Meet the Experts – Sept. 20/21., 2011

Alarm Management
Outline

- Typical Problems
- Financial Impact
- Industry Guidelines
- ABB Fingerprint
- Typical Findings
- Recommendations
Alarm Management

How is your alarm system performing?

Do you recognize any of these behaviors?
- Operators acknowledge / silence alarms without looking at or acting on them?
- Incidents or near-incidents where operators missed alarms?
- Too many alarms without well-defined actions?
- Alarms disabled / suppressed for long periods without review?

Do you measure?
- Number of alarms / hour?
- Number of alarms disabled / suppressed?
- Time to silence / acknowledge?

How stressed are your operators?

Do you have a documented alarm philosophy?
- Have you described roles and responsibilities?
- How do you review and modify alarm settings?
Alarm Management
Example: Texaco Milford Haven 1994

- Explosion injured 26 people and caused damage of around $70 million
- Key factors included:
 - There were too many alarms and they were poorly prioritized
 - In the last 11 minutes before the explosion, the operators had to recognize, acknowledge and act on 275 alarms
Alarm Management Outline

- Typical Problems
- Financial Impact
- Industry Guidelines
- ABB Fingerprint
- Typical Findings
- Recommendations
Alarm Management

Financial Impact

- plant state
 - nuisance alarms
 - standing alarms
 - missed alarms
 - critical alarms

- normal
- disturbed
- upset
- shutdown

- performance target
- operator priority
 - Process Optimization (important)
 - Production (very important)
 - Equipment Damage (urgent)
 - Safety & Environmental (critical)

- plant state
 - poor control
 - energy waste

- nuisance alarms
 - material expenses
 - containment loss
 - excess energy

- standing alarms
 - more wear & tear
 - equipment damage

- missed alarms
 - injuries/deaths

- critical alarms
 - environmental violations
Alarm Management
Benefits

- Avoid unintended shutdowns from missing alarms or responding too slowly to alarms
 - Lower equipment repair costs and increased operational efficiency and/or production rates.
- Increase operator availability and effectiveness with reduction in average alarm and event rate
 - If initial rate is 25/hour/operator and each consumes an average of 45 seconds, then workload can be reduced almost 1 hour per 12 hour shift if rate is reduced by 25%.
- Reduce Minor and Major Incidents from better alarm management
Alarm Management

Outline

- Typical Problems
- Financial Impact
- Industry Guidelines
- ABB Fingerprint
- Typical Findings
- Recommendations
Engineering Equipment and Materials Users’ Association (EEMUA) has published guideline

International Society of Automation (ISA) has published standard

- ISA-18.2: Management of Alarm Systems for the Process Industries
Alarm Management
Definition of an Alarm System

EEMUA 191

- Purpose of an alarm system is to direct the operator's attention towards plant conditions requiring **timely** assessment or action.

- Each alarm should:
 - alert, inform and guide
 - be useful and relevant to the operator
 - have a defined response

- Adequate time should be allowed for the operator to carry out his defined response.
Alarm Management
System Management Guidelines

Define responsibilities
- Design
- Management
- Operation

Define procedures and standards
- Design
- Implementation
- Management
- Operation

Alarm Philosophy document
- Define what to alarm
- Standards for alarm annunciation and messages
- How the operator will interact with alarms

Alarm System Design document
- Define purpose
- Priority
- Operator response for each alarm

Define standards for configuration
Alarm Management System Management Guidelines

- Define methods to address nuisance alarms and standing alarms
- Define alarm priorities based on impact and reaction time
- Provide alarm system training for operators, engineers and technicians
- Define procedures for management of changes to the alarm system
- Create reports, records and tools for monitoring alarm system performance
The use of three priority bands within any one type of display is ergonomically effective

- High – Medium – Low (+ sometimes critical)
- Written rules on priority assignment required.

