Motion Control Products

Application note
PLC coding style

AN00244

Rev A (EN)

Introduction

This application note describes ABB'’s recommended practices for coding ABB AC500 PLC applications. Adopting these
practices ensures that application developers can write code with a consistent style thereby improving quality, portability,
readability and maintainability.

This document assumes a working knowledge of ABB’s Automation Builder software and is intended as a guide on how to
structure the IEC 61131-3 application code and how to name application elements such as Program Organisation Units (POUs),
program variables, constant values etc...

POU structure

The POU tab within the PLC application development environment allows the user to view the hierarchy of the application.
Regardless of whatever method is used to structure the POUs within the POU tree view, a program named “prgProjectinfo”
(containing comments only) should always be included at the outermost level of the POU tree. It is suggested that this is the
only POU that is not contained within a folder.

This program should be excluded from the build (right click a POU and select ‘Exclude from Build’) and this will be indicated by
its green colour in the POU tree.

The comments in this program are used to detail the application’s function and revision history. It is recommended that this
program be coded using Structured Text (ST). The program contents should contain the following information as a minimum...

e Project reference

e Customer

e Hardware platform(s) used including firmware revision details (hardware list should include additional devices other
than the PLC that are in some way controlled by the PLC, e.g. servo drives, fieldbus couplers)

e Author

e Date of creation

e Short description

e Revision history (revision number, date of change, author, description of change)

The screenshot below illustrates the general form for this program (an Export file is included with this application note to allow
the user to import this into their project if required)...

ABB Motion control products 1 Power and productivity ‘\I‘.
new.abb.com/motion for a better world™

Application note PLC Coding style
%y proProjectinfo (PRG-ST) E=5(ECE %2
D001 FROGRAM praProjectinfo
0002)AR
DODO3END_VAR
Onnd| =
4 | F
%I:*. L | SN NN SRR N | SN RN ST B | S SHNMISRIS S N | A SN [T BN | SN SESMSARIS: S U N 1 SN (SN W I U SN SN SN N O 1 N SN M I I
ooz Project . ProjectReferenceMumber
0003 Customer - ABB Valued Customer
0004 HMW Platform @ PM&3io (2.5.2)
o0y CM5Y9-ETHCAT (4.3.0.2)
_Doog| MicroFlex e150 (5852)
0007 MotiFlex e180 (5860)
0008 Author - ABB UK Ltd
0008 Date : TthJune 2016
0010 Description : 3Shor form project description
M::
0092 Rewvision History
0013
0014 Version Date Author Description
D05 xxx U000 X Short description of changes
0014
0017
M ::*'
0019
4 [2

AN00244-001

For the remaining POUs the general recommendation is to use folders (and sub-folders) in a way that simplifies the apparent
structure of the code and allows someone who has not seen the application before to understand the logical structure of the
code and easily locate relevant POUs when editing/debugging the application. How this is actually achieved may depend on a
number of factors including size/complexity of the application so this document does not aim to define a specific style. Instead
two suggested schemes are illustrated below for reference.

Physical view
This scheme assumes that the user would prefer to structure the POU view in a way that relates to the physical structure of the
machine/system the code is targeted at. Top level folders should be used to contain POUs relating to specific areas/parts of the
machine/system and if necessary sub-folders within these top level folders can be used to break the application down into

logical sections.

further

S Note that there are some cases where POUs cannot be wholly
B3 Iritialization “assigned” to a specific area of the machine via a folder structure.
b CALLBACK_START (PRG] As an example, CALLBACK_START is a program that is called by
23 Inwertar the system start event and may contain logic relating to many
"] praMachineCtl [PRE] separate elements of the machine. This program could be written to
Elﬁ Funife Axis call additional programs that are then located within the relevant
B3 Sync'd to EtherCAT folders in the tree, but it is also acceptable to retain all of the logic
E@ probutbycls (PRG) within a single program to minimise the number of POUs and
Statetdachine . o .
therefore the apparent complexity of the application. In this case a
] proEtherCAT PRE) i)
El---@ prgHaming [PFiG) folder independent of the machine structure may be used (as
StateMachine illustrated by the Initialisation folder in the example to the left).
""" @ FBGetReadyT oEnable [FB)
..... praHighSpesd [PRG) Also note that CALLBACK_START is a program but is not pre-fixed
B3 Master Asis by the text ‘prg’. This particular program (and others that can be
F[gf] prataster [PREG] called by System Events) must use this specific name so cannot
~[g] praProjectinfo (PRE] meet the recommendations of this document for program name pre-
fixing.
Logical view
ABB Motion control products 2 Power and productivity ‘\I‘.
new.abb.com/motion for a better world™

Application note PLC Coding style AN00244-001

This scheme assumes that the user would prefer to structure the POU view in a way that relates to the logical processing of the
application. Top level folders should be used to contain POUs relating to specific logical functions and these should be named
to assist in identifying how/when the POUs within the folder are processed (e.g. if a task has been configured to run a number of
programs on a cyclic basis a top level folder named ‘Cyclic’ may be created). If necessary sub-folders within these top level
folders can be used to break the application down into further logical sections.

