Managed Ethernet switch 500NMD30
EDS500 series - Ethernet & DSL switches

- Integrated managed layer-2-switch
- 24... 60 V DC supply voltage
- 4x 10/100 BaseT (RJ45, auto-negotiating)
- Provides redundant topologies by the Spanning Tree Protocol (STP/ RSTP/ MSTP)
- 1x RS-232/ RS-485 interface suitable for tunneling of serial protocols

Application
The DIN rail mountable 500NMD30 is a managed plug and play layer-2-switch, providing:
- 4 fast Ethernet auto-negotiating RJ45 ports with auto MDI/X (Automatic Crossover Detection and Correction)
- 1x RS-232/ RS-485 interface suitable for tunneling of serial protocols

The switch is able to provide redundant topologies by the Spanning Tree Protocol (STP/ RSTP/ MSTP). It supports VLAN frames and tunneling of serial data. Ethernet may be distributed within a station through the 4 RJ45 ports of the switch.

Characteristics
For documentation purposes, the Ethernet ports are labeled from 1 to 4. There is no specific uplink port. All ports are equal in function. Link and speed status of
each Ethernet are displayed by status indicators (refer to Connectors and Indicators).

The switch learns Ethernet addresses by analyzing received frames and stores them in a lookup-table (max. 2048 entries), which is used to forward frames only to the correct port. If it is broad- or multicast or if the target address is not found in the lookup-table, a received frame is forwarded to all ports except the receiving one. If an entry in the lookup-table is not refreshed by an incoming frame with the specific source address, it is aged out within a maximum of 304 seconds (by default, value is configurable).

Regarding IEEE 802.1Q VLAN frames, the switch can be configured to VLAN or transparent mode. In transparent mode the switch will never change any frame or TAG of a frame; in VLAN mode it can be configured to support several applications like trunk or access ports.

Quality-of-Service is supported by the switch if an IEEE 802.1p compliant frame format is used. The switch can separate frames into up to four queues, which can be configured to priority based or weighted-fair queuing.

The 500NMD30 uses a wide range power supply and works with a voltage from 24 to 60 V.

The component itself, the Ethernet ports as well as the RS-232 interface and the extension bus interface (Ext) are hot-plug capable.

Topology
The 500NMD30 provides a total of four ports for use with end devices, switches, bridges, hubs and routers. Star, ring or line topologies can easily be built by this family of switches.

Redundant topologies are automatically detected and handled by the Rapid Spanning Tree Protocol (RSTP) or the Multiple Spanning Tree Protocol (MSTP). This is fully backward compatible with the wide-spread Spanning Tree Protocol (STP).

Figure 2: Typical topology for use with 500NMD30

Management and Configuration
Management and configuration of the 500NMD30 can be done by Telnet, Secure Shell (SSH), SNMP, RS-232 or Web-interface. All methods can be used to either read or write parameters of the device.

Additionally the interface and alarm state of the device can be monitored by IEC 60870-5-101 or -104.

An existing configuration can be saved as well as restored. The configuration can also be stored to an external configuration stick (500NMA01), which supports the simple exchange of a device without trained personnel.

By default, the IP address for the configuration of a 500NMD30 switch is 10.0.0.2 with a subnet mask of 255.0.0.0 and a gateway of 10.0.0.1. Connections for configuration purposes may be accepted through any interface. All Ethernet ports are administratively up in default state.

The preconfiguration for the RS-232 interface is baudrate 57600, 8 databits, no parity, 1 stopbit (57600, 8N1). The command-line interpreter for configuration via this interface can be accessed by any terminal software (e.g. Hyperterminal).

Ports
All ports of the device can be disabled or enabled by configuration. Furthermore, the speed and duplex of any port can be set according to its capabilities. This is 10 or 100 Mbps, Full or Half duplex for the Ethernet ports. It is also possible to use an auto-detect setting.

The switch supports multiple additional features, like port mirroring, bandwidth control, or quality of service.

Alerts, Notifications and Logging
The 500NMD30 provides Syslog and SNMP capabilities to send alerts and notifications to one or more predefined destinations. There is also a relay for configurable out-of-band alerts.

For each Syslog server entry a severity can be entered to filter outgoing messages.

A system log stores critical messages. The log includes a timestamp either by system uptime, or date and time if a time server is configured.

For Syslog and local logging, a SNTP time server can be used to synchronize clocks and to enable the generation of date and time timestamps instead of uptime referencing messages.

Redundancy Support
The redundancy protocols Spanning Tree Protocol (STP), Rapid Spanning Tree Protocol (RSTP) and Multiple Spanning Tree Protocol (MSTP) are fully supported. Without configuration RSTP is enabled for all ports. Switching from RSTP to STP is done automatically to ensure the compatibility to existing STP installations.

For every port, the parameters can be adjusted separately. This includes port priority for root bridge control as well as point-to-point and edge connection settings. A global bridge priority is also settable.

The protocol Ethernet Ring Protection Switching (ERPS) is supported as well.
Security

Access to the configuration interfaces of the 500NMD30 is controlled by a two-level password protection. The first level enables the user to access parameters in read-only mode and has to be entered as soon as a connection is established. To read and write parameters, the device has to be put in a configuration mode that requires an additional password. Any password can be disabled. Some security sensitive information, such as the configuration file, are not available in read-only mode.

Besides the two-level password protection, users may be authenticated by a standard RADIUS server.