Example:

<table>
<thead>
<tr>
<th>impact</th>
<th>reaction time</th>
<th>< 1000 $</th>
<th>< 10000 $</th>
<th>> 10000 $</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 10 Min.</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>3 to 10 Min.</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>< 3 Min</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
<td></td>
</tr>
</tbody>
</table>
Alarm Management

Industry Findings vs. Guidelines

<table>
<thead>
<tr>
<th></th>
<th>EEMUA</th>
<th>Oil & Gas</th>
<th>PetroChem</th>
<th>Power</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Alarms per Day</td>
<td>144</td>
<td>1200</td>
<td>1500</td>
<td>2000</td>
<td>900</td>
</tr>
<tr>
<td>Average Standing Alarms</td>
<td>9</td>
<td>50</td>
<td>100</td>
<td>65</td>
<td>35</td>
</tr>
<tr>
<td>Peak Alarms per 10 Minutes</td>
<td>10</td>
<td>220</td>
<td>180</td>
<td>350</td>
<td>180</td>
</tr>
<tr>
<td>Average Alarms/10 Minute Interval</td>
<td>1</td>
<td>6</td>
<td>9</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Distribution % (Low/Med/High)</td>
<td>80/15/5</td>
<td>25/40/35</td>
<td>25/40/35</td>
<td>25/40/35</td>
<td>25/40/35</td>
</tr>
</tbody>
</table>

Source: Matrikon
Alarm Management
Outline

- Typical Problems
- Financial Impact
- Industry Guidelines
- ABB Fingerprint
- Typical Findings
- Recommendations
Optimization Services Methodology

- **Diagnose**
 - Measure and Benchmark
 - Detailed Improvement Plan
 - Document Goals, KPI’s

- **Implement**
 - Improve Performance
 - Apply corrective actions

- **Sustain**
 - Maintain Performance
 - Continued Improvement

Proactive Solutions – not Reactive
- Six Sigma Similarities

![Diagram showing the process flow from Diagnose, Implement, and Sustain leading to Increased Performance.](diagram)
Alarm Management Lifecycle

- Alarm Design Strategy
- Culture Change
- Alarm Rationalization
- Alarm Management
- Training

1. Where are we now?
- Assess the Current Position
 - Typically a short focussed assessment by experienced consultant engineer
 - Assessed against benchmarks and targets

2. Where do we want to be?
- Identify the Change Program
- Goal Setting (KPIs, Project success criteria)
- Identify deficiencies and corrective actions
- Planning/Budgeting

3. How successful were we?
- On-Going Alarm Management
 - owned by operations/ maintenance
- Audit and Measurement programme
Alarm Management
Fingerprint – The first step

- Goal: reduce alarms that are not useful to the operator, clarify alarms that are important
Alarm Management
Fingerprint

Alarm System Performance
- Calculate alarm statistics
- Compare to EEMUA guidelines

Alarm System Management
- Evaluate alarm system documentation
- Evaluate methods and procedures for configuring, operating, and managing alarm system
- Compare to EEMUA guidelines

Recommendations for improvements
Alarm Management
Fingerprint Steps

Interviews
- Operators, Supervisors, Process Engineers, Technicians

Review of procedures and instructions
- Documentation
- Methods

Measurement of Alarm System Performance
- Alarm Rates in steady state and upset conditions
- Frequency of alarms - nuisance alarms
- Standing and Shelved alarms
- Prioritization
Alarm Management
Fingerprint

- Findings and recommendation described in the report

Contents

1 EXECUTIVE SUMMARY 5
2 INTRODUCTION 6
2.1 Background 6
2.2 Structure of the Work 6
3 ALARM SYSTEM PERFORMANCE 9
3.1 Average & Peak Alarm Rates 10
3.2 Standing & Shelved Alarms 12
3.3 Distribution of Alarms 13
3.4 Usefulness Questionnaire 14
3.5 Nuisance Alarms 15
4 THE MANAGEMENT OF ALARMS 16
4.1 Overall Management of the Alarm System 16
4.2 Alarm System Design 18
4.3 Method of operation and use of the Alarm System 19
4.4 Alarm Prioritisation 20
4.5 Nuisance Alarms 23
4.6 Standing Alarms 25
4.7 Training 27
4.8 Control of Modifications 28
5 RECOMMENDATIONS FOR ACTION 30
Alarm Management
Outline

- Typical Problems
- Financial Impact
- Industry Guidelines
- ABB Fingerprint
- Typical Findings
- Recommendations
Alarm Management
Alarm Rate vs. EEMUA Guideline