B3 Cyclic
B4 Invertor
1 @ prg achineChl (PRG)
EI*';'I Extemal Events
| B Knite Asis
B3 High Speed
E@ prgCutCycle [PRG)
i -[§) StateMachine
] moEtherCAT [PRE)
ELq.] prgHeming (FRG)
_;j Stateh achine
----- {ff] FBGetReadyToEnable (FE
Tﬂ prgHighSpeed [PRG]
B3 Master Axiz
: [|0 praMaster [PRG)
B3 Inttigisation
! E] CALLBACK_START [PRG)
@ pigProjectinfo [PRG)

As can be seen from the two examples above, in practise a mix of the two schemes may be inevitable. Folders are sorted in
alpha-numeric order so you may also make use of this fact should you wish to order your folders in a specific manner (e.g.
starting Folder names 01.... 02.... etc... can allow a specific order to be defined in the POU tree). Folder names may also
contain a space (unlike actual POU elements) so include spaces when defining folder names if required.

PO =

B3 Cyelic

B3 Inwertar
] prgMachineCtl [PRG]

B3 External Events

B3 Knife fuis

B3 High Speed

B[proCutCycle [FREG)

P Statebd achine

It may also be useful to include a folder (e.g. named ‘Old Code’,
‘Unused’ or other name with similar meaning) in which unused,

] praEtherCAT [FRG) outdated or trial elements of code that are now excluded from the
B[praHoming [PRG] build are stored for future reference. During application
5] StateMachine development it may be preferable to keep old versions of particular

""" i FBGetfieadyToE nable [FE] POUs to revert back to until you are sure the new application code
----- prgHighS peed (PRG)

B 53 Master Asis is working correctly.

b @ prghd aster [FRG)
Ela Initialis ation
CALLBACK_START [PRG)
E-{23 0id Code

------ i) proMachineCt_old (PRE)
..... praProjectinfo (FRG)

ABB Motion control products 3 Power and productivity ‘\I‘.
new.abb.com/motion for a better world™

Application note PLC Coding style AN00244-001

General naming rules for POU elements
The following general rules/conventions apply to all POU elements:

e POU’s (PRGs, Function Blocks, Functions) are automatically sorted in alpha numeric order

e POU name lengths are limited to a maximum of 255 characters (it is recommended to try to restrict lengths to 25
characters or less if possible)

e POU names cannot start with a number

e No spaces are allowed within POU names

e Underscores ‘_’ are allowed but it is recommended not to use these but instead use lower case prefixes followed by
UpperCamelCase, also known as “PascalForm” (i.e. capitalised first letter of each word within the name)

e The order in the POU tree view has no bearing on the order the POU’s are called, it is just a list

Programs

When the user declares a POU of type ‘Program’ it is recommended that the prg prefix is included in the name. This allows the
user to easily identify programmatic access to a member variable of a program and distinguish this from a member variable of a
data structure for example. The remainder of the name should use UpperCamelCase.

Prefix Type/Description Example

prg Program prgMachineControl

Avoid meaningless names such as prg01 and instead select a name that relates to the program’s purpose (e.g.
prgMachineControl may identify that this POU was the main program containing the bulk of the machine logic.

It is advised that as few programs as possible are called directly from tasks. Instead it is best that a program called from a task
is then used to call all other programs that need to be processed at the priority defined by the calling task/program.

Example:

Instead of....

5| Task configuration
B (@& Task configuration

Bl & EtherCAT

<[] proEtherCAT();
-[8] praHoming();
-[E] praCutCycle();

b [2] proMachineCtri();

...use....
5| Task configuration % prgHighSpeed (PRG-5T)

E|"""'TEIS|(configuration 0001 P_ROGR‘:\H prgHighSpeed
L g iam euant D002 VAR

QOO3END_VAR
- & EtherCAT oo
G e Eee T DOD1|prgEtherCAT;
b [2] prgMachineCirl(y 0002 prgHoming

0003 prgCutCycle;

Actions
Action names should not be prefixed. Use UpperCamelCase for the action name. Avoid meaningless names (e.g. Action01).

