limits or trip times are modified, please obey the following rules:

\[
\begin{align*}
OV2 & \geq OV1; \quad \text{Trip time}_{OV1} \geq \text{Trip time}_{OV2} \\
UV1 & \geq UV2 \geq UV3; \quad \text{Trip time}_{UV1} \geq \text{Trip time}_{UV2} \geq \text{Trip time}_{UV3}
\end{align*}
\]

SA10 (L/HFRT)

Enter on the sub menu AC Settings \(\downarrow \) Grid Protections – VRT/FRT

For each Variable OF2, OF1, UF1, UF2 the following applies:

- **Grid Frequency – En / Dis:** to disable and enable the specific protection
- **Grid Frequency:** set the frequency threshold of the specific protection
- **Grid Frequency Trip Time:** set the trip time threshold of the specific protection

When the “Momentary Cess. General En / Dis” parameter is set to “Enabled”, the activation and trigger points of the Momentary Cessation function associated to frequency transients can be adjusted within this section as follows:

L/HFRT Momentary Cess. En / Dis: to disable and enable the momentary cessation function associated to LFRT and HFRT transients.

HFRT Momentary Cessation: set the frequency threshold that triggers the momentary cessation during grid overfrequency transients

LFRT Momentary Cessation: set the frequency threshold that triggers the momentary cessation during grid underfrequency transients

NOTE: In case frequency protection limits or trip times are modified, please obey the following rules:

\[
\begin{align*}
OF2 & \geq OF1; \quad \text{Trip time}_{OF1} \geq \text{Trip time}_{OF2} \\
UF1 & \geq UF2; \quad \text{Trip time}_{UF1} \geq \text{Trip time}_{UF2}
\end{align*}
\]

Refer to the SA9 Low and High Voltage Ride Through and SA10 Low and High Frequency Ride Through chapters for details about the description of the parameters.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFRT Momentary Cessation</td>
<td>67 Hz</td>
</tr>
<tr>
<td>HFRT Momentary Cess. Threshold</td>
<td>332.4 V</td>
</tr>
<tr>
<td>L/HFRT Momentary Cess. En / Dis</td>
<td>ENABLED</td>
</tr>
<tr>
<td>L/HFRT Momentary Cess. En / Dis</td>
<td>ENABLED</td>
</tr>
<tr>
<td>LVRT Momentary Cess. Threshold</td>
<td>121 V</td>
</tr>
<tr>
<td>Momentary Cess. General En / Dis</td>
<td>ENABLED</td>
</tr>
<tr>
<td>OF1 Grid Frequency</td>
<td>63 Hz</td>
</tr>
<tr>
<td>OF2 Grid Frequency</td>
<td>64 Hz</td>
</tr>
<tr>
<td>OF1 Grid Frequency - En / Dis</td>
<td>ENABLED</td>
</tr>
<tr>
<td>OF2 Grid Frequency - En / Dis</td>
<td>ENABLED</td>
</tr>
<tr>
<td>OF1 Grid Frequency Trip Time</td>
<td>21 s</td>
</tr>
<tr>
<td>OF2 Grid Frequency Trip Time</td>
<td>0.15 s</td>
</tr>
<tr>
<td>OV1 Time Variance - En / Dis</td>
<td>DISABLED</td>
</tr>
<tr>
<td>OV2 Time Variance - En / Dis</td>
<td>DISABLED</td>
</tr>
<tr>
<td>OV3 Time Variance - En / Dis</td>
<td>DISABLED</td>
</tr>
<tr>
<td>OV4 Time Variance - En / Dis</td>
<td>DISABLED</td>
</tr>
<tr>
<td>OV5 Time Variance - En / Dis</td>
<td>DISABLED</td>
</tr>
<tr>
<td>OV1 Vgrid Trip Time</td>
<td>1 s</td>
</tr>
<tr>
<td>OV2 Vgrid Trip Time</td>
<td>0.16 s</td>
</tr>
<tr>
<td>OV3 Vgrid Trip Time</td>
<td>0.001 s</td>
</tr>
<tr>
<td>OV4 Vgrid Trip Time</td>
<td>0.001 s</td>
</tr>
<tr>
<td>OV5 Vgrid Trip Time</td>
<td>0.001 s</td>
</tr>
<tr>
<td>OV1 Vgrid Voltage - En / Dis</td>
<td>ENABLED</td>
</tr>
<tr>
<td>OV2 Vgrid Voltage - En / Dis</td>
<td>ENABLED</td>
</tr>
<tr>
<td>OV3 Vgrid Voltage - En / Dis</td>
<td>ENABLED</td>
</tr>
<tr>
<td>OV4 Vgrid Voltage - En / Dis</td>
<td>ENABLED</td>
</tr>
<tr>
<td>OV5 Vgrid Voltage - En / Dis</td>
<td>ENABLED</td>
</tr>
</tbody>
</table>

