What is the primary application of KEVA 17.5 B21?
Voltage sensors are used for voltage measurement in low or medium voltage equipment, including, but not limited to, switches and switchgear.

<table>
<thead>
<tr>
<th>KEVA switchgear applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
</tr>
<tr>
<td>KEVA 17.5 B21</td>
</tr>
</tbody>
</table>

Why is the KEVA 17.5 B21 called a “sensor” instead of a “voltage transformer”?
The KEVA sensor is a passive low power device and therefore designated a sensor. It uses a resistive voltage divider rather than a ferromagnetic core, which is used in conventional voltage transformers.

How is a voltage sensor selected for an application?
Primary voltage, overvoltage capability, and compatible IED should be identified prior to selecting a sensor.

How does a sensor combine metering and protection classes in one device?
Due to the absence of a ferromagnetic core, a sensor’s performance is not influenced by the non-linear performance of electrical steel. This results in a highly accurate and linear response over a wide dynamic range of measured quantities.

What is the accuracy class of the sensors?
KEVA voltage sensors fulfill requirements of IEC metering class 0.5 and protection class 3P, up to the rated voltage factor.

How does the sensor cable and RJ45 connector withstand harsh environments?
The RJ45 connector complies with CAT-6 classification and the contact is gold plated to ensure best performance. CAT-6 features more stringent specifications for crosstalk and system noise. The cable type used with these sensors is a special industrial trailing cable with polyurethane jacket that is more durable than standard PVC ethernet cables. Sensors are designed for indoor use only and shall only be installed in a humidity-controlled environment.

Are KEVA sensors compatible with all IEDs?
To ensure accurate measurement and proper performance, the sensor and IED must be compatible. Due to the wide variety of relays and controllers offered in the market today, contact the factory or your ABB sales representative to ensure sensor compatibility.

What is the recommended sensor cable length?
Only one cable length is available for the KEVA 17.5 B21 and is specified in the product literature on the ABB website. Contact your ABB representative if different lengths are required.

Why are voltage sensors considered to be safer than conventional voltage transformers?
The output of voltage sensors is in the range of a few volts on the secondary. If the secondary is shorted, they do not produce a dangerous current as a result of the short.

Are ABB sensors proven reliable in the field?
Sensors made by ABB are designed for a thirty-year lifetime. ABB introduced sensor technology in the early 1990s and currently has a large installed base of more than 200,000 units worldwide. Twenty-five years of field experience has proven the reliability of sensor technology in operation.
What are maintenance requirements for the sensors?
After installation, commissioning, and testing, no special maintenance is required. Standard maintenance is recommended. See Instructions for Installation, Use, and Maintenance.

Are KEVA sensors UL certified?
KEVA sensors are UL certified according to IEC 60044-7 standard, file #501098.

Does ABB offer other indoor sensors?
ABB offers KECA 80 C85, KECA 80 D85, and KECA 80 C184 indoor current sensors with UL certification. In addition to these indoor sensors, ABB also offers the RSS-1 submersible current sensor for vault or other applications. Contact your ABB representative if additional indoor sensors are desired.