Prefix Type/Description Example

(none) Action StateMachine
Variables and Constants

ABB Motion control products 4 Power and productivity ‘\I‘.
new.abb.com/motion for a better world™

Application note

PLC Coding style

AN00244-001

All program elements, including variables and constants should have meaningful names. Whenever possible, do not use hard-
coded physical addresses as variables, always define a variable via the 10 mappings screen(s) in Automation Builder. Do not
re-use a global variable name within a local routine (so called “shadowing”). All variables should have suitable prefixes to
indicate their type/usage as described in the table below. Constants follow a similar scheme but the prefix is preceded by an
underscore to indicate a constant/literal value.

The main body of the name should describe the use of the variable/constant and should be mixed case, capitalizing the first
letter of each word with no spaces or underscores. This format is known as UpperCamelCase or PascalForm. Examples are
shown in the following table...

Prefix Type/Description Example
X BOOL — Boolean, 1 bit data (true/false) xMyBool: BOOL;
by BYTE — Byte, 8 bit data byMyByte: BYTE;
w WORD — word, 16 bit data wMyWord: WORD;
dw DWORD - double word, 32 bit data dwMyDoubleWord: DWORD;
Iw LWORD - long word, 64 bit data lwMyLongDoubleWord: LWORD;
Si SINT — small integer, 8 bit data siMySmallinteger: SINT;
usi USINT — unsigned small integer, 8 bit data | usiMyUnsignedSmallinteger: USINT;
i INT — integer, 16 bit data iMyInteger: INT;
ui UINT — unsigned integer, 16 bit data uiMyUnsignedinteger: UINT;
di DINT — double integer, 32 bit data diMyDoublelnteger: DINT;
udi UDINT — unsigned double integer, 32 bit | udiMyUnsignedDoublelnteger: UDINT;
data
li LINT —long integer, 64 bit data liMyLonglInteger: LINT;
uli ULINT — unsigned long integer, 64 bit data | uliMyUnsignedLongInteger: ULINT;
r REAL —real, 32 bit data rMyReal: REAL;
Ir LREAL - long real, 64 bit data IrMyLongReal: LREAL;
str STRING - string, string type data strMyString: STRING;
t TIME — time tCurrentTime: TIME;
tod TIME_OF_DAY - time of day todTimeOfDay: TIME_OF_DAY;
dtt DATETIME — date time dttCurrentDateAndTime: DATETIME;
dt DATE — date dtCurrentData: DATE;
p POINTER pMyPointer: POINTER TO DINT;
ar ARRAY arMyArray: ARRAY[1..5] OF INT;
Enumeration Type definition TYPE ECutterState

e Enumeration instance and values eState : ECutterState;

TYPE ECutterState

(elnitState := 0,

eHome := 10,
eHomed := 20);

END_TYPE
TS TYPE STRUCT definition TYPE TSMyTypeStructure
ts Type Struct instance tsLabelHead1 : TSLabelHead;
ST STRUCT definition STRUCT STMyStructure
st STRUCT instance stStructure: STMyStructure;
_ Constant Value _iMaxSpeed: INT:= 3000;
ax Axis Reference axCutter: AXIS_REF;

This naming convention for variables also applies to PDO mapped variables. For example, an EtherCAT axis ‘ControlWord’
PDO mapping is a U16 data type (word) so a suitable name for this could be wAxisControlWord.

ABB Motion control products 5

new.abb.com/motion

Power and productivity ‘\ I‘ .
for a better world™

Application note PLC Coding style AN00244-001

Functions

Functions come in two main forms. They can be standard functions which are included within the IEC61131 programming
environment libraries or they can be user defined. When a user defined function POU is created it should be given a name that
describes the basic functionality of the function. The name should be prefixed with ‘do’ and the remainder of the name should be
of UpperCamelCase form.

Prefix Type/Description Example
do FUNCTION doWrapValueToRange

Once a Function has been created or is used from a library it does not have instances and as such no rules are needed for
handling its repeated use throughout the code.

Function blocks

Function blocks come in two main forms. They can be standard function blocks which are included within the IEC61131
programming environment libraries or they can be user defined function blocks.

Function block declarations

When a function block has been used from a standard library then it already has its name and functionality defined (and this will
not include a prefix). When a user defined function block POU is created it should be given a name (of UpperCamelCase form)
that describes the basic functionality of the function block and this should be prefixed with the capital letters FB.

