SM500F
Field mountable videographic recorder
Guidance on the use of the SM500F videographic recorder for electronic record keeping in FDA approved processes

Introduction
On August 20th 1997 the Food and Drug Administration made 21 CFR Part 11 effective. This regulation is summarized as follows:

“The Food and Drug Administration (FDA) is issuing regulations that provide criteria for acceptance by FDA, under certain circumstances, of electronic records, electronic signatures, and handwritten signatures executed to electronic records as equivalent to paper records and handwritten signatures executed on paper. These regulations, which apply to all FDA program areas, are intended to permit the widest possible use of electronic technology, compatible with FDA's responsibility to promote and protect public health. The use of electronic records as well as their submission to FDA is voluntary.’

This guide provides details of the relevant sections of 21 CFR Part 11 and gives information on how the SM500F Videographic recorders can be used to meet these FDA requirements for the creation of electronic records in a closed system.
FDA 21 CFR Part 11 Subpart B – Electronic Records, Section 11.10: Controls for Closed Systems

‘Persons who use closed systems to create, modify, maintain, or transmit electronic records shall employ procedures and controls designed to ensure the authenticity, integrity and, when appropriate, the confidentiality of electronic records and ensure that the signer cannot repudiate the signed record as not genuine.’

Process data can be archived in either a) Text Format or b) Binary Format:

a) Text Format
All process data recorded by a SM500F videographic recorder is protected by an encrypted ‘digital signature’. Via the use of DataManager data review software this ‘digital signature’ can be checked to validate the integrity of the data. If any part of the data record is changed the DataManager software warns the user of the invalid nature of the record.

b) Binary Format
Process data can be archived in a binary encoded format which can be viewed only in a human-readable form through the use of ABB’s DataManager review software. The recorded data contains built-in data integrity checks for each block of data (maximum of 240 samples per block) in order to detect any corruption or attempted falsification of the record. The DataManager software checks the data against the built-in checksums to validate the integrity of the data and to warn the user of any invalid records.

FDA 21 CFR Part 11 Section 11.10 (a)

‘Validation of systems to ensure accuracy, reliability, consistent intended performance and the ability to discern invalid or altered records.’

Validation is a function usually performed by the end-user or a third party acting on behalf of the end-user. The SM500F Videographic Recorders have been developed (including the design of the recorders software) and manufactured in ISO9001:1994 standard processes. Further details on the manufacturing and design practices applied to the SM500F can be provided by ABB to assist the customer with the validation of the Videographic recorders. The accuracy of the recorder measurements can be ensured by exercising the system calibration procedures described in the User Guide. The SM500F recorders have an encoded audit log feature which allows the identification of changes to the system by recording the nature, time/date and authorized user of the modification.

FDA 21 CFR Part 11 Section 11.10 (b)

‘The ability to generate accurate and complete copies of records in both human-readable and electronic form suitable for inspection, review and copying by the agency (FDA).’

The SM500F recorder can create process data files on Secure Digital (SD) cards. These data files are created from secure records stored in internal flash memory. Error detection algorithms are employed to ensure that the stored data faithfully represents the actual raw measurements made by the recorder. Each write to the archive media is also verified to ensure the integrity of the data record. The archived process data files can be viewed using the DataManager review software. The data can be viewed and printed in tabular or graphical formats. Standard spreadsheet formats (e.g. Microsoft Excel) of the archived data files can be created for viewing by users who do not have the DataManager software.

FDA 21 CFR Part 11 Section11.10 (c)

‘Protection of records to enable their accurate and ready retrieval throughout the records retention period.’

The SM500F videographic recorder uses solid-state flash memory, in the form of Secure Digital (SD) cards, for data storage. Data retention for these devices is specified as a minimum of 10 years. They provide zero power data retention, i.e. the data integrity is not dependent on battery back-up. The data is not affected by magnetic fields. For even longer-term data storage the archive files can be copied to CDROM or to a network file server.

FDA 21 CFR Part 11 Section11.10 (d)

‘Limiting system access to authorized individuals.’

The SM500F Videographic Recorder provides the ability to limit access to the instrument’s configuration and critical operator functions. Two different security modes can be configured in the instrument:

1) Password Protection
Up to 12 users, each with a unique ID and password, can be created to control access to critical operator functions and configuration parameters.

The ID can be alphanumeric and up to 20 characters in length.

The passwords can be alphanumeric and the minimum number of characters allowable in a password can be set from 4 to 20 characters.

To prevent password ageing a password expiry time can be set.

To prevent illegal use of user ID’s a user can be de-activated after a configurable number of repeated wrong password entries.

Users can be de-activated after a configurable period (7 days to 1 year) of inactivity.

Different access privileges can be set for each user.

