SPA-ZC 100/SPA-ZC 102 LON[®]/SPA Gateway

Programming Manual

(Empty)

1MRS 750743-MUM

LON[®]/SPA Gateway

 Issued:
 30.10.1997

 Version:
 B/29.08.2001

 Checked:
 JL

 Approved:
 OV

Programming Manual

We reserve the right to change data without prior notice.

C	Contents:				
1.	Fea	tures		5	
2.	Intr	oduct	ion	6	
	2.1.	Descri	iption of contents	6	
	2.2.	Typica	al applications of LON/SPA gateway	6	
			Substation control system with single "master" device		
		2.2.2.	Substation control system with two "master" devices	7	
		2.2.3.	Use of LON/SPA-gateway with small SPA-bus devices	8	
3.	Des	cripti	on of operation1	0	
			al operation model1		
			juration and communication data structures1		
		3.2.1.	Overview of data structures1	1	
	3.3.	SPA ir	nterface1	2	
		3.3.1.	SPA communication definitions1	2	
		3.3.2.	Unit list definition1	3	
		3.3.3.	Data definitions1	3	
		3.3.4.	Clock synchronisation1	3	
	3.4.	LonWo	orks interface1	3	
		3.4.1.	nvo_AI variables:1	4	
		3.4.2.	nvo_DI variables:1	4	
			nvi_DO variables:1		
		3.4.4.	Event network variable1	4	
			Network variable configuration1		
			Handling of errors in network variable transfer1		
	3.5.		handling1		
			Event buffer1	-	
			Special events1		
			Handling of errors in event transfer1		
	3.6.		al about LonTalk protocol1		
			Network variables1		
			Explicit messages1		
			Network addressing1		
	~ -		General message format		
	3.7.		f LonTalk protocol in LON/SPA-gateway1		
			LON/SPA-gateway network variables1		
			Structures of application messages1		
			Clock synchronization messages2		
	<u> </u>		Gateway diagnostic status2		
	J.Ŭ.	⊏vent	messages2	Z	

3.8.1. Network variable event type	22
3.8.2. Explicit message event type	
3.8.3. SPA-bus events	23
3.8.4. Digital events	24
3.8.5. Analog events	25
3.9. Transparent SPA-bus messages	25
3.10.LON/SPA-gateway configuration command messages	26
4. Installation, configuration and programming	. 27
4.1. General	
4.2. LonWorks node installation (setting the node address)	27
4.3. Programming the SPA-bus interface and data definitions	
4.3.1. General command syntax	
4.3.2. CV command	
4.3.3. SP command	29
4.3.4. UN command	30
4.3.5. DA AI command	32
4.3.6. DA DI command	33
4.3.7. DA DO command	36
4.4. Configuration of the network variables (binding)	
4.4.1. High priority network variables	
4.4.2. Network variable configuration table	
4.4.3. Address table	
4.4.4. Domain table	
4.5. LonTalk network management messages	43
5. Maintenance and service	. 45
5.1. Self diagnostic	45
5.1.1. SPA indicator	45
5.1.2. LON indicator	45
5.2. Fault localization	45
6. Appendix A	. 47
6.1. Default values of communication parameters of	
LON/SPA gateway	47
7. Appendix B 48	
7.1. Configurations of LSGs for parallel operation of SPAU 341 C	
devices	48

LON[®]/SPA Gateway

Programming Manual

1.

Features

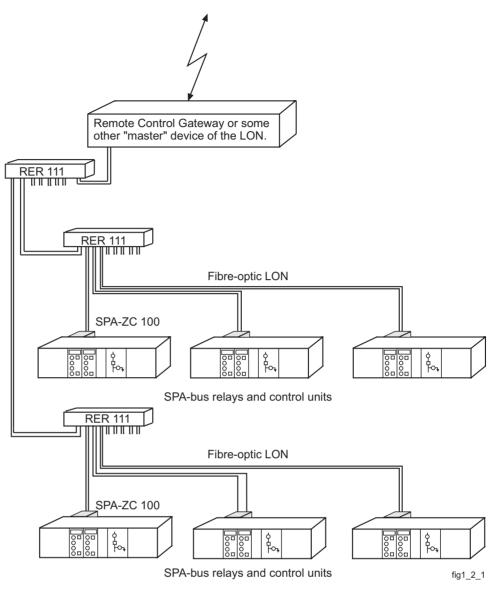
- LONWORKS[®], connection module for devices including SPA-bus interface.
- Polling of measurements, indications and events from the SPA-bus slave modules to the local data base.
- Spontaneous sending of changed measurements, indications and events to LonWorks devices.
- Transparent transfer of settings and other parameter data messages in SPA-bus format.
- Configuration/programming via LonWorks interface.
- SPA-bus interface using 9-pin D-connector with RS-485, RS-232 or TTL-level signalling, max. communication rate of 19200 bits/s.
- LonWorks interface using glass or plastic fibre cables, with max. communication rate of 1.25 Mbits/s.¹

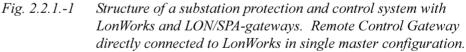
^{1.} Echelon[®], LON[®], LONWORKS[®], LonTalk[®], Neuron[®] and 3150[®] are trademarks of Echelon Corporation registered in the United States and other countries. LONMARK and LONMARK logo are trademarks of Echelon Corporation.

2. Introduction

2.1. Description of contents

This manual describes the operation principle and the programming of configurable parameters of SPA-ZC 100 and SPA-ZC 102. Later on, both devices are referred as LON/SPA -gateways or simply LSGs. The mechanical and electrical installation of the LON/SPA-gateway modules are described in SPA-ZC 100 Installation manual (1MRS750741-MUM) and SPA-ZC 102 Installation manual (1MRS750742-MUM).

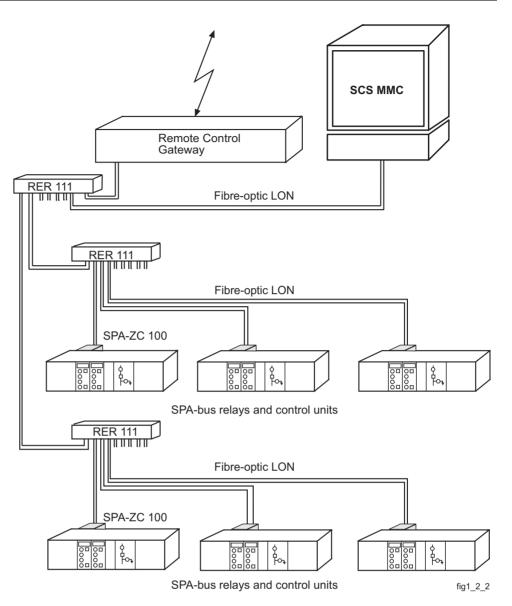

The document is divided in five main sections: the introduction part, description of operation, the configuration part, trouble shooting part and appendixes.

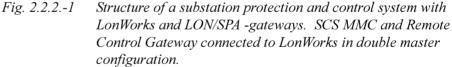

2.2. Typical applications of LON/SPA gateway

The SPA-bus device to which this module is connected can be any protective relay, control module or alarm annunciator which has an interface for the SPA-bus (RS-485, RS-232 or logic/TTL interface). The selection of the SPA interface type is done by the DIP-switches located between the D9-connector and fibre optics connectors. The operating voltage for SPA-ZC 100 is taken from device it is connected to. The SPA-ZC 102 is equipped with internal power supply.

2.2.1. Substation control system with single "master" device

LON/SPA-gateway is connected with fiber optic cables to RER 111, which is called LON star-coupler in this text. Via LON star-coupler the gateways are connected to the substation level Remote Control Gateway. Instead of the remote control gateway the star-coupler may be connected to some other LonWorks "master" device like MicroScada, SCS MMC computer or gateway to station bus.





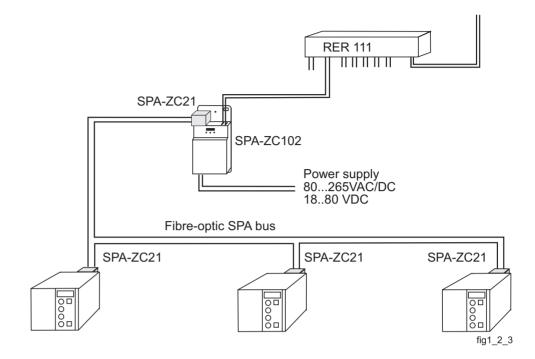
2.2.2.

Substation control system with two "master" devices

LON/SPA-gateway is connected with fibre optic cables to a LON star-coupler. Via LON star-coupler the gateways are connected to the substation level Remote Control Gateway and SCS MMC computer. Instead of the remote control gateway and SCS MMC computer there can be also some other "master" devices of LonWorks.

Use of LON/SPA-gateway with small SPA-bus devices

SPA-ZC 102 is a LON/SPA-gateway which contains power supply. It has same functionality as SPA-ZC 100, but it can also be used with fibre optics converters on SPA-bus connectors.


This can be accomplished by using RS-485 to fibre optics converter SPA-ZC 21 as interface module to the fibre optic SPA-bus (figure 2.4). SPA-ZC 102 have to be configured to give power to SPA-ZC 21. The SPA-bus devices connected to one gateway may together include max. 8 SPA-bus slave units. This kind of arrangement is useful with small SPA-bus devices like single function relays or small control and measuring units.

2.2.3.

LON[®]/SPA Gateway

Programming Manual

In this application it must be noted that one gateway can handle max. 16 analog inputs, 16 digital inputs (16×16 bits) and 16 digital outputs.

