The CT-MFS. 21 is a multifunctional electronic timer from the CT-S range. It provides 10 timing functions, 10 time ranges and a continuous rated control voltage that enables worldwide use regardless of the supply voltage.
All electronic timers from the CT-S range are available with two different terminal versions. You can choose between the proven screw connection technology (double-chamber cage connection terminals) and the completely tool-free Easy Connect Technology (Push-in terminals).

Characteristics

- Rated control supply voltage 24-240 V AC/DC
- Timing functions:

ON-delay, OFF-delay with auxiliary voltage, Impulse-ON,
Impulse-OFF with auxiliary voltage, Symmetrical ON- and OFF-delay, Flasher starting with ON, Flasher starting with OFF, Star-delta change-over with impulse, Pulse former, ON/OFF-function

- 10 time ranges ($0.05 \mathrm{~s}-300 \mathrm{~h}$)
- Control input with volt-free triggering to start timing and/ or to stop/pause timing
- Remote potentiometer connection
- Precise adjustment by front-face operating elements
- Screw connection technology or Easy Connect Technology available
- Housing material for highest fire protection classification UL 94 V-0
- Tool-free mounting on DIN rail as well as demounting
- 2 c/o (SPDT) contacts (2nd c/o contact can be selected as instantaneous contact)
- 22.5 mm (0.89 in) width
- 3 LEDs for status indication

Approvals
(ㄴ) Us UL 508, CAN/CSA C22.2 No. 14
(1) GL
(eG) GOST
CB CB scheme
(cc) CCC

Marks

C CE
c C-Tick

Order data

Electronic timers

Type	Rated control supply voltage	Connection technology	Time ranges	Order code
CT-MFS.21P	$24-240$ V AC/DC	Push-in terminals	$0.05 \mathrm{~s}-300 \mathrm{~h}$	1 SVR 740010 R0200
CT-MFS.21S	$24-240 \mathrm{~V} \mathrm{AC/DC}$	Screw type terminals	$0.05 \mathrm{~s}-300 \mathrm{~h}$	1 SVR 730010 R0200

Type	Description	Material	Diameter in mm	Marking	Order code
ADP. 01	Adapter for screw mounting on panel				1SVR 430029 R0100
MAR. 01	Marker label				1SVR 366017 R0100
COV. 11	Sealable transparent cover				1SVR 730005 R0100
MT-150B	Remote potentiometer $50 \mathrm{k} \Omega \pm 20 \%-0.2 \Omega$, degree of protection IP66	black plastic	22.5		1SFA 611410 R1506
MT-250B	Remote potentiometer $50 \mathrm{k} \Omega \pm 20 \%-0.2 \Omega$, degree of protection IP66	chromed plastic	22.5		1SFA 611410 R2506
MT-350B	Remote potentiometer $50 \mathrm{k} \Omega \pm 20 \%-0.2 \Omega$, degree of protection IP66	chromed metal	22.5		1SFA 611410 R3506
KA1-8029	Adaptor for reduction of 30 mm hole to 22.5 mm	black plastic			1SFA 616920 R8029
KA1-8030	Adaptor for reduction of 30 mm hole to 22.5 mm	chromed metal			1SFA 616920 R8030
SK 615 562-87	Legend plate for remote potentiometer			Symbol (see drwg. in data sheet remote potentiometer)	GJD6 155620 R0087
SK 615 562-88	Legend plate for remote potentiometer			Skale 0-10	GJD6 155620 R0088
MA16-1060	Legend plate for remote potentiometer			Skale 0-30	1SFA 611940 R1060

Maintenance free Easy Connect Technology with
Push-in terminals
Type designation CT-xxS.yyP

Push-in terminals

- Tool-free connection of rigid and flexible wires with wire end ferrule according to DIN 46228-1-A, DIN 46228-4-E
Wire size: $2 \times 0.5-1.5 \mathrm{~mm}^{2}$, $(2 \times 20-16$ AWG $)$
- Easy connection of flexible wires without wire end ferrule by opening the terminals
- No retightening necessary
- One operation lever for opening both connection terminals
- For triggering the lever and disconnecting of wires you can use the same tool (Screwdriver according to DIN ISO 2380-1 Form A $0.8 \times 4 \mathrm{~mm}(0.0315 \times 0.157$ in), DIN ISO 8764-1 PZ1 ø 4.5 mm (0.177 in))
- Constant spring force on terminal point independent of the applied wire type, wire size or ambient conditions (e. g. vibrations or temperature changes)
- Opening for testing the electrical contacting
- Gas-tight