Notes:
- Over Voltage (OV) Protections: Time Variance (Reserved to other standards)
- Over Frequency (OF) Protections
- Over Voltage (OV) Protections Trip Time (OV3-OV5, reserved to other standards)
- Over Voltage (OV) Protections Enable / Disable (OV3-OV5, reserved to other standards)
- Momentary Cessation Voltage & Frequency
- Reserved to other standards
Under Voltage (UV) Protections

Trip Time
(UV4-UV5, reserved to other standards)

Note:
- UV1 243.8V = Vn (277) x 88%
- UV2 193.9V = Vn (277) x 70%
- UV2 138.5V = Vn (277) x 50%

Over Voltage (OV) Protections values
(OV3-OV5, reserved to other standards)

Notes:
- OV1 304.7V = Vn (277) x 110%
- OV2 332.4V = Vn (277) x 120%

Under Frequency (UF) Protections

Enable / Disable
(UV4-UV5, reserved to other standards)

Figure 2: L/HVRT Configuration through Web Server
SA12 (Specified Power Factor)

(1) Select the **Reactive Power Control** menu from the Inverter Parameters section of the Settings Menu to configure the power factor (PF) according to Utility request.

(2) **CosΦ Set** sub-menu will allow you to Enable/Disable the control of the reactive power output of the unit based on a fixed cosΦ and define the value of the cosΦ within the capability limits of the inverter [+ 0.8 to - 0.8] for PVS-60-TL-US.

For details about the above parameters or inverter capability, refer to the description on chapter **SA12 Specified Power Factor Mode**.

NOTE: Enabling the Power Factor control mode it will automatically disable any other reactive power mode.

NOTE: the sign of the power factor is assigned according to the reactive power sign and NOT according to EEI, as described on Annex 1.
SA13 VV

(1) Select the **Reactive Power Control** ✧ **Volt/Var Settings: Q(V)** menu from the Inverter Parameters section of the Settings Menu to configure the Volt-Var mode according to Utility request.

(2) **Volt/Var Settings: Q(V)** sub-menu will allow you to Enable/Disable the control of reactive power based on the AC terminal voltage by a user(utility)-defined piecewise linear control curve.

Volts/Var Q(V) Curve Points

Notes:
- V1 = 94% Vn = Vn – 0.06 Vn
- V2 = 97% Vn = Vn – 0.03 Vn
- V3 = 103% Vn = Vn + 0.03 Vn
- V4 = 106% Vn = Vn + 0.06 Vn

The sign (+/-) of "%Smax" (Point1:Q1…Point4:Q4) is reversed compared with Rule 14h because a reversed reference system was used.

Volts/Var Q(V) Input Filter

Note:
- 13.05 time constant 3t = 10s Response time (13.05 x 2.3 / 3)
For details about the above parameters or inverter capability, refer to the description on chapter SA13 VV Volt VAr Mode

⚠️ NOTE: the sign of the reactive power is assigned with REVERSE values with respect to the EEI reference system specified in Annex 1.

SA11 SS and SA11 RR

Select the Ramp Control menu to configure the soft start and normal ramp up according to Utility request.

Figure 5: SA11 Normal Ramp Rate and Soft-Start Configuration through Web Server

NOTE: Rule 21 and Rule 14H requires setting the values as %Pn/s. To set properly the value it is necessary to multiply by 60 the SA11 SS and SA11 RR ramp rate values expressed as %Pn/s. For example, a SA11 RR request of 50%Pmax/s should be set on inverter as 3000%Pmax/min.
SA14 FW

Select the Frequency Control: P(f) menu to configure the Frequency - Watt according to Utility request.