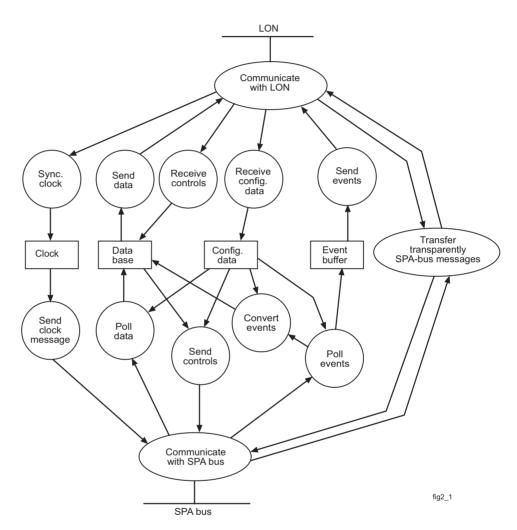


Fig. 2.2.3.-1 System structure with the fibre optic SPA-bus loop.

Description of operation 3.

3.1. **General operation model**

The main functions of the LON/SPA-gateway are illustrated in figure 3.1. In principle the gateway is like any other SPA-bus master unit including all the necessary SPA-bus master functions. The main difference to the real SPA-bus master unit is the limited size of the data base and event buffer, and the limited maximum number of SPA-bus slave units.

Fig. 3.1.-1 Functions of the LON/SPA-gateway.

The LON/SPA-gateway polls digital and analog data according to definitions made in DA AI and DA DI configuration data. The events polled from SPA-device(s) are temporarily stored in buffer, capable of storing 50 events. The ratio of data polls to event polls is adjustable and is stored in configuration data. Polled data values are sent to LONWORKS by using the network variables. Polled events can be sent using either a network variable of SNVT_alarm format or an explicit message. Control data received by network variables are sent to SPA according to DA DO definitions. The LSG receives time synchronisation messages from LONWORKS and updates internal realtime clock. Internal clock is used to complete the time stamps of the

LON[®]/SPA Gateway

Programming Manual

events polled from SPA-device. The LSG broadcasts time synchronisation messages to SPA-devices by using the WT and WD type messages. The configuration commands are sent to LSG using the message code 0x43 and configuration is stored in EEPROM of Neuron chip. Direct SPA requests are received by explicit message from LONWORKS and are transferred as they are

3.2. Configuration and communication data structures

3.2.1. Overview of data structures

The database of the LON/SPA-gateway includes:

- 52 network variables:
- 16 output network variables for analog input (AI) objects in 32-bit fixed point format or floating point format
- 16 output network variables for digital input (DI) objects in 16-bit binary format
- 16 input network variables for digital output (DO) objects in 16-bit binary format
- 1 clock warning message input
- 1 clock message input
- 1 gateway status output for communication statistics
- 1 event data output for sending the buffered event data
- Address table with 4 entries for the addresses of peer devices on LONWORKS
- 48 data definitions for the objects
- 16 data definitions for the polled analog input objects (DA AI)
- 16 data definitions for the polled digital input objects (DA DI)
- 16 data definitions for the digital output objects (DA DO)
- Definitions for the SPA-bus communication parameters, event sending method (SP)
- Unit list definition for the SPA units under event and data polling (UN)

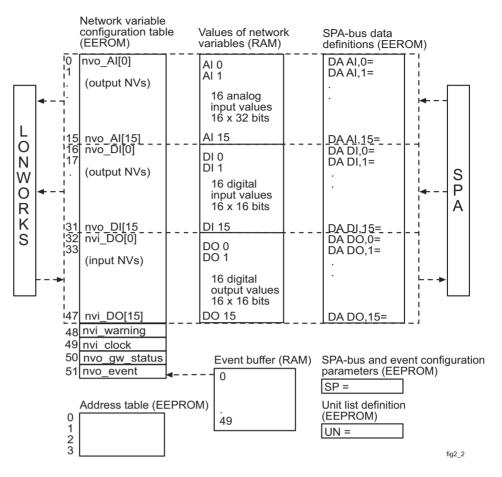


Fig. 3.2.-1 Overview of data structures in the LON/SPA-gateway.

3.3. SPA interface

3.3.1. SPA communication definitions

SPA-bus interface implements the master side of the SPA-bus protocol. Following parameters of SPA interface are configurable: Baudrate (19.2 and 9,6 kbit/s), parity, receive timeout delay and number of retransmissions. Fixed communication parameters are: 7 data bits and 1 stop bit. The SPA-bus interface parameters are defined in SP-command. By default SP-command definitions are:

```
event mode =1 (events in SNVT_alarm format)
baudrate = 9600
data bits = 7
parity = even
stop bits = 1
receive_timeout = 100ms
number of retransmissions = 2
poll ratio = 8
analog events = disabled
single master mode.
```

See chapter 4.4.3 "SP-command" for details.

LON[®]/SPA Gateway

Programming Manual

3.3.2.	Unit list definition
	The SPA-bus slave units connected to the gateway are defined in unit list. The unit list definition is used for event and data polling so it have to be made before any data object definition. The maximum number of slave units is 8. All slave units in polling sequence have to have consecutive slave numbers. Definition in the unit list includes slave number of first SPA-unit (1999), the number of slave units and slave type (015). The slave numbers have to be in a increasing consecutive order starting from the first SPA-unit number. Unit list definitions are made in UN-command. By default UN has no definition. See chapter 3.4.4 "UN-command" for details.
3.3.3.	Data definitions
	The SPA-bus data definitions together with the unit list definition controls the acquisition of data and events from the SPA-bus devices. Each data definition includes the SPA-bus data address (unit, channel and data numbers) and some attributes used in storing data to the data base. The definitions are configured using the programming commands described in chapter 3.4 "Programming the SPA-bus interface and data definitions".
3.3.4.	Clock synchronisation
	The clock of the gateway is synchronised with clock synchronisation messages broadcasted by LONWORKS "master" device. The gateway synchronises the clocks of the SPA-bus modules by sending the broadcast message.
	Both WT and WD type clock synch messages are sent to the SPA-bus using the broadcast address number 900.
	Second clock message (WT-message) is sent in 1 second intervals. Once a minute (every 60 seconds) a full date and time message (WD-message) is sent instead of WT-message.
	The LON/SPA-gateway sends clock messages to SPA-bus when configuration valid stamp is set ($CV = WK$).
3.4.	LONWORKS interface
	The analog input (AI), digital input (DI), digital output (DO) and event data values are transferred using network variables of LonTalk [®] protocol.
	In general a message containing an AI or DI network variable is sent to LONWORKS, when change in AI or DI value is detected. By default the event network variable update is sent whenever there is at least one event in the event buffer. Alternatively events can be sent by using the explicit message format.
3.4.1.	nvo_AI variables:
	Analog input data is cyclically polled from the SPA-bus. An nvo_AI network variable is updated and a network variable update message is sent to LONWORKS if the new polled value differs from the previous value more than the limit given by the dead band. If use of analog events is enabled, then the AI data is additionally sent to LONWORKS using an event message of type "analog event".

SPA-ZC 100/	LON [®] /SPA Gateway	1MRS 750743-MUM		
SPA-ZC 102	Programming Manual			
3.4.2.	nvo_DI variables:			
	Digital input data is either cyclically polled or updated SPA-bus. If the DI values changes its state the nvo_DI and a network variable update message is sent to LONW updated from SPA-bus event, then its value is additiona an event message of type "digital event".	I network variable is updated ORKS. If the DI variable was		
	All DI object can be updated by cyclical poll, only obj updated from events.	ects DI[0]DI[6] can be		
	If nvo_DI[15] is defined and it is bound as priority net 3.5) then it will be a high priority DI, which is polled w message. In this case also nvo_DI[14], nvo_DI[13], DIs.	ith every other SPA-bus poll		
3.4.3.	nvi_DO variables:			
	By updating the nvi_DO network variables the digital outputs of the SPA-bus devices connected to the LON/SPA-gateway can be controlled. The DO variables can be updated by any device connected to LONWORKS including another LON/SPA-gateway.			
	If nvi_DO network variable is bound as priority network variable (read chap and its definition creates only one SPA-bus message then it will be a high p DO. The SPA-bus W-message generated from the update of a high priority I bypass all other SPA-bus messages when sent to the SPA-bus.			
3.4.4.	Event network variable			
	Events can be sent from LON/SPA-gateway by using a variable or by using explicit message sending. This is command. Also the choice between one or two master units on LONWORKS) is made in SP-command. If only of the address table entries can be used. If two master of two masters have to be declared in address table ent configuration of event network variable have to be set	set in mode-field of SP- rs node(s) (data acquisition one master is receiving, any units are used, the addresses tries 0 and 1. However the		
3.4.5.	Network variable configuration			
	The network variable configuration table entries are w network variables are bound to network variables in ot described in chapter 3.5. The configuration data of eac e.g. the 14-bit network variable selector and information DI variables. The network variable selector is used as logical address of the data on LONWORKS.	ther nodes of LONWORKS as ch network variable includes n of the receiver of the AI and		
	When the LON/SPA-gateway is configured to send evevent network variable have to be configured to use th previously stated, the event data is actually sent to masentries 0 and 1.	e address table entry 0. As		

LON[®]/SPA Gatewav

Programming Manual

3.4.6. Handling of errors in network variable

If the sending of an AI or DI network variable update message to LONWORKS fails after making the defined number of retries, then the sending is retried again after a few seconds.