Prefix Type/Description Example

FB FUNCTION BLOCK FBPhaseAxis

Instances of function blocks

Once a function block has been created, or is used from a library, then it will be necessary to define a name for any instance of
the function block that is to be used. When defining an instance name start this name with a short form of the function block type
in lower case (2 or 3 characters ideally) followed by a description of its use in UpperCamelCase as shown in the examples
below...

Prefix Type/Description Example

pha FBPhaseAxis phalnfeedAxis

par CMC_AXIS_CONTROL_PARAMETER_REAL @ parMainDrive

ker CMC_MOTION_KERNEL_REAL kerMainDrive

cia ECAT_CiA402_CONTROL_APP ciaMainDrive

mr MC_MoveRelative mrFirstindex

ton T_ON: Timer tonStartDelay

ctu CTU: Counter ctuProductionCount

Avoid names such as ctul for example. Instead use a name relative to the block’s purpose (e.g..ctuServiceDue if it were
counting machine cycles to indicate when a machine service was required). Try to keep to two or three letters for the prefix, but
this may not always be possible (e.g. it might be difficult to avoid a clash with another function block prefix or difficult to make it
obvious what the function block type is), in which case try not to exceed five characters.

As an example, both of the following instance names would be acceptable...

phalnfeedAxis : FBPhaseAXxis;
phaselnfeedAxis : FBPhaseAXis;

...but the five letter version is maybe a little clearer to the reader.
Comments / Documentation

There are three main methods of entering comments depending on the specific IEC61131-3 programming language used
and/or the area of the IEC 61131 program editor the comments are entered into.

ABB Motion control products 6 Power and productivity ‘\I‘.
new.abb.com/motion for a better world™

Application note PLC Coding style AN00244-001

In Structured Text (ST), Instruction List (IL) and the variable list areas, comments are encapsulated with (* Comment here *).

Example:

0007|VAR_GLOBAL RETAIMN PERSISTENT
Q008 *MyVariable: BOOL =1, (*Global variable for demo®)
0009 END_‘-H\R'

However when Ladder (LD) or Function Block Diagram (FBD) are used comments can be added to each individual network by
right-clicking and selecting ‘Comment’ from the menu presented.

Example:

L

On completion of a cut cycle after homing (with the machine stopped) we can setthe "Homed™ status._.

AMND

Cut_FTrig.Q— xHome

¥Started

Continuous Function Chart (CFC) uses a comment box feature which can be dropped on to the page.

Process interlocls for the run output

¥Start —

¥Homed —

Whichever comment method is used program comments should describe what is happening and how it is being done. Avoid
comments where functionality is clear from the code.

.1
¥RunCutput 1]

For example, avoid...

If Infeed or Main Drive or Qutfeed home cycles arent complete then set bit for home required
¥HmilnfeedHomeCycleComplete ¥HomeRequired
/] ()
sHmiMainDriveHomeCycleComplete
/1
xHmiOutfeedHomeCycleComplete
/1

...and instead use a comment of the form...

Check if home cycles are complete

¥HmilnfeedHomeCycleComplete ¥HomeReguired

—/| ()
sHmiMainDriveHomeCycleComplete

—/|

*HmiQutfeedHomeCycleComplete

/1

ABB Motion control products 7 Power and productivity ‘\I‘.
for a better world™

new.abb.com/motion

Application note PLC Coding style AN00244-001

(*Check if home cycles are complete®)
¥HomeRequired:= MOT xHmilnfeedHomeCycleComplete AMD NOT xHmiMainDriveHomeCycleComplete AND NOT xHmiCuifeedHomeCycleComplete;

Comments can also be added to individual variables via the declaration window that pops up when the variable is first created...

Ted
oo i e L= |
|VAR_GLOBAL L! |xHumeReqU|red |E|OOL
Cancel I
Symbol list Initial %alue Address

[Global_ varisbles | | _| | [~ CONSTANT

Comtent |One ar more exes requires & home oycle [BETAIM
[PERSISTENT

This means that as a user hovers over the variable they will not just see the properties of the variable, but also its comments;

¥HomeRequired

F . N

*HomeRequired : BOOL
(*0ne or more axes requires a home cycle®}
WaR_GLOBAL]

Contact us

For more information please contact your © Copyright 2016 ABB. All rights reserved.
local ABB representative or one of the following: Specifications subject to change without notice.

new.abb.com/motion
new.abb.com/drives
new.abb.com/drivespartners
new.abb.com/PLC

ABB Motion control products 8 Power and productivity ‘\I'.
new.abb.com/motion for a better world™