Approved screw connection technology with double-chamber cage connection terminals Type designation CT-xxS.yyS

Double-chamber cage connection terminals

- Terminal spaces for different wire sizes: fine-strand with/without wire end ferrule: $1 \times 0.5-2.5 \mathrm{~mm}^{2}(2 \times 20-14$ AWG $)$, $2 \times 0.5-1.5 \mathrm{~mm}^{2}(2 \times 20-16$ AWG) rigid:
$1 \times 0.5-4 \mathrm{~mm}^{2}(1 \times 20-12$ AWG), $2 \times 0.5-2.5 \mathrm{~mm}^{2}(2 \times 20-14$ AWG)
- One screw for opening and closing of both cages
- Pozidrive screws for pan- or crosshead screwdrivers according to DIN ISO 2380-1 Form A 0.8×4 mm ($0.0315 \times 0.157 \mathrm{in}$), DIN ISO $8764-1$ PZ1 ø 4.5 mm (0.177 in)

Both the Easy Connect Technology with Push-in terminals and screw connection technology with double-chamber cage connection terminals have the same connection geometry as well as terminal position.

2 Fine adjustment of the time delay
3 Rotary switch for the preselection of the timing function
4 Rotary switch to set the 2nd c/o (SPDT) contact as an instantaneous contact

5 Indication of operational states
U: green LED - control supply voltage / timing

R1: yellow LED - status of output relay 1
R2: yellow LED - status of output relay 2
6 Marker label

Application

The CT-S range timers are designed for use in industrial applications. They operate over a universal range of supply voltages and a large time delay range, within compact dimensions. The easy-to-set front-face potentiometers, with direct reading scales, provide accurate time delay adjustment.
Multifunction timers are ideally suited for service and maintenance applications, because one device can replace a number of time relays with different functions, voltage and time ranges. This reduces inventory and saves money.

Operating mode

The CT-MFS. 21 with $2 \mathrm{c} / \mathrm{o}$ (SPDT) contacts offers 10 timing functions. The function is rotary switch selectable on the front of the unit. Each function is indicated by an international function symbol.
One of 10 time ranges, from 0.05 s to 300 h , can be selected with an other rotary switch. The fine adjustment of the time delay is made via an internal potentiometer, with a direct reading scale, on the front of the unit. When an external potentiometer is connected to terminals $\mathrm{Z} 1-\mathrm{Z} 2$, the internal adjustment is disabled and external adjustment is enabled. By means of a front-face rotary switch, the function of the $2 \mathrm{nd} \mathrm{c} / \mathrm{o}$ (SPDT) contact can be set to instantaneous contact. Timing is displayed by a flashing green LED labelled U/T.

Star-delta change-over, control circuit diagram

Star-delta change-over, power circuit diagram

Function diagrams

Remote potentiometer connection

When an external potentiometer is connected to the remote potentiometer connection (terminals Z1-Z2), the internal, front-face potentiometer is disabled and the time adjustment is made via the external potentiometer.

2nd c/o (SPDT) contact selectable as instantaneous contact

When switch position Inst. "I" is selected, the functionality of the 2nd c/o (SPDT) contact changes to an instantaneous contact. It acts like the c/o (SPDT) contacts of a switching relay, i.e. applying or interrupting the control supply voltage energizes or de-energizes the c/o (SPDT) contact. The designation of the 2nd c/o (SPDT) contact changes from 25-26/28 to 21-22/24, when selected as instantaneous contact.

ON-delay

This function requires continuous control supply voltage for timing.
If control input $\mathrm{Y} 1-\mathrm{Z} 2$ is open, timing begins when control supply voltage is applied. Or, if control supply voltage is already applied, opening control input Y1-Z2 also starts timing. The green LED flashes during timing. When the selected time delay is complete, the output relay energizes and the flashing green LED turns steady.
If control input Y1-Z2 closes before the time delay is complete, the time delay is reset and the output relay remains de-energized.
Pause timing / Accumulative ON-delay: Timing can be paused by closing control input $\mathrm{X} 1-\mathrm{Z} 2$. The elapsed time t_{1} is stored and continues from this time value when $\mathrm{X} 1-\mathrm{Z} 2$ is reopened. This can be repeated as often as required.
If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