The sending of network variable messages is retried only if acknowledged message service is used. If network variables are sent using broadcast then unacknowledged repeated service is recommended to overcome temporary failures.

3.5. Event handling

Events are cyclically polled from the SPA-bus slaves (SPA-bus events) or internally generated in the LON/SPA-gateway (digital events or analog events). New events are sent to the "master" node(s) of the LONWORKS. If two masters are used, the addresses of the master nodes are defined by address table entries 0 and 1. (Read chapter 3.5).

3.5.1. Event buffer

The size of the event buffer is 50 events.

One event in the event buffer contains:

- event type (SPA-bus event, analog event, digital event)
- object address (0...65535, nv selector or SPA address)
- event data (32 bit floating point analog value or 16 bit mask and 16 bit digital data value)
- time stamp (year...0.1 millisecond)

3.5.2. Special events

In addition to event codes received from the SPA-bus slave units, the LON/SPAgateway can generate the events in special situations. The following event codes are used:

- E53 = no connection to slave
- E54 = connection with slave re-established
- E51 = overflow in gateway's event buffer

When special events are sent using nvo_event (nv index 51) the slave index reported in location field is calculated as follows:

 $LSG_slave_index = 512 + node + (subnet-1)*128$

where: node = node number of LON/SPA-gateway (1...127)

subnet = subnet number of LON/SPA-gateway (1...4)

The range from subnet 1, node 1 to subnet 4 node 102 are reported as slave_index range from 513 to 998. All other valid combinations are reported as maximum slave_index 999.

Note: Event E51 can also be generated from the slave unit, when event buffer of slave unit overflows.

SPA-ZC 100/	LON [®] /SPA Gateway	1MRS 750743-MUM		
SPA-ZC 102	Programming Manual			
3.5.3.	Handling of errors in event transfer			
	If the sending of an event to LONWORKS fails after making the defined number of retries, then the sending is retried again after a few seconds. If double master configuration is defined each master connection is supervised separately.			
	If a SPA-bus slave does not respond to an event por continuous event poll and polled next time after a c has "dropped out" from the event poll also the poll objects will be suspended and polled again after th	certain timeout period. If a slave ing of cyclically polled AI or DI		
3.6.	General about LonTalk protocol			
	LonTalk protocol supports two types of application and explicit messages.	a layer objects: network variables		
3.6.1.	Network variables			
	LonTalk protocol employs a data oriented applicat application data items such as temperatures, pressu data items are exchanged between nodes in standar predefined units. The command functions are ther application programs of the receiver nodes rather th In this way, the same engineering value can be sen has a different application for that data item.	res, states, text strings and other rd engineering and other n encapsulated within the han being sent over the network.		
	The data items in LonTalk application protocol are Network variable can be any single data item or da length of 31 bytes.			
	Network variables are addressed on application levels selectors. The selector is a 14-bit number in the ratio	-		
3.6.2.	Explicit messages			
	Explicit messages containing up to 229 bytes of danetwork. Different types of explicit messages are code.			
	A special range of message codes is reserved for for 229 bytes of data may be embedded in a message p other message. LonTalk protocol applies no speci they are treated as a simple array of bytes. The ap the data in any way it wishes.	packet and transmitted like any al processing to foreign frames -		

16

Used message codes:

Message type	Message codes
Application Messages	0x000x3E
Application Responses	0x000x3E
Response if node is off-line	0x3F
Foreign Messages	0x400x4E
Foreign Responses	0x400x4E
Response if node is off-line	0x4F
Network Diagnostic Messages	0x500x53
Network Diagnostic Responses	0x000x3E
Network Management Messages	0x610x7F
Network Management Responses	0x000x3E

Layer 2...6 services

LonTalk protocol offers four basic types of message transport services:

- acknowledged service

- request/response service
- unacknowledged repeated service
- unacknowledged service

3.6.3. Network addressing

In LonTalk protocol the message address is composed of three components:

- domain (not used by LON/SPA-gateway)
- subnet (1...255)
- node (1...127)

The subnet/node may be replaced by one byte group address (0...255). Node number may be replaced by 6 byte Neuron[®] ID. Messages may be broadcasted into a single subnet or to all subnets of a domain.

3.6.4. General message format

The data part of a network variable message contains 2 bytes for 2-bit control information and 14-bit network variable selector and the data itself.

1 X network variable		network variable	X = 0, variable update message or response to a poll	
selector (14 bits)		selector (14 bits)	X = 1, variable poll message	
data 131 bytes		data 131 bytes		

Fig. 3.6.41 (General format (of the data part	of network variable	messages.
---------------	------------------	------------------	---------------------	-----------

0 message code (<80H)				
	data 0229 bytes			

Fig. 3.6.4.-2 General format of the data part of anexplicit message.

SPA-ZC 100/ SPA-ZC 102	LON [®] /SPA Gateway 1MRS 750743 Programming Manual			
3.7.	Use of LonTalk protocol in LON/SPA-gat	oway		
5.7.		-		
	Data in the data base is transferred using network va (events). Programming commands, events and SPA messages are transferred using LONWORKS's explicit	-bus messages or other foreign		
	All the explicit application messages are sent using a service type (ack, unackd, unackd repeated) to be us be configured to the network variable configuration Request/response service is not used with applicatio	ed with network variables can tables in the normal way.		
	All the network management functions of LonTalk 1 (implemented by Echelon®'s Neuron chip firmware).			
	The default communication rate of LONWORKS is 1.	25 Mbits/s.		
	The number of application layer and network layer r incoming messages and 11 for outgoing messages. If there are 7 buffers. The size of the incoming message outgoing message buffers 82. The number of simult (ENSURE THIS). The gateway node can belong to the message buffers can be changed while node is in incremented, the number of the buffers must be decr bytes in buffers is not increased.	For outgoing priority messages ge buffers is 66 bytes and of taneous transactions is 12 only one domain. The size of reset state. If buffer size is		
	The size of the address table is reduced to 4 entries.			

gateway is able to send network variables or events using max. 4 different destinations' addresses. The destination address can be a single node/subnet or a group or a broadcast address.

Index dec	Index hex	Variable	Network direction	Explanation
0	0H	nvo_Al[0]	nv output	Analog input 0
1	1H	nvo_Al[1]	nv output	Analog input 1
2	2H	nvo_AI[2]	nv output	Analog input 2
3	3H	nvo_Al[3]	nv output	Analog input 3
4	4H	nvo_Al[4]	nv output	Analog input 4
5	5H	nvo_Al[5]	nv output	Analog input 5
6	6H	nvo_Al[6]	nv output	Analog input 6
7	7H	nvo_AI[7]	nv output	Analog input 7
8	8H	nvo_Al[8]	nv output	Analog input 8
9	9H	nvo_AI[9]	nv output	Analog input 9
10	AH	nvo_Al[10]	nv output	Analog input 10
11	BH	nvo_AI[11]	nv output	Analog input 11
12	СН	nvo_Al[12]	nv output	Analog input 12
13	DH	nvo_Al[13]	nv output	Analog input 13
14	EH	nvo_Al[14]	nv output	Analog input 14
15	FH	nvo_Al[15]	nv output	Analog input 15
16	10H	nvo_DI[0]	nv output	Digital input 0
17	11H	nvo_DI[1]	nv output	Digital input 1
18	12H	nvo_DI[2]	nv output	Digital input 2

LON/SPA-gateway network variables

3.7.1.

19	13H	nvo_DI[3]	nv output	Digital input 3
20	14H	nvo_DI[4]	nv output	Digital input 4
21	15H	nvo_DI[5]	nv output	Digital input 5
22	16H	nvo_DI[6]	nv output	Digital input 6
23	17H	nvo_DI[7]	nv output	Digital input 7
24	18H	nvo_DI[8]	nv output	Digital input 8
25	19H	nvo_DI[9]	nv output	Digital input 9
26	1AH	nvo_DI[10]	nv output	Digital input 10
27	1BH	nvo_DI[11]	nv output	Digital input 11
28	1CH	nvo_DI[12]	nv output	Digital input 12
29	1DH	nvo_DI[13]	nv output	Digital input 13
30	1EH	nvo_DI[14]	nv output	Digital input 14
31	1FH	nvo_DI[15]	nv output	Digital input 15
32	20H	nvi_DO[0]	nv input	Digital output 0
33	21H	nvi_DO[1]	nv input	Digital output 1
34	22H	nvi_DO[2]	nv input	Digital output 2
35	23H	nvi_DO[3]	nv input	Digital output 3
36	24H	nvi_DO[4]	nv input	Digital output 4
37	25H	nvi_DO[5]	nv input	Digital output 5
38	26H	nvi_DO[6]	nv input	Digital output 6
39	27H	nvi_DO[7]	nv input	Digital output 7
40	28H	nvi_DO[8]	nv input	Digital output 8
41	29H	nvi_DO[9]	nv input	Digital output 9
42	2AH	nvi_DO[10]	nv input	Digital output 10
43	2BH	nvi_DO[11]	nv input	Digital output 11
44	2CH	nvi_DO[12]	nv input	Digital output 12
45	2DH	nvi_DO[13]	nv input	Digital output 13
46	2EH	nvi_DO[14]	nv input	Digital output 14
47	2FH	nvi_DO[15]	nv input	Digital output 15
48	30H	nvi_warning	nv input	Time synch warning message
49	31H	nvi_clock	nv input	Time synchronization message
50	32H	nvo_gw_status	nv output	Gateway diagnostic status
51	33H	nvo_event	nv output	Event NV of SNVT_alarm type

3.7.2.