One of four levels of configuration access can be assigned to a user:

1) No access
2) The ability to load existing configuration files only
3) Limited access (read access plus the ability to adjust alarm trip values
4) Full read/write access.

In order to gain access to the configuration or critical operator parameters a valid operator ID and password combination has to be entered. The recorders do not have a secret override password.

Any modification of the instruments’ configuration is recorded in the audit log identifying the user responsible for the change.
2) Security Switch Protection
Access to the instruments’ configuration is protected by a physical internal switch. In order to gain access to the internal security switch it is necessary to open the instrument door and remove the terminal cover. A tamper-evident seal can be fitted to prevent the removal of the terminal cover without breaking the seal.

In addition to these protection methods access to the archive media [i.e. Secure Digital (SD) card] can be protected by a mechanical lock, fitted as standard on all units to the door on the front of the instrument.

FDA 21 CFR Part 11 Section 11.10 (e)
‘Use of secure, computer-generated, time-stamped audit trails to independently record the date and time of operator actions that create, modify or delete electronic records. Record changes shall not obscure previously recorded information. Such audit trail documentation shall be retained at least as long as that required for the subject electronic records and shall be available for agency review and copying.’

The SM500F Videographic recorders automatically produce a time-stamped audit trail that includes disk insertion and removal, power failure and recovery, configuration changes, file deletions, system diagnostics and calibration changes. This information is stored in an audit log which can be automatically archived to a permanent file on a Secure Digital (SD) card. A separate alarm/event log automatically produces a time-stamped record of all alarm state changes and can also be automatically archived to a permanent file. Each time the configuration of the recorder is changed a new file is created which can be stored as a permanent file to Secure Digital (SD) card. Each file is time-stamped to indicate the date and time when the change occurred. This allows the configuration at a previous time in the recorders history to be maintained and for the configuration before and after a change to be reviewed.

The audit and alarm/event logs can be stored in an encoded format with checksum protection to prevent the falsification of its contents.

FDA 21 CFR Part 11 Section 11.10 (g)
‘Use of authority checks to ensure that only authorized individuals can use the system, electronically sign a record, access the operation or computer system input or output device, alter a record or perform the operation at hand.’

The recorder’s security system outlined in part d) limits access to the system to modify any configuration parameters.

FDA 21 CFR Part 11 Section 11.10 (h)
‘Use of device (e.g., terminal) checks to determine, as appropriate, the validity of the source of data input or operational instruction.’

The analog inputs provided on the SM500F Videographic recorder’s have built-in broken-sensor, over- and under-range detection. Indication of these conditions is provided on the recorder’s display and in the data files.

FDA 21 CFR Part 11 Section 11.10 (i)
‘Determination that the persons who develop, maintain or use electronic record/electronic signature systems have the education, training and experience to perform their assigned tasks.’

Only suitably qualified people are employed in product design & development and their training is updated to meet advances in technology. Levels of competence and training needs are externally audited by the British Standards Institute (BSI) for our ISO9001 quality management system.

FDA 21 CFR Part 11 Section 11.10 (k)
‘Use of appropriate controls over systems documentation including:

1) Adequate controls over the distribution of, access to, and use of documentation for system operation and maintenance.

2) Revision and change control procedures to maintain an audit trail that documents time-sequenced development and modification of systems documentation.’

A design control system is used which is fully documented and traceable. This is externally audited by the British Standards Institute (BSI) for our ISO9001 quality management system. Documentation is provided for installation, configuration and operation in the instrument’s User Guide.
Summary
ABB is an established world force in the design and manufacture of instrumentation. The quality, accuracy and performance of the Company's products result from over 100 years experience. The products are manufactured and designed using ISO9000 approved processes.

The SM500F Videographic Recorders have been designed to meet the standards set out in 21 CFR part 11 and properly implemented they can be used as part of a validated system.

1a. All process data can be recorded in a binary encoded, tamper-proof format. The recorded data is further protected by error detection checks to ensure the authenticity of these records.

1b. Or all process data can be recorded in a text format that is protected by an encrypted 'digital signature' to ensure the authenticity of these records.

2. Solid state flash memory that is not reliant on battery back-up and which is not subject to magnetic fields is used to provide secure storage of data.

3. DataManager review software provides the ability to view the data records and audit trails in a human-readable form.

4. Password and physical security systems are provided in the recorder to limit access to authorized personnel. Provision is made to counter password ageing and attempted unauthorized access.

5. A detailed audit log accompanies all process data recorded by a SM500F Videographic Recorder. All system events including configuration changes, memory card removal/insertions, power failures and instrument calibrations are logged. All entries are time and date-stamped and include an operator ID where applicable. This log can be encoded and protected by built-in error checks to prevent/detect tampering or data corruption.