OFF-delay with auxiliary voltage
This function requires continuous control supply voltage for timing. If control input $\mathrm{Y} 1-\mathrm{Z} 2$ is closed, the output relay energizes immediately. If control input $\mathrm{Y} 1-\mathrm{Z} 2$ is opened, the time delay starts. The green LED flashes during timing. When the selected time delay is complete, the output relay de-energizes and the flashing green LED turns steady. If control input $\mathrm{Y} 1-\mathrm{Z} 2$ closes before the time delay is complete, the time delay is reset and the output relay does not change state. Timing starts again when control input Y1-Z2 re-opens. Pause timing / Accumulative OFF-delay: Timing can be paused by closing control input $\mathrm{X} 1-\mathrm{Z} 2$. The elapsed time t_{1} is stored and continues from this time value when $\mathrm{X} 1-\mathrm{Z} 2$ is re-opened. This can be repeated as often as required. If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

Symmetrical ON- and OFF-delay

This function requires continuous control supply voltage for timing. Closing control input Y1-Z2 starts the ON-delay t_{1}. When timing is complete, the output relay energizes. Opening control input $\mathrm{Y} 1-\mathrm{Z} 2$ starts the OFF-delay t_{2}. Both timing functions are displayed by the flashing green LED. When the OFF-delay t_{2} is complete, the output relay de-energizes. If control input $\mathrm{Y} 1-\mathrm{Z2}$ opens before the ON -delay t_{1} is complete, the time delay is reset and the output relay remains de-energized. If control input Y1-Z2 closes before the OFF-delay t_{2} is complete, the time delay is reset and the output relay remains energized. Pause timing / Accumulative, symmetrical ON-delay and OFF-delay: Timing can be paused by closing control input $\mathrm{X} 1-\mathrm{Z} 2$. The elapsed time $\mathrm{t}_{1} \mathrm{a}$ or $\mathrm{t}_{2 \mathrm{a}}$ is stored and continues from this time value when $\mathrm{X} 1-\mathrm{Z2}$ is re-opened. This can be repeated as often as required. If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

Impulse-ON

This function requires continuous control supply voltage for timing. The output relay energizes immediately when control supply voltage is applied and de-energizes after the set pulse time is complete. If control input $\mathrm{Y} 1-\mathrm{Z} 2$ is open, timing begins when control supply voltage is applied. Or, if control supply voltage is already applied, opening control input Y1-Z2 starts timing. The green LED flashes during timing. When the selected pulse time is complete, the output relay de-energizes and the flashing green LED turns steady. Closing control input Y1-Z2, before the pulse time is complete, de-energizes the output relay and resets the pulse time. Pause timing / Accumulative impulse-ON: Timing can be paused by closing control input $\mathrm{X} 1-\mathrm{Z} 2$. The elapsed time t_{1} is stored and continues from this time value when $\mathrm{X} 1-\mathrm{Z} 2$ is re-opened. This can be repeated as often as required. If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

Impulse-OFF with auxiliary voltage
This function requires continuous control supply voltage for timing. If control supply voltage is applied, opening control input Y1-Z2 energizes the output relay immediately and starts timing. The green LED flashes during timing. When the selected pulse time is complete, the output relay de-energizes and the flashing green LED turns steady. Closing control input Y1-Z2, before the pulse time is complete, de-energizes the output relay and resets the pulse time. Pause timing / Accumulative impulse-OFF: Timing can be paused by closing control input $\mathrm{X} 1-\mathrm{Z} 2$. The elapsed time t_{1} is stored and continues from this time value when $\mathrm{X} 1-\mathrm{Z} 2$ is re-opened. This can be repeated as often as required. If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

Flasher with reset, starting with ON
Applying control supply voltage starts timing with symmetrical ON / OFF times. The cycle starts with an ON time first. The ON / OFF times are displayed by the flashing green LED, which flashes twice as fast during the OFF time. The time delay can be reset by closing control input Y1-Z2. Opening control input $\mathrm{Y} 1-\mathrm{Z} 2$ starts the timer pulsing again with symmetrical ON / OFF times. If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

Flasher with reset, starting with OFF
Applying control supply voltage starts timing with symmetrical ON / OFF times. The cycle starts with an OFF time first. The ON / OFF times are displayed by the flashing green LED, which flashes twice as fast during the OFF time.
The time delay can be reset by closing control input $\mathrm{Y} 1-\mathrm{Z} 2$. Opening control input $\mathrm{Y} 1-\mathrm{Z} 2$ starts the timer pulsing again with symmetrical ON / OFF times. If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

Pulse former

This function requires continuous control supply voltage for timing.
Closing control input $\mathrm{Y} 1-\mathrm{Z} 2$ energizes the output relay immediately and starts timing. Operating the control contact switch $\mathrm{Y} 1-\mathrm{Z} 2$ during the time delay has no effect. The green LED flashes during timing. When the selected ON time is complete, the output relay de-energizes and the flashing green LED turns steady. After the ON time is complete, it can be restarted by closing control input $\mathrm{Y} 1-\mathrm{Z} 2$.