Structures of application messages

The data part of a network variable message contains 2 byte control information (2 control bits and 14-bit network variable selector) and 1..31 data bytes.

Control bit b7 is always "1" in network variable messages. Control bit b6 is "1" in network variable update messages and "0" in network variable poll messages.

Note:All the multi byte structures are sent msb-byte first and lsb-byte as last byte (in Motorola fashion).

nvo_AI, nvo_DI or nvi_DO network variable messages

Analog input:

1	1	selector msb	
			scaling factor 1000.
	AI	Jala 4 Dyles	(E.g. value 1.05 is sent as 1050) Alternatively analog values are sent as 32 bit floating point values. (IEEE 754 single precision format)

Digital input:

1	1	selector msb	If data is in decimal format, values are sent using fixed point
			integer values with scaling factor 100.
			(E.g. value 1.05 is sent as 105) If data is in integer format, values are sent without scaling.

Digital output (BIN, HEX, DEC, INT):

1	0		If data is in decimal format (DEC), values are sent using fixed
	selector lsb		point value with scaling factor 100.
	DO dala Z ovies		(E.g. value 1.05 is sent as 105) If data is in integer format (INT), values are sent without scaling.

Digital output (BWR):

1	0	selector msb		iiii = bit number (015)
selector lsb				
ii	ii	x x x x		xxxx xxxx xxx = not used
XXXX XXX C		d	d = bit value (0 or 1)	

3.7.3. Clock synchronization messages

The real-time clock of the LON/SPA-gateway may be synchronised by broadcasting network variables nv_warning and nv_clock to the network one after another. The delay between nv_warning and nv_clock may not exceed 100 milliseconds. The delays under approx. 30 ms cause significant amount of clock messages to be missed.

Warning message:

1	0	selector lsb	Default value for the selector is 2FFEH
	selector lsb		
	-		Delay between sending the warning message and the time synch message

Time synch message:

	1	0	selector lsb	default value for the selector is 2FFFH
	selector lsb		lsb	
1	yea	r		year in binary format
2	1			
3	mor	nth		month in binary format
4	day			day in binary format
5	hour			hour in binary format
6	minute			minute in binary format
7	second			second in binary format
8	milliseconds and			milliseconds and hundreds of microseconds as
9	100	mic	roseconds	16-bit binary number

Fig. 3.7.3.-1 The contents of the clock synchronisation messages.

3.7.4. Gateway diagnostic status

Network variable nv_gw_status may be fetched e.g. using the network management command Network Variable Fetch.

1 2	transmitted msg	number of transmitted SPA-bus messages
3 4	received msg	number of received replies
5	failed msg	number of failed messages
6		(no correct reply received)
7 8	common msg	number of broadcast messages
9 10	retransmitted msg	number of retransmissions
11	received timeouts	number of received timeouts
12		(no reply received)
13 14	parity errors	number of replies with parity error
15 16	checksum errors	number of replies with checksum error
17 18	received nacks	number of replies of type N:#:
19 20	AI error bits	bit array indicating AI not responding to polls
21 22	DI error bits	bit array indicating DI not responding to polls
23 24	DO error bits	bit array indicating DO not responding to updates
25	unit list	bit array of slave units not responding to event polls
26	LON snd cnt	number of packets sent on LON
27		(nv updates or explicit messages)
28 29	LON rcv cnt	number of packets received from LON
30	LON snd fail	number of failed transmissions (no ack)
31	LON alloc fail	number of failed buffer allocation for messages to transmit

Note: When one of SPA-bus counters exceeds it's maximum value all SPA-bus counters will be reset.

3.8. Event messages

An event message from the LON/SPA-gateway contains one event. Events are sent by network variable update of nvo_event (index 51, 32H) or as explicit messages. Event format is selected by the event mode option in SP-command.

3.8.1. Network variable event type

The structure type of event network variable is SNVT_alarm according to LonMark interoperability guideline. One update message from LON/SPA -gateway contains one event. The structure and contents of a SNVT_alarm update message is shown in next table. The all four types of events are included in the content description part.

	1 <i>c c</i>			
1	Location string	Contents: SPAnnn, where nnn is interpreted as: (Analog) SPA events: nnn = number of the SPA slave in ASCII		
3		format		
4		Digital or analog event: $nnn = 512 + own node number + (own$		
5		subnet number -1)*128.		
6				
7	Object ID	(Analog) SPA events: channel number.		
8		Digital/analog event: index of corresponding network variable + 1		
9	Alarm type	(Analog) SPA events: event code + 128 Digital/analog event: 129 (E1)		
10	Priority level	Alarm priority: 0 (0=lowest level)		
11	Index to SNVT	SPA event: 0 Analog SPA event: 202		
12		Digital event: 83 Analog event: 252		
13	Value	SPA event: no value		
14		Analog SPA event: 32 bit analog fixed point value, scale 1000.		
15 16		Digital event: 16 msb indicates changed bits in the data part and 16 lsb is new value of the DI-object		
10		Analog event: 32 bit analog fixed point value, scale 1000.		
17	Year	Year 0 $3000 (0 = year not specified)$		
18				
19	Month	0 12 (0=not specified)		
20	Day	0 31 (0=not specified)		
21	Hour	0 23		
22	Minute	0 59		
23	Second	0 59		
24	Millisecond	0 999		
25				
26	Alarm limit	Alarm limit: 0		
27				
28 29				
29				

Fig. 3.8.1.-1 The contents of nvo_event network variable.

3.8.2. Explicit message event type

An event message from LON/SPA-gateway may contain one event. Foreign message code 40H is used.

0	0 40H	Message code 40H.
1	event type (8 bits)	
2	object	
3	address (16bits)	
4	event data (32 bits)	
5		
6		
7		
8	year (msb)	
9	year (Isb)	
10	month	
11	day	
12	hour	
13	minute	
14	second	
15	ms and 100 μs (msb)	Bytes 15 and 16 contains a 16 bit number including
16	ms and 100 μs (Isb)	milliseconds and hundreds of microseconds

Fig. 3.8.2.-1 The contents of an event message.

LON/SPA-gateway uses the following event types:

Type code	Event type
0	SPA-bus event,
	event generated from SPA-bus events.
1	Analog event, event with 32 bit analog data value containing the contents of one AI of the LON/SPA-gateway.
2	Digital event, event with 16 bit data generated by converting event to DI data in the database.
7	SPA-bus analog event, event generated from SPA-bus analog event. Analog data in event data part.

3.8.3. SPA-bus events

The SPA-bus event identification of those SPA-bus events which are not converted to binary format is coded to "object address" as described in the following figure. The msb is equal to 1, to enable division of object address range to data addresses from 0 to 32767 (7FFFH) and event addresses from 32768 (8000H) to 65535.(FFFFH)

0	0	40H	Message code 40H
1	event ty	/pe = 0/7	
2	1111	CCCC	
3	ccee	eeee	
4	32-bit analog	value scaled	
5	with 1000		
6			
7			
8	year (msb)		
9	year (Isb)		
10	month		
11	day		
12	hour		
13	minute		
14	second		
15	ms and 100	us (msb)	Bytes 15 and 16 contains a 16 bit number including
16	ms and 100	us (Isb)	milliseconds and hundreds of microseconds

Fig. 3.8.3.-1 The contents of a SPA event message.

Note: If the channel number is > 63, then bits iii are used to store the msb bits of the channel number. In this case the unit list contains only one unit or in other words the LON/SPA-gateway is connected to a SPA-bus device which contains only one SPA-bus slave unit.

Note: The master unit must have it own list of slave units connected via LONWORKS, because LON/SPA-gateway sends only the index to the unit list, not the slave number to the master unit.

3.8.4. Digital events

If event is converted to binary format and stored in a DI object, then object address will be the same as LonTalk network variable selector of the DI object. The selector is coded to the object address as described in the following figure.

0	0 40H		Message code 40H		
1	event type = 2				
2	00ssss	SSSSSS	ssssssssssss = network variable selector (14 bits)		
3	SS	SS			
4	16 bit mask	•	Mask indicating the changed bits in the data part		
5					
6	16 bit data		New value of the DI object		
7					
8	year (msb)				
9	year (Isb)				
10	month				
11	day				
12	hour				
13	minute				
14	second				
15	ms and 100 µs (msb)		Bytes 15 and 16 contains a 16 bit number including		
16	ms and 100 μs (lsb)		milliseconds and hundreds of microseconds		

Fig. 3.8.4.-1 The contents of a DI event message.

3.8.5. Analog events

If an AI value is sent as an event, then the object address will be the same as LonTalk network variable selector of the AI object. The selector is coded to the object address as described in the following figure.

0	0	40H	Message code 40H
1	event type = 1		
2	00ssss	SSSSSS	sssssssssssss = network variable selector (14 bits)
3	SS	SS	
4	32 bit analog	value scaled	
5	with 1000		
6			
7			
8	year (msb)		
9	year (lsb)		
10	month		
11	day		
12	hour		
13	minute		
14	second		
15	ms and 100 µ	ıs (msb)	Bytes 15 and 16 contains a 16 bit number including
16	ms and 100 µ	us (Isb)	milliseconds and hundreds of microseconds

Fig. 3.8.5.-1 *The contents of an AI event message.*

Transparent SPA-bus messages

3.9.