Start and Stop frequency defines also the slope of the Frequency – Watt curve. The slope is defined as:

\[
\text{Slope} = \frac{P_{\text{max}}}{(f_{\text{start}} - f_{\text{stop}})} = \frac{60 \text{ kW}}{2.4} = 41.67 \% \left[\frac{\text{Pn}}{\text{Hz}} \right]
\]

To deactivate the Frequency - Watt, it is sufficient to disable one between the frequency and the high frequency control flag.

To enable the Frequency - Watt, both general and high frequency control flags must be enabled.
SA15 VW

Select the Active Power Control ➔ Volt/Watt Settings: P(V) menu to configure the Volt-Watt function according to Utility request.

Figure 7: SA15 VW Configuration through Web Server

- Reference Power for Over-voltage droop
- Volt / Watt P(V) Input Filter
 Notes:
 13.05 time constant 3t = 10s Response time (13.05 x 2.3 / 3).
 This function has effect only with Regulation Curve = ENABLED
- Volt / Watt P(V) Curve Points
 Notes:
 Point 1: W1…Point 4: W4 = Output power (Watts) of the Point 1…Point 4
- Volt / Watt P(V) Enable / Disable
 (Unless Enabled required by HECO)
Figure 8: Firmware level identification through Web Server.

Figure 9: Selected Country standard identification through Web Server.

Note:
HAWAII – Three Phase – Rule 14H
Annex 1: Firmware Compatibility Matrix to Rule 21/14H

This Annex correlates the inverter firmware with the default settings included on this guideline.

If your inverter is not updated to the firmware release within this table then the inverter could have a different default settings with respect to the documents.

In case it is suggested to use the Parameter Adjustment chapter to update the inverter to Rule21 or Rule 14H Utility settings.

<table>
<thead>
<tr>
<th>Inverter model</th>
<th>SA8</th>
<th>SA9 L/HVRT</th>
<th>SA10 L/HFRT</th>
<th>SA11 SS</th>
<th>SA11 RR</th>
<th>SA12 Spec P1</th>
<th>SA13 VV</th>
<th>SA14 FW</th>
<th>SA15 VW</th>
</tr>
</thead>
</table>

Table A2: Rule 21 Firmware Compatibility Matrix (minimum firmware level)

<table>
<thead>
<tr>
<th>Inverter model</th>
<th>SA8</th>
<th>SA9 L/HVRT</th>
<th>SA10 L/HFRT</th>
<th>SA11 SS</th>
<th>SA11 RR</th>
<th>SA12 Spec P1</th>
<th>SA13 VV</th>
<th>SA14 FW</th>
<th>SA15 VW</th>
</tr>
</thead>
</table>

Table A3: Rule 14H Firmware Compatibility Matrix (minimum firmware level)

Tables A2 and A3 define, for each grid support function, the minimum FW release that satisfy the Rule 21/14H default settings described on this application guideline.

Inverter with older firmware could not be aligned, in case the chapter Parameter Adjustment describes the procedure to update the inverter settings.

Table A4 defines the starting firmware release of inverters that includes all the Rule 21 function and that can be configured to satisfy the requirements of Rule 21/14H.

<table>
<thead>
<tr>
<th>Inverter model</th>
<th>SA8</th>
<th>SA9 L/HVRT</th>
<th>SA10 L/HFRT</th>
<th>SA11 SS</th>
<th>SA11 RR</th>
<th>SA12 Spec P1</th>
<th>SA13 VV</th>
<th>SA14 FW</th>
<th>SA15 VW</th>
</tr>
</thead>
</table>

Table A4: Inverter FW compatible with Rule 21/14H (minimum firmware level)

Firmware XXYYK is encoded as follows:

XX: represents the latest two digit for year of release, for example 18 means 2018
YY: represents the week of release within the year, for example 1803 means 3rd week of 2018
K: represents the day of release within the week, for example 1803G means 7th day (Sunday) of the 3rd day of 2018 and corresponds to 21 January 2018. A firmware is greater than another one if it is released on a later date.
Document revisions

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Change Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev 0.0</td>
<td>October 18th / 2019</td>
<td>Specific revision for HECO (PVS-60-TL-US; FW > 1915E - 1.6.14)</td>
</tr>
</tbody>
</table>

Contact us

www.abb.com/solarinverters