If control supply voltage is interrupted, the output relay de-energizes and the time delay is reset.

ON/OFF-function

This function is used for test purposes during commissioning and troubleshooting.
If the selected max. value of the time range is smaller than 300 h (front-face potentiometer "T Range" not 300 h), applying control supply voltage energizes the output relay immediately and the green LED glows. Interrupting control supply voltage, de-energizes the output relay.

If the selected max. value of the time range is 300 h (front-face potentiometer "T Range" = 300 h) and control supply voltage is applied, the green LED glows, but the output relay does not energize.

Time settings and operating of the control inputs have no effect on the operation.

Star-delta change-over with impulse

This function requires continuous control supply voltage for timing.
Applying control supply voltage to terminals A1-A2, energizes the star contactor connected to terminals 15-18 and begins the set starting time t_{1}. The green LED flashes during timing. When the starting time is complete, the first c/o (SPDT) contact de-energizes the star contactor.
Now, the fixed transition time t_{2} of 50 ms starts. When the transition time is complete, the second c/o (SPDT) contact energizes the delta contactor connected to terminals 25-28. The delta contactor remains energized as long as control supply voltage is applied to the unit.

$15-16 / 18$	1. c/o (SPDT) contact
$21-22 / 24$	2. c/o (SPDT) contact as instantaneous contact
$25-26 / 28$	2. c/o (SPDT) contact
A1-A2	Rated control supply voltage $U_{S} 24-240 \mathrm{~V} \mathrm{AC/DC}$
X1-Z2	Control input
Y1-Z2	Control input
Z1-Z2	Remote potentiometer connection

Connection diagram

Wiring instructions

Control input (volt-free triggering)

Remote potentiometer

Triggering of the control inputs with a proximity switch (3 wire)

Technical data

Data at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and rated values, unless otherwise indicated

Input circuits

User interface

Indication of operational states		
Control supply voltage / timing	U/T: green LED	\checkmark : control supply voltage applied
	U/T: green LED	几Ъ, timing
Relay status	R1: yellow LED	\checkmark : output relay 1 energized
	R2: yellow LED	$\sqrt{ }$: output relay 2 energized

General data

MTBF		on request	
Duty time		100 \%	
Dimensions (W $\times \mathrm{H} \times \mathrm{D}$)	product dimensions	$22.5 \times 85.6 \times 103.7 \mathrm{~mm}(0.89 \times 3.37 \times 4.08 \mathrm{in})$	
	packaging dimensions	$97 \times 109 \times 30 \mathrm{~mm}(3.82 \times 4.29 \times 1.18 \mathrm{in})$	
Weight		Screw connection technology	Easy Connect Technology (Push-in)
	net weight	$0.145 \mathrm{~kg}(0.320 \mathrm{lb})$	$0.133 \mathrm{~kg}(0.293 \mathrm{lb})$
	gross weight	$0.167 \mathrm{~kg}(0.368 \mathrm{lb})$	$0.156 \mathrm{~kg}(0.344 \mathrm{lb})$
Mounting		DIN rail (IEC/EN 60715), snap-on mounting without any tool	
Mounting position		any	
Minimum distance to other units	vertical	not necessary	
	horizontal	not necessary	
Material of housing		UL 94 V-0	
Degree of protection	housing	IP50	
	terminals	IP20	

Electrical connection

		Screw connection technology	Easy Connect Technology (Push-in)
Wire size	fine-strand with (out) wire end ferrule	$\begin{aligned} & 1 \times 0.5-2.5 \mathrm{~mm}^{2} \\ & (1 \times 20-14 \mathrm{AWG}) \\ & 2 \times 0.5-1.5 \mathrm{~mm}^{2} \\ & (2 \times 20-16 A W G) \end{aligned}$	$\begin{aligned} & 2 \times 0.5-1.5 \mathrm{~mm}^{2} \\ & (2 \times 20-16 \mathrm{AWG}) \end{aligned}$
	rigid	$\begin{aligned} & 1 \times 0.5-4 \mathrm{~mm}^{2} \\ & (1 \times 20-12 \mathrm{AWG}) \\ & 2 \times 0.5-2.5 \mathrm{~mm}^{2} \\ & (2 \times 20-14 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 2 \times 0.5-1.5 \mathrm{~mm}^{2} \\ & (2 \times 20-16 \mathrm{AWG}) \end{aligned}$
Stripping length		8 mm (0.32 in)	
Tightening torque		$\begin{aligned} & 0.6-0.8 \mathrm{Nm} \\ & (5.31-7.08 \mathrm{lb} . \mathrm{in}) \end{aligned}$	-