SPA-bus command messages (Read and Write messages) may be sent to the LON/ SPA-gateway using explicit messages with message code 41H. After sending the given message to the SPA-bus and receiving reply message from the SPA-bus, the

gateway sends the SPA-bus reply message to the sender of the SPA-bus command message using explicit message with message code 41H. Response messages from SPA-slaves can be up to 253 characters long. Messages longer than 253 characters are treated as failed. Long messages are split into parts containing up to 45 characters and are sent serately into LONWORKS. At the end of each part, excluding the last one, is a SPA continuation character "&" indicating that continuation follows.

0 41H	Message code 41H.	
> or <	Message start character > in messages to gateway < in reply messages from gateway	
ASCII character message following the rules of the SPA-bus protocol		
:	End of data part/header	
С	Two checksum characters	
0DH	Message end character, carriage return	

Fig. 3.9.-1 The data part of a transparent SPA-bus message.

Note: The gateway send all data to the SPA-bus. It fetch the slave number from the data part of the message. If slave fails to respond the gateway send reply message with fetched number in slave number field. If gateway cannot fetch any number the slave number zero is returned. The reply must begin with "<" and end with <cr>

3.10.

LON/SPA-gateway configuration command messages

LON/SPA-gateway configuration commands may be sent to the gateway using explicit messages with message code 43H. After processing the given command, the gateway sends the command response to the sender of the configuration command using explicit message and message code 43H.

0	43H	Message code 43H.
Gateway configuration		
command/response		
composed of ASCII		
characters.		
0DH		Command/response end character, carriage return.

Fig. 3.10.-1 The data part of an configuration command and response messages.

4. Installation, configuration and programming

4.1. General

The mechanical and electrical installation of LON/SPA-gateway is described in SPA-ZC 100 Installation Manual or in SPA-ZC 102 Installation Manual. Before any actions described in following chapters, ensure the correct settings for SPA interface type, power supply and cable types of device from corresponding installation manual.

4.2. LONWORKS node installation (setting the node address)

When Neuron 3150 chips are shipped from the manufacturer they are assigned a unique, 6-byte identifier (Neuron ID). Each LONWORKS node has a service pin. Pressing the service pin causes Neuron chip to transmit a network management message "Service Pin Message" containing this Neuron ID. This information may then be used by a network management device to install the node (assign the node its logical node address).

Normally the node installation procedure goes as follows:

- 1. Start Install Node command of the device responsible of network management functions (usually the master node). This function will ask you to press the service pin on the node being installed.
- 2. Press the Service Pin of the module.
- 3. When the network manager node receives the Service Pin Message, it will set the address of the gateway node.

The node address is stored to the Neuron chip's internal EEPROM memory (in the domain table) and usually also to the node list of the network manager node.

4.3.

Programming the SPA-bus interface and data definitions

The configuration/programming of the gateway's SPA-bus interface and data definitions is done by sending explicit messages including commands. The commands are composed of ASCII characters.

The available programming commands are the following:

- SP command
- UN command
- DA AI command
- DA DI command
- DA DO command
- CV command

SP command is used to setup the SPA-bus interface, UN command is used to program the unit list and DA commands are used to program the data definitions.

Before configuration data is written the so called "configuration validity stamp" in EEPROM memory must be reset. And after configuration is complete the validity stamp must be set to start the operation of the gateway. The validity stamp can be accessed by the CV command.

SPA-ZC 100/	LON [®] /SPA Gateway	1MRS 750743-MUM			
SPA-ZC 102	Programming Manual				
4.3.1.	General command syntax				
	Command to and reply from a gateway when setting configuration:				
	Command: CC par,par=par,par				
	Reply: nn				
	CC = command name par = parameters given with the command nn = reply to command, two digit number in ASCII f 00 = command accepted 02 = command rejected xx = other values indicate the position of a syntax or o corresponding unit list definition				
	Command to and reply from gateway when reading con	figuration:			
	Command: CC par,par=				
	Reply: CC par,par=par,par				
	Reply to configuration reading is identical to the origina command.	al configuration setting			
	Command to and reply from gateway when resetting co	nfiguration:			
	Command: CC parameter, parameter=0				
	Reply: nn				
	Note: The commands must be written with capitals and space or a comma) cannot be replaced with another channot recognize the command, it won't send a response.				
4.3.2.	CV command				
	CV command is used to set and reset the configuration EEPROM memory.	validity stamp in the			
	Syntax: CV =X				
	Parameters: X = validity stamp (WK = valid stamp, 0 =	reset stamp)			
	When the LON/SPA gateway starts up after power on, i configuration validity stamp is equal to "WK" or not. If s assumes that the configuration in the EEPROM is valid with the SPA-bus. If stamp is not valid the operation st stamp is set to value "WK".	stamp is "WK", the gateway and starts communication			
	Before configuration data is written the configuration van memory must be reset. And after configuration is compl be set to restart the operation of the gateway.				
	Example 1:				
	Set validity stamp.				
	Command: CV =WK				
	Reply: 00				

Example 2:

Read validity stamp.

Command: CV =

Reply: CV =0

Example 3:

Reset validity stamp.

Command: CV =0

Reply: 00

Note: Rewriting a valid CV stamp can be used to reset/restart SPA-bus communications and statistics.

Note: Writing valid CV causes (re-)evaluation of priority bindings of DI:s (see chapter 3.5).

4.3.3. SP command

SP command is used to setup the SPA-bus configuration.

Syntax:

SP = mode,baur,par,timeout,retry,poll_ratio,analog_ev,two_masters

By default SP-command definitions are:

```
event mode = 1 (events in SNVT_alarm format)
baudrate = 9600
data bits = 7
parity = even
stop bits = 1
receive_timeout = 100ms
number of retransmissions = 2
poll ratio = 8
analog events = disabled
single master mode
```

Parameters:

mode =	event mode. Format of transmitted event message (0 = explicit message format, 1 = SNVT_alarm format)		
baudr =	SPA-bus baudrate (19 200, 9 600 bits/s)		
par =	parity (E, O or N)		
timeout =	SPA-bus reply timeout (50, 100, 500 or 3 000 ms)		
retry =	number of retries in error situations (03)		
poll_ratio =	number of event polls per 8 data polls in one poll cycle (excluding priority data polls) (0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48 or 64)		
analog_ev = enable/disable use of analog events (A or 0 (=zero))			
two_masters = single or double master configuration (S or D)			

Example 1:

Define interface in explicit message mode, baudrate 9600, even parity, 50ms reply timeout, 2 retransmissions, 4 event polls per 8 data polls, no analog events, single master.

Command: SP =0,9600,E,50,2,4,0,S

Reply: 00

Example 2:

Read SPA-bus configuration.

Command: SP =

Reply: SP =0,9600,E,50,2,4,0,S

Example 3:

Define events to be send in SNVT_alarm format, baudrate 9600, even parity, 50ms reply timeout, 2 retransmissions, 4 event polls per 8 data polls, no analog events, single master.

Command: SP =1,9600,E,50,2,4,0,S

Reply: 00

Note: Poll-ratio isn't exact it only defines how many events polls per 8 data polls gateway tries to send.

4.3.4. UN command

UN command is used to define the Unit list of the gateway.

Syntax:

UN =first_slave_number, slave_count, slave_type

Parameters:

first_slave_number =	slave number of the first unit list, 0999
slave_count =	number of SPA slaves, 07 (0=remove slave)
slave_type =	SPA slave type:
	0 = SACO 16D
	1 = SACO 16A
	2 = protective relay
	3 = control unit
	4 = high voltage relay/extended data number (>255)

Semantics:

- Only one slave unit can be defined if slave type 4 is used.

Alternative command syntax:

```
UN entry_index=slave_number, slave_type
```

Parameters:

entry_index = index of the unit list, 0...7

slave_number =	SPA slave number, 0999 (0=remove slave)
slave_type =	SPA slave type:
	0 = SACO 16D
	1 = SACO 16A
	2 = protective relay
	3 = control unit
	4 = high voltage relay/extended data number (>255)

Semantics for alternative command:

- SPA slave numbers have to be in a sequential order.
- When configuring empty unit list, the smallest slave number have to be stored in entry number 0. Then next slave number have to be stored in entry number 1, and so on.
- Removing of the slave number definition always have to be applied to last used entry index.
- All the slaves are same type so if alternative command format is used the last given slave_type set the type for all slaves.

Example 1:

Remove all unit list definitions.

Command: UN =0,0,0

Reply: 00

Example 2:

Define units as control unit with slave numbers 100, 101, 102, 103 to the unit list entries 0 - 3.

Command: UN =100,4,3

Reply: 00

Example 3:

Add control unit with slave number 104 to unit list entry 4

Command: UN 4=104,3

Reply: 00

Example 4:

Read unit list entry 2

Command: UN 2=

Reply: UN 2=102,3

Example 5:

Reset unit list entry 4.

Command: UN 4=0,0

Reply: 00

Example 6:

Read unit list definitions

Command: UN =

Reply: UN =100,4,3

4.3.5. DA AI command

DA AI command is used to define an analog input object to the data base.

Syntax:

DA AI,i=s.cXd,dead band(,f)

Parameters:

i =	index of analog input (015)
s =	SPA slave number (1999)
c =	SPA channel number (0255)
X =	SPA data category (I, O, S or V)
d =	SPA data number (1255)
dead band	= dead band as fixed point integer (0.01655.35)
f =	floating point value in use (F or empty)

Data defined by "s.cXd" is polled cyclically to update the data base object. If the data definition does not contain the channel number, data definition may not contain either the full stop after the slave number. In this case the definition is "sXd". Sent value can be analog fixed point value or analog floating point value with definition F.