- Calculate alarm rates for each 10 minute period
- Compare to EEMUA guideline of 1 alarm per 10 minute period
Alarm Management

Alarm Rate vs. EEMUA Guideline - Burst Rate

- Calculate burst alarm rates for each 10 minute period
- Compare to EEMUA burst rate guideline of 10 alarms per 10 minute period

08-AUG 8:22 318 / 20 min or 15.9/min
19-SEP 11:00 681 / 20 min or 34.1/min
20-OCT 00:40 719 / 20 min or 36.0/min
09-DEC 07:45 61 / 2 min or 30.5/min
22-JAN 12:10 410 / 20 min or 20.5/min

750 incidents of 10/min in 6 months
Alarm Management
Alarm Frequency Analysis

- A small number of tags are often responsible for a large percentage of the total alarms.
 - Top 10 represent 66% of alarms
Alarm System Performance Reporting

Tags sorted by no. of events

Alarm priority distribution
Alarm Management
Standing and Shelved Alarms

- Shelved Alarm: An alarm that has been temporarily disabled until an underlying problem can be corrected. Such alarms should only be shelved for a period of time, not permanently disabled.

- Standing Alarm: An alarm that has remained in an active alarm state for a significant period of time (e.g. 4 to 8 hrs)
Alarm Management
Alarm System Management Findings

- Alarm Philosophy documentation does not exist
- Alarm Design documentation does not exist
 - Alarms defined when control system was commissioned
 - Almost all tags configured as alarms
 - Alarm priority classes seldom utilized
- Changes to alarm system are undocumented
- No methods to monitor alarm system performance
Alarm Management
Summary of Findings

- Limited alarm system documentation
- High alarm rates
 - Too many nuisance alarms going into and out of alarm state
 - Too many alarms configured
- Too many standing alarms
 - Equipment that is out of service
 - Bad quality instruments needing maintenance
Alarm Management
Outline

- Typical Problems
- Financial Impact
- Industry Guidelines
- ABB Fingerprint
- Typical Findings
- Recommendations
Alarm Management
How to Eliminate Nuisance Alarms

- Reconfigure alarms that require no operator action as event
- Eliminate instrument malfunctions
- Tune chattering control loops
- Optimize alarm parameters: set limit thresholds, hysteresis
- Advanced Alarming
 - State based alarming
 - Flood suppression
What-if scenario: Reducing nuisance alarms

Minimum limit: was set too high
Minimum limit: lower limit gets rid of nuisance alarms

Analyzing the time trend using histograms:
- Which alarm limits will result in which alarm rate?
- Find the best alarm limits (e.g. reduce the minimum threshold)
Alarm Management
Alarm Rationalization

- Form team to review all alarms
- Define purpose of each alarm – some alarms may be reclassified as events
- Define new priority using EEMUA and ISA recommendations
- Determine required operator response and alarm description
- Remove redundant alarms
- Create Alarm Design documentation
Alarm Management Recommendations

- Maintenance issues
 - Follow up on long standing issues
 - Shelve / Deactivate alarm if problem not fixed
 - Keep list of shelved alarms and periodically reevaluate

- Preventive Maintenance
 - Use a control loop management tool to improve tuning and identify instrumentation problems
Alarm Management
Alarm System Performance Monitoring

- ABB Smart Logger software
 - Capture and store alarm data
- ABB Smart Client software
 - Compute alarm statistics and compare with EEMUA guidelines
 - Monitor performance improvements over time
Alarm Management
Features in System 800xA

- Structured organization and single source of truth
- Pre-configured and ad-hoc filtering, live values
- Single click from alarm to multiple informational displays
- Alarm Hiding - Dynamic alarm handling
- Alarm Shelving - Operator based alarm hiding
- Built-in, operator accessible alarm analysis
Improving Operator Effectiveness
Effective decision support environment

- Consolidated alarms & events
- Right click access to integrated information
- Seamless integration of data from multiple systems
- Personalized Workplace based on operations philosophy
- Filterable, separated asset alerts
- Configurable Application Bar
- Graphics based on MS WPF
- Seamless integration of data from multiple systems
Power and productivity for a better world™