Environmental data

Ambient temperature ranges	operation	$-40 \ldots+60^{\circ} \mathrm{C}$
	storage	$-40 \ldots+85^{\circ} \mathrm{C}$
Damp heat, cyclic (IEC/EN 60068-2-30)		$6 \times 24 \mathrm{~h}$ cycle, $55^{\circ} \mathrm{C}, 95 \% \mathrm{RH}$
Vibration, sinusoidal (IEC/EN 60068-2-6)	functioning	$40 \mathrm{~m} / \mathrm{s}^{2}, 10-58 / 60-150 \mathrm{~Hz}$
	resistance	$60 \mathrm{~m} / \mathrm{s}^{2}, 10-58 / 60-150 \mathrm{~Hz}, 20$ cycles
Vibration, seismic (IEC/EN 60068-3-3)	functioning	$20 \mathrm{~m} / \mathrm{s}^{2}$
Shock, half-sine (IEC/EN 60068-2-27)	functioning	$100 \mathrm{~m} / \mathrm{s}^{2}, 11 \mathrm{~ms}, 3$ shocks/direction
	resistance	$300 \mathrm{~m} / \mathrm{s}^{2}, 11 \mathrm{~ms}, 3$ shocks/direction

Isolation data

| Rated insulation voltage U_{i} | output circuit $1 / 200 \mathrm{~V}$
 output circuit 2 | 3 |
| :--- | :--- | :--- | :--- |

Standards

| Product standard | IEC 61812-1, EN 61812-1+A11, |
| :--- | :--- | :--- |
| DIN VDE 0435 part 2021 | |

Electromagnetic compatibility

Interference immunity to		IEC/EN 61000-6-1, IEC/EN 61000-6-2
electrostatic discharge	IEC/EN 61000-4-2	Level $3,6 \mathrm{kV} / 8 \mathrm{kV}$
radiated, radio-frequency, electromagnetic field	IEC/EN 61000-4-3	Level 3, $10 \mathrm{~V} / \mathrm{m}(1 \mathrm{GHz}) / 3 \mathrm{~V} / \mathrm{m}(2 \mathrm{GHz}) /$ $1 \mathrm{~V} / \mathrm{m}(2.7 \mathrm{GHz})$
electrical fast transient / burst	IEC/EN 61000-4-4	Level 3, $2 \mathrm{kV} / 5 \mathrm{kHz}$
surge	IEC/EN 61000-4-5	Level 4, $2 \mathrm{kV} \mathrm{A1-A2}$
conducted disturbances, induced by radiofrequency fields	IEC/EN 61000-4-6	Level 3, 10 V
harmonics and interharmonics	IEC/EN 61000-4-13	Level 3
Interference emission		IEC/EN 61000-6-3, IEC/EN 61000-6-4
high-frequency radiated	IEC/CISPR 22, EN 55022	Class B
high-frequency conducted	IEC/CISPR 22, EN 55022	Class B

Load limit curves

AC load (resistive)

Derating factor F for inductive AC load

DC load (resistive)

Contact lifetime
in mm and inches

Accessories
in mm and inches

ADP. 01 - Adapter for screw mounting

MAR. 01 - Marker label

COV. 11 - Sealable transparent cover

Remote potentiometer

Further documentation

Document title	Document type	Document number
Electronic Products and Relays	Technical catalogue	2CDC 110 004 C020x
CT-AHS, CT-ARS, CT-MBS, CT-MFS	Instruction manual	
Remote potentiometer for CT-S range time relays	Data sheet	

You can find the documentation on the internet at www.abb.com/lowvoltage -> Control Products -> Electronic Relays and Controls -> Time Relays

Contact us

ABB STOTZ-KONTAKT GmbH

P. O. Box 101680

69006 Heidelberg, Germany
Phone: +49 (0) 62217 01-0
Fax: +49 (0) 62217 01-13 25
E-mail: info.desto@de.abb.com

You can find the address of your
local sales organization on the
ABB home page
http://www.abb.com/contacts
-> Low Voltage Products and Systems

Note:

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents - in whole or in parts - is forbidden without prior written consent of ABB AG.

Copyright® 2011 ABB
All rights reserved