An AI network variable in the data base is updated and value sent to LONWORKS if:

if (|polled value - value in data base| >= dead band) then data base = polled value

Example 1:

Define an analog input 0 as input from slave 10 channel 2 input I1 with dead band value 0.1.

Command: DA AI,0=10.2I1,0.1

Reply: 00

Example 2:

Read definition of analog input 0.

Command: DA AI,0=

Reply: DA AI,0=10.2I1,0.1

Example 3:

Define an analog input 1 as input from slave 11 channel 1 input I1 with dead band value 0.5. Value will be sent as a floating point value.

Command: DA AI,0=10.2I1,0.5,F

Reply: 00

Example 4:

Reset definition of analog input 0.

Command: DA AI,0=0

Reply: 00

Note: If the dead_band value is set to smaller value than 0.01 then gateway interprets it as zero and in this case polled value is always sent to LONWORKS.

Note: If channel number is not used, a full stop may not be added after the slave number.

4.3.6. DA DI command

DA DI command is used to define a digital input object to the data base.

Syntax:

DA DI,i=s.c/cXd/d,format,s/d,bswitch[,E1/4,e1d,e2d,e3d,e4d]

Parameters:

i =	index of digital input (015)
s =	SPA slave number (1999)
c/c =	SPA channel number 1 and 2 (0255/c1c1+15)
X =	SPA data category (I, O, S or V)
d/d =	SPA data number 1 and 2 (1255/d1d1+63)
format =	SPA data format (BIN, HEX, DEC or INT)
s/d =	single/double selection (S or D)
bswitch =	bit switch selection (1 for yes, 0 for no)
E1/4 =	SPA event 1 and 4 (E063/163)
e1d =	data for event 1 (00, 01, 10, 11, 0, or 1)
e2d =	data for event 2 (00, 01, 10, 11, 0, or 1)
e3d =	data for event 3 (00, 01, 10, 11, 0, or 1)
e4d =	data for event 4 (00, 01, 10, 11, 0, or 1)

If unit list definition is set to type 4 (UN =XXX,X,4), then the biggest data number can be 2047:

d/d = SPA data number 1 and 2 (1...2047/d1...d1+63)

If a definition does not include event definition (E1/4=E0), then object defined by "s.c/cXd/d" is cyclically polled from the SPA-bus. If the data definition does not contain the channel number, data definition may not contain either the full stop after the slave number. In this case the definition is "sXd".

If a definition includes event definition, then the object is updated from events. Data defined by "s.c/cXd/d" is read to initialize the object and to poll data in the background with low cycle rate. When an event updates a digital input object the event is also/not? sent to the master unit.

LON[®]/SPA Gateway

Programming Manual

If a definition includes event definition but no valid data definition then object is updated only by events.

The "exd" fields, data for event "x", must be defined so that their values equal to the corresponding values read using definition "s.c/cXd/d" (see examples).

If data format is set to DEC, then digital input object is used as an analog input. Analog value 16-bit integer, scaled with 100.

If data format is set to INT, then digital input object is used as an integer input.

Double selection is allowed to for data BINary format.

If bit switch selection is set to "yes", then the order of the two data bits read by definition "s.c/cXd/d" are switched before storing to the data base. The bit switch selection must be set to "no" if the definition defines more than two bits. If definition defines only one data bit, bit_switch can be used to invert it. If input object is used as an analog input the bit switch selection "yes" cause the sending of the polled value to LONWORKS after every poll.

All DI object can be updated by cyclical poll, only objects DI[0]...DI[6] can be updated from events. If input object is used as an analog input, it cannot be updated from events.

If DI[15] is defined and it is bound as a priority network variable (read chapter 3.5) then it will be a high priority DI, which is polled with every other SPA-bus poll message. In this case also DI[14], DI[13],... can be used as high priority DIs. If more than one DI is defined as priority DI, still every other SPA-bus message is priority DI-poll.

Example 1:

Define digital input 0 as data from slave 33 channels 1/16 input I1. Data is cyclically polled to the data base.

Command: DA DI,0=33.1/16I1,BIN,S,O,E0

Reply: 00

Example 2:

Read definition of digital input 0.

Command: DA DI,0=

Reply: DA DI,0=33.1/16I1,BIN,S,O

Example 3:

Reset definition of digital input 0.

Command: DA DI,0=0

Reply: 00

Example 4:

Define digital input 0 as an analog input, slave number 5, data S1.

Command: DA DI,0=5S1,DEC,S,0,E0

Reply: 00

Example 5:

Define digital input 0 as an integer input, slave number 6, data S3.

Command: DA DI,0=6S3,INT,S,0,E0

Reply: 00

Example 6:

Define digital input 1 as status of object 1 in control unit SPTO 6D3, slave number 4. Update from events, initialization by reading channel 1 inputs 2 and 3.

Command: DA DI,1=4.112/3,BIN,D,0,E1/4,10,01,11,00

Reply: 00

The definition is done bearing in mind the following table:

state of object	event	l3 (open)	I2 (closed)
open	E1	1	0
closed	E2	0	1
undefined 11	E3	1	1
undefined 00	E4	0	0

Example 7:

Define digital input objects 1 to 4 as the digital inputs 1...16 from SACO 16D2 units in SACO 64D4 rack, slave numbers 10...13. Update by cyclical polling.

Commands: DA DI,1=10.1/16I1,BIN,S,0,E0

DA DI,2=11.1/16I1,BIN,S,0,E0 DA DI,3=12.1/16I1,BIN,S,0,E0 DA DI,4=13.1/16I1,BIN,S,0,E0

Example 8:

Define DI 1 as an event input updated from overcurrent relay's, slave number 10, channel 0 "trip event" E3 and "trip reset event" E4.

Command: DA DI,1=10.0E,BIN,S,0,E3/4,1,0,0,0

Reply: 00

Example 9:

Define DI 1 as a double point input from SPOC 110, slave number 70.

Command: DA DI,1=70.1/2I1,BIN,D,1,E1/4,10,01,11,00

Reply: 00

The following tablede should be considered in the definition:

state of object	event	2l1 (closed)	1I1 (open)
open	E1	0	1
closed	E2	1	0
undefined 11	E3	1	1
undefined 00	E4	0	0

Bit switch is used to change the bit order so that closed bit is lsb bit of the DI-object. The selection of event data match this bit order.

Note:If channel number is not used, a full stop may not be added after the slave number.

4.3.7. DA DO command

DA DO command is used to define a digital output object to the data base.

Syntax (command output):

```
DA DO,i=s.cX,format,c/g,open,close,exe,cancel
```

Syntax (general output):

DA DO,i=s.c/cXd/d,format,c/g

Parameters:

i =	index of digital output (015)	
s =	SPA slave number (1999)	
c/c =	SPA channel number 1 and 2 (0255/c1c1+15)	
X =	SPA data category (I, O, S, V)	
d/d =	SPA data number 1 and 2 (1255/d1d1+63)	
format =	SPA data format (BIN, BWR, HEX, DEC or INT)	
$<\!\!c/g\!\!> =$	command/general output selection (C or G)	
<open> =</open>	data number for open message (1255)	
<close>=</close>	data number for close message (<open><open>+3)</open></open>	
<exe> =</exe>	data number for execute message (<open><open>+3)</open></open>	
<cancel> =</cancel>	data number for cancel message (<open><open>+3)</open></open>	
If unit list definition is set to type 4 (UN =XXX,X,4), then the biggest data number can be 2047:		

d/d = SPA data number 1 and 2 (1...2047/d1...d1+63)

When DO is a command output, then the four lsb bits of the 16-bit data received from LONWORKS is interpreted as follows:

Data value	Operation	
0001	select open/open	(send open message to SPA)
0010	select close/close	(send close message to SPA)
0100	execute	(send execute message to SPA)
1000	cancel	(send cancel message to SPA)

Command output can be only data type BIN.

Programming Manual

When DO is general output then all the data bits indicated by SPA channel and data numbers are sent to the SPA-bus either one by one (BIN format) or all at the same time (HEX format). The lsb bit (bit 0) of the received data is sent to the SPA data item corresponding to channel 1 and data number 1, and the msb bit (bit 15) to channel 2 data number 2.

In DEC format data is converted to ASCII characters and only one channel/data item can be defined in one digital output. In data format DEC data is transferred as 16-bit integer, scaled with 100.

In INT format data is converted to ASCII characters and only one channel/data item can be defined in one digital output. In data format INT data is transferred as 16-bit integer, without scaling.

In BWR format the first four bits of data determines to which of the bits the write directs and the last bit determines the new value.

If DO network variable is bound as a priority network variable (read chapter 3.5) and its definition creates only one SPA-bus message then it will be a high priority DO. The SPA-bus W-message generated from the update of a high priority DO will bypass all other SPA-bus messages when sent to the SPA-bus.

Example 1:

Define digital output 0 as general output controlling the output number 1 on channel 7 of slave number 10.

Command: DA DO,0=10.701,BIN,G

Reply: 00

Example 2:

Read definition of digital output 0.

Command: DA D0,0=

Reply: DA D0,0=10.701,BIN,G

Example 3:

Reset definition of digital output 0.

Command: DA D0,0=0

Reply: 00

Example 4:

Define digital output 1 as control output of object 1 in control unit SPTO 6D3, slave number 13.

Command: DA DO,1=13.1V,BIN,C,1,2,3,4

Reply: 00

Example 5:

Define digital output 2 as general output controlling the channel lamp of channel 7 in a SACO 16D1, slave number 10.

Command: DA DO,2=10.7I1,BIN,G

Reply: 00

Example 6:

Define digital output 3 as general output controlling all 16 output relays of SACO 16D1, slave number 11.

Command: DA DO,3=11.0V50,HEX,G

Reply: 00

Example 7:

Define digital output 4 as general output controlling analog output V40 of SPTO6D3, slave number 23.

Command: DA DO,4=23.0V40,DEC,G Reply: 00

Example 8:

Define digital output 5 as general output controlling analog output V40 of SPTO6D3, slave number 24.

Command:	DA DO,5=24.0V40,INT,G
Reply:	00

Example 9:

Define digital output 5 as general output controlling 16 channels in a SACO 1D1, slave number 10, in BWR format.

Command: DA DO,5=10.1/16I1,BWR,G

Reply: 00

Note: If channel number is not used, a full stop may not be added after the slave number.

Configuration of the network variables (binding)

During the configuration network variables of one LON/SPA-gateway are logically connected (bound) to the network variables in other nodes of LONWORKS (e.g. other LON/SPA-gateways or "master" units).

In the terminology of LonTalk protocol an output network variable is a variable which is sent to LONWORKS from a node and input network variable is a variable which is received by the node. In the case of the LON/SPA-gateway the DI and AI objects are "output" network variables and DO objects are "input" network variables.

When binding is done the output network variables of the LON/SPA-gateway are connected to the input network variables in some other nodes. Input network variables of the LON/SPA-gateway are bound to output network variables in other nodes.

The connections between network variables are done with the help of the network variable configuration table and address table. The network variable configuration table includes network variable selector values, which are used as system wide addresses of the network variables. The address table of a node contains addresses of all the other nodes to which the node is going to send messages. If messages are sent to group of nodes or if they are broadcasted to the network then address table also contains group address and broadcast address definitions.

4.4.1. High priority network variables

If a DI or a DO network variable is defined as a high priority network variable it's processing differs from the processing of a normal priority network variable. A high priority DI is polled in every other message sent on SPA-bus. The first high priority DI must be DI[15] and the next high priority DIs must have smaller indices in numerical order. If a DO is defined as a high priority DO an update message to it will bypass all other SPA-messages. The DI is defined as a high priority DO when it is bound as priority network variable and it's update generates only one SPA-message. The numbering rule is similar to high priority DI numbering rule.

High priority definition is made by binding two network variables together as priority network variables.

4.4.2. Network variable configuration table

The network variable configuration table contains a 3 byte entry for every network variable. The table can be updated and read using network management commands "Update Net Variable Config" (6BH) and "Query Net Variable Config" (68H). The device responsible for network management updates the network variable configuration table, when it makes the binding of the network variables.

An entry of the network variable configuration table contains the following information:

byte	91		byte 2	byt	e 3		
7	6	543210	76543210	7	65	4	32 10
р	d	selector msb	selector lsb	t	sety	а	addr ind
		14 bit network	k variable				index to address ta
		selector 02F	FFH				014 = index
		(values 3000H	I3FFFH				15 = not associate
		are used for u	nbound				with address table
		network varia	bles)				
	di	rection		authentication			
	0	= input network	x variable	$ \qquad 0 = $ auth. not used			auth. not used
	1	= output netwo			1 =	auth. used	
pri	ority	/			serv	vice ty	vpe
0 =	= no	priority			0 =	ackno	owledged
1 =	= pri	ority			1 =	unacl	knowledged/repeate
					2 =	unacl	knowledged
				tur	marou	nd	
				0 =	= nv is	s not a	a turnaround nv
				1 =	= nv is	s a tur	maround nv

When an output network variable is sent to LONWORKS the destination address is taken from the address table location defined by the 4-bit address table index.

Address table

The address table contains a 5 byte entry for each network address. The table can be updated and read using network management commands Update Address (66H), Update Group Address Data (69H) and Query Address (67H). The device responsible for network management updates the address table, when it makes the binding of the network variables.

Events sent as network variable update (mode = 1 on SP-command):

Any of the address table entries can be chosen to define the address of single master. If two masters are used, address table entries 0 and 1 have to be used. The addresses of the master devices are used to find destination address for the spontaneously sent event messages. When system is configured it must be taken care of that entry 0 is filled with proper value. The indexes can still be used by network variables sent to the defined "master" node.

Events sent as explicit message (mode = 0 on SP-command):

Address table entry 0 is reserved for the address of the "master" device. (If double master configuration is used then address table entry 1 is reserved for the address of the second master device). The addresses of the master devices are used to find destination address for spontaneously event messages. The default master address is

SPA-ZC 100/ SPA-ZC 102

Programming Manual

node 126 on subnet 1. When the system is configured entry 0 must be filled with the proper value. The index 0 can also be used by the network variables sent to the "master" node.

The LON/SPA-gateway has 4 address table entries.

An entry of the address table contains the following information:

byte 1 76543210	byte 7654	• 2 43210	byte 3 765432	10	byte 4 765432	210	bytes 5 76543210
type	d	node	rptt	retr	rcvt	tx_t	subnet
1						1	
	Ì	node or	Ì		Ì	Ì	subnet or
		group					group number
		member				tx tim	er
	doı	main table				timeor	ut between retries
	ind	lex 0 or 1				0 = 16	5ms, 1 = 24ms,
						2 = 32	2ms, 3 = 48ms,
						4 = 64	-ms, 5 = 96ms,
						6 = 12	28ms, 7 = 192ms
					rcv ti	mer	
address type					receiv	ve timeo	ut for group messag
0 = not used,					0 = 12	28ms, 1	= 192ms,
unbound o	r				2 = 2	56ms, 3	= 384ms
turnaround	l			retry			
				maxin	num nu	mber of	retries
1 = subnet nod	le						
3 = broadcast			rpt tin	ner			
group addre	ess		time i	nterval	betwee	n messag	ges
= 80H+grow	up si	ze			-	eated set	
			0 = 16	5ms, 1 =	= 24ms,	2 = 32m	ns, 3 =4 8ms

4.4.4.

Domain table

The domain table contains the address of the node itself. The table can be updated and read using network management commands "Update Domain" (63H) and "Query Domain" (6AH). The device responsible for network management updates the address table, when it installs a node to the network.

Generally a LONWORKS node can belong to two domains. The LON/SPA-gateway can belong only to one domain, its domain table has only one entry.

An entry of the domain table contains 15 bytes:

bytes 16	byte 7	byte 8	byte 9	bytes 1015
domain id	subnet	1 noc	le length	authentication key
		bit	I	6-byte
		not		authentication key
		in		for authenticated
		use		transactions.
				Not used in LON/
				SPA-gateway,
				value =
				FF,FF,FF,FF,FF,FF
			Length of	of the domain id.
			Not used	d in LON/SPA-gateway,
			value =	0.
		no	de number 11	127
	subnet nu	mber 125	5	
6-byte domain	identification			
•	ON/SPA-gatewa	av		

Not used in LON/SPA-gateway,

value = FF,FF,FF,FF,FF,FF

Programming Manual

4.5.

LonTalk network management messages

The configuration of the network variables (binding) and other management of LONWORKS nodes is done using network management messages defined in LonTalk protocol. Usually these messages are sent by the device who is responsible for the network management, usually the "master" node of the system.

Here is a short summary of some of the network management messages.

Table 4.5.-1 LonTalk message summary

Message function	Code byte	Data bytes
Query Status	51	no data Response message (15 bytes): <xmit 2b="" errors="">, <transaction 2b="" timeouts="">, <rcv_transaction 2b="" full="">, <lost_msg 2b="">, <missed_msgs 2b="">, <reset cause="">,<node state="">, <version number="">, <error_log>, <mode number=""></mode></error_log></version></node></reset></missed_msgs></lost_msg></rcv_transaction></transaction></xmit>
Clear Status	53	no data
Query Domain	6A	<pre><domain index=""> Response message (15 bytes): <6 byte domain id>,<subnet>, <80H + node>,<domain id="" length="">, <6 byte authentication key></domain></subnet></domain></pre>
Update domain	63	<domain index=""> <6 byte domain id>,<subnet>, <80H + node>,<domain id="" length="">, <6 byte authentication key></domain></subnet></domain>
Query Address	67	<pre><address index=""> Response message (5 bytes): <addr (or="" 80h+group="" size)="" type="">, 0=unbound, 1=subnet node, 3=broadcast, <domain (or="" bit ="" group="" member)="" node="">, <rpt_timer retry>,<rcv_timer tx_timer>, <subnet (or="" group="" number)=""></subnet></rcv_timer tx_timer></rpt_timer retry></domain></addr></address></pre>
Update Address	66	<address index=""> Response message (5 bytes): <addr (or="" 80h+group="" size)="" type="">, 0=unbound, 1=subnet node, 3=broadcast,<domain (or="" bit ="" group<br="" node="">member)>, <rpt_timer retry>,<rcv_timer tx_timer>, <subnet (or="" group="" number)=""></subnet></rcv_timer tx_timer></rpt_timer retry></domain></addr></address>
Query NV Configuration	68	<pre><nv index=""> Response message (3 bytes): <p d sel msb="">,<sel lsb="">, <t st a addr> p = priority; 0 = normal, 1 = high d = direction; 0 = input nv, 1 = output nv sel_msb+sel_lsb = selector 14 bits t = turnaround bit st = service type; 00 = ackd,</t st a addr></sel></p d sel></nv></pre>

Table 4.51 Loni	aik messa	age summary
Update NV	6B	<nv index=""></nv>
Configuration		<p d sel msb="">,<sel lsb="">,<t st a addr></t st a addr></sel></p d sel>
Read memory	6D	<mode>,<offset msb="">,<offset lsb="">,<count></count></offset></offset></mode>
		mode = addressing mode;
		0 = absolute
		1 = read only relative
		(start of EEPROM, at address 0F000H)
		2 = configuration relative
		(hardware and transceiver properties)
Write memory	6E	<mode>,<offset msb="">,<offset lsb="">,<count></count></offset></offset></mode>
		<action>,<data bytes=""></data></action>
		action = action to be taken after write operation;
		0=no action
		1=both checksum recalculation
		4=configuration checksum recalculation
		8=only reset
		9=both cs recalc. and reset
		C=config. cs recalc. and reset
		E.g. Write value 05 to configuration table offset 8: 6E
		2,0,8,1,1,05
Update NV	<80H+	<sel lsb="">,<data bytes=""></data></sel>
	sel	
	msb>	
Poll NV	<c0h< td=""><td><sel lsb=""></sel></td></c0h<>	<sel lsb=""></sel>
	+ sel	
	msb>	
Network	73	<nv index=""></nv>
Variable Fetch		Response message:
		<nv index="">,<data bytes=""></data></nv>
Set Node Mode	6C	<mode>,<state></state></mode>
		mode:
		0 = offline
		1 = online
		2 = reset
		3 = change state
		state:
		2 = appl_uncnfg
		3 = no_appl_uncnfg
		$4 = cnfg_online$
		6 = cnfg_offline
		State is given only, if mode = 3

 Table 4.5.-1
 LonTalk message summary

5. Maintenance and service

5.1.	Self diagnostic
------	-----------------

5.1.1. SPA indicator

SPA indicator is lit whenever a LSG is sending a message to the SPA bus.

If the self-supervision of the LSG detects a fault in the SPA-bus communication, the SPA indicator remains lit.

5.1.2. LON indicator

The LON indicator has two functions: It operates as a Service LED indicating the status of the Neuron chip. It also indicates when an application of the LSG is sending messages to the LON network.

Normally, in the start-up situation, the LON indicator is lit once and then goes out.

Pressing of the service pin turns on the LON indicator.

The LON indicator is lit when a "Wink" message is received from the LON network.

The LON indicator is lit whenever the LSG application is sending a message to LON network. The LED is not lit when network management messages are sent or received.

Normally, the LON indicator is lit only when the LSG is sending data to the LON network.

5.2. Fault localization

The table below can be used to localise a fault and take corrective measures:

Problem	Fault type	Repair step
SPA and LON led not lit on start up. (Power supply trough the connection cable) SPA led is off. LON led is off.	Supply failing	Check if the SPA-bus device has power. Check that the LSG is properly connected to the device. Check the DIP-switch settings for SPA-bus interface type and supply voltage.
LSG gives no response to LONWORKS messages.	LonWorks fault	Check the communication speed of devices sharing the same communication channel.
LON led is continuously blinking	LONWORKS fault	Check that the LSG is properly connected to the device. Check the fibre optic connections of LONWORKS. Check that the master address of the LSG is correct.
LSG works unreliably or that it gives different results to the same query.	LONWORKS fault	Ensure that the LONWORKS address of the LSG is unique in the communication network.

SPA-ZC 100/ SPA-ZC 102

Programming Manual

No response from SPA- device. SPA led is continuously on, and occasionally blinking.	SPA-bus fault	Check that the LSG is properly connected to the device. Check the operation of the SPA-bus device. Check the DIP-switch settings of the SPA- bus interface type.
		Check the configuration of the SPA-bus (SP-command): SPA-bus bit rate, parity, unit list definition. (See the chapter "Programming the SPA-bus interface and data definitions for details).

6.1.

Programming Manual

6. Appendix A

Default values of communication parameters of LON/SPA gateway

These values are set during manufacturing and they are stored in EEPROM of Neuron chip. Values may be read and written over the LONWORKS network using Read Memory and Write Memory network management messages with address mode = 2 (for more details see LONWORKS Technology Device Data chapter A6: The configuration structure).

Field of a structure	value	offset/ # of bits	Remarks
channel_id	0x0001	0x00 /16	
location	0	0x02 /6*8	set during installation
comm_clock	0	0x08 / 5	= input_clock/8
input_clock	5	/ 3	= 10 Mhz
comm_type	1	0x09 / 3	= Single ended
comm_pin_dir	0x0E	/ 5	= Dir.mode - single-end
preamble_length	6	0x0A / 8	= 240 μs
packet_cycle	4	0x0B / 8	= 4 ms
beta2_control	0	0x0C / 8	
xmit_interpacket	0	0x0D / 8	
recv_interpacket	0	0x0E / 8	
node_priority	0	0x0F / 8	= no priority slot allocated
channel_priorities	20	0x10/8	number of priority slots
collision_detect	1	0x11 / 1	= enabled
bit_sync_threshold	0	/ 2	= number of bits: 4
filter	0	/ 2	
hysteresis	0	/ 3	
cd_to_end_packet	0	0x12/6	
cd_tail	1	/ 1	
cd_preamble	1	/ 1	
non_group_timer	2	0x18 / 4	
nm_auth	0	/ 1	= no authentication
preemption_timeout	5	/ 3	= 10 sec

7.1.

Programming Manual

7. Appendix B

Configurations of LSGs for parallel operation of SPAU 341 C devices.

CONFIGURATION 1 used in devices SPA-ZC 100; 1MRS0090704-AB and 1MRS090704-DB.

LON network address: subnet 1, node 10

Data definitions:	Net	Network variable configuration table:				
CV = 0	_ in	dex				
SP = 1,9600,E,500,2,0,0,S	_ input/output			output		
UN = 10,1,2	_ selector			elector		
				_ adress table		
DA DI,1=10S13,DEC,S,1	11	40	01	41		
DA DI,2=10I18,DEC,S,0	12	40	02	41		
DA DI,3=10I5,DEC,S,0	13	40	03	41		
DA DI,4=10V3,DEC,S,1	14	40	04	41		
DA DO,1=10S18,DEC,G	21	00	05	4F		
DA DO,2=10I14,DEC,G	22	00	06	4F		
DA DO,3=10I16,DEC,G	23	00	07	4F		
DA DO,4=10V4,DEC,G	24	00	08	4F		
DA DO,5=10S19,DEC,G	25	00	09	4F		
DA DO,6=10I15,DEC,G	26	00	0A	4F		
DA DO,7=10I17,DEC,G	27	00	0B	4F		
DA DO,8=10V5,DEC,G	28	00	0C	4F		

Adress table:

01 83 01 11 31 01; group adress, three in group

CV = WK

CONFIGURATION 2 used in devices SPA-ZC 100; 1MRS0090704-AC and 1MRS090704-DC.

LONWORKS address: subnet 1, node 20

Data definitions:Network variable configuration table:

	CV =0 _ index					
SP =1,9600,E,500,2,0,0,S	I	_ input/output				
UN =20,1,2		I	_ selector			
		I		_ adress table		
DA DI,1=20S13,DEC,S,1	11	40	05	41		
DA DI,2=20I18,DEC,S,0	12	40	06	41		
DA DI,3=2015,DEC,S,0	13	40	07	41		
DA DI,4=20V3,DEC,S,1	14	40	08	41		
DA DO,1=20S18,DEC,G	21	00	01	4F		
DA DO,2=20I14,DEC,G	22	00	02	4F		
DA DO,3=20I16,DEC,G	23	00	03	4F		
DA DO,4=20V4,DEC,G	24	00	04	4F		
DA DO,5=20S19,DEC,G	25	00	09	4F		
DA DO,6=20I15,DEC,G	26	00	0A	4F		
DA DO,7=20I17,DEC,G	27	00	0B	4F		
DA DO,8=20V5,DEC,G	28	00	0C	4F		

Adress table:

01 83 02 11 31 01; group adress, three in group

 $\mathbf{CV} = \mathbf{WK}$

CONFIGURATION 3 used in devices SPA-ZC 100; 1MRS0090704-AD and 1MRS090704-DD.

LONWORKS address: subnet 1, node 30

Data definitions:Network variable configuration table:

CV =0	_ index				
SP =1,9600,E,500,2,0,0,S		_ input/output			
UN 0=30,1,2		_ selector			
				_ adress table	
DA DI,1=30S13,DEC,S,1	11	40	09	41	
DA DI,2=30I18,DEC,S,0	12	40	0A	41	
DA DI,3=30I5,DEC,S,0	13	40	0B	41	
DA DI,4=30V3,DEC,S,1	14	40	0C	41	
DA DO,1=30S18,DEC,G	21	00	01	4F	
DA DO,2=30I14,DEC,G	22	00	02	4F	
DA DO,3=30I16,DEC,G	23	00	03	4F	
DA DO,4=30V4,DEC,G	24	00	04	4F	

49

Programming Manual

DA DO,5=30S19,DEC,G	25	00	05	4F
DA DO,6=30I15,DEC,G	26	00	06	4F
DA DO,7=30I17,DEC,G	27	00	07	4F
DA DO,8=30V5,DEC,G	28	00	08	4F
Adress table:				

01 83 03 11 31 01; group adress, three in group

CV =WK

ABB Substation Automation Oy P.O. Box 699 FIN-65101 VAASA Finland Tel. +358 10 224 000 Fax. +358 10 224 1094 www.abb.com/substationautomation