Devices can be authenticated via optional IEEE 802.1X support using a central authentication server (RADIUS).

Access control lists provide packet filtering and class-of-service rewriting on a per port basis.
Technical data
In addition to the EDS500 series general technical data, the following applies:

General standards
Safety tested according to
- IEC 60950-1
Environmental conditions tested according to
- ETSI EN 300 019-1-3 class 3.4
- ETSI EN 300 019-2-8 test condition T8.1
- IEC 61850-3
- IEC 60255-21-1 class 2
- IEC 60255-21-2 class 1
- IEC 60721-3-3 class 3M5
- EN 50125-3 class T1 and T2

Electromagnetic compatibility (EMC) tested according to
- IEC 61000-6-1
- IEC 61000-6-2
- IEC 61000-6-3
- IEC 61000-6-4
- ETSI EN 300 386
- IEC 60255-21-1 class 2
- IEC 60721-3-3 class 3M5
- EN 50125-3 class T1 and T2

Electromagnetic compatibility (EMC) tested according to
- IEC 60721-3-3 class 3M5
- EN 50125-3 class T1 and T2

Environmental conditions - climatic
Nominal operating temperature range
EN 60668-2-1, EN 60668-2-2, EN 60668-2-14
-40 °C... 80 °C
Relative humidity
EN 60068-2-30
5... 95 % (non condensing)
Railway applications
EN 50125-3
climatic class T1 and T2

Environmental conditions - mechanical
Vibration sinusoidal, Test Fc, IEC 60668-2-6
1.2 mm (5... 9 Hz)
4 m/s² (9... 200 Hz)
1 octave/ min, 5 cycles per axis
EN 300 019-2-8 test condition T8.1
0.075 mm (10... 60 Hz)
9.8 m/s² (60... 150 Hz)
1 octave/ min, 1 cycle per axis
IEC 60255-21-1 class 2
Shock and Bump, Test Ea, IEC 60668-2-27
300 m/s², 18 ms
3 shocks per direction
IEC 60721-3-3 class 3M5
50 m/s², 11 ms
100 shocks per direction
EN 300 019-2-8 class T8.1
100 m/s², 16 ms
1000 shocks per direction
IEC 60255-21-2 class 1
Vibration broad-band random, Test Fh, IEC 60668-2-64
1.5 m/s² (5... 100 Hz)
30 min per axes
EN 300 019-2-8 test condition T8.1

Environmental conditions - mechanical
Hammer test, Test Eh, energy: 0.2 J
IEC 60668-2-75

Emission test
Radiated emissions - enclosure ports (30 Mhz to 1 GHz), CISPR 16-2-3/ EN 55016-2-3
EN 55022/ CISPR 22 class A
Radiated emissions - enclosure ports (1 to 3 GHz), CISPR 16-2-3/ EN 55016-2-3
EN 55022/ CISPR 22 class A

Immunity test
Electrostatic discharge, IEC 61000-4-2
8 kV air / 6 kV contact (level 3), criterion A
Radiated radio-frequency electromagnetic field, IEC 61000-4-3
20 V/m (level x), criterion A
Impulse magnetic field, IEC 61000-4-9
100 A/m (level 3), criterion A

Mean time between failure (MTBF)
Calculation according to MIL-Handbook-217F
160 years @ 40 °C

Mechanical layout
Dimensions
99 x 45 x 115 mm (H x W x D)
Mounting
35 mm DIN-rail
Cooling
thermal convection (no moving parts)
Weight
250g

Power supply input (X1)
Operating voltage
24... 60 V DC -20%... +20%
Power consumption (typical)
4 W (all ports active)
Current demand (peak)
340 mA @ 24 V / 140 mA @ 60 V
Plug type
Phoenix Contact MSTBT 2.5/4-ST
Reverse polarity protection
yes
Circuit classification
SELV (acc. IEC 60950-1)
Galvanic isolation
1.5 kV isolation voltage
Overvoltage protection
to earth ±4 kV, line to line ±2 kV
Electrical fast transient / Burst, IEC 61000-4-4
4 kV line to earth, 2 kV line to line (level 4), criterion A
Surge 1.2/50 µs, IEC 61000-4-5
4 kV line to earth, 2 kV line to line (level 4), criterion A
Conducted, common mode disturbances in the frequency range 0 Hz to 150 kHz, IEC 61000-4-16
30 V continuous disturbance/ 300 V short duration disturbance (level 4), criterion A
Power supply input (X1)
Conducted emissions - asymetrical DC ports, common mode (0.15 MHz to 30 MHz)
EN 55032/ CISPR 32 class A
IEC 61000-6-4

Ethernet interfaces (Port1 - Port4)
Electrical specification
IEEE 802.3
Protocol
Fast Ethernet, Auto negotiation, Auto sense
Data rate
100 Mbps, 10 Mbps or auto
Duplex
full duplex, half duplex or auto
Transmission / Network termination
MDI, MDI-X or auto
Cable
shielded CAT5e cable (or better), maximum length: 100m
Plug type
RJ-45 (BP8C)
Circuit classification
TNV-1 (acc. IEC 60950-1)
Galvanic isolation
1.5 kV isolation voltage
Overvoltage protection
Shield to earth ±4 kV
Electrical fast transient / Burst, IEC 61000-4-4
4 kV (level 4), criterion A
Surge 1.2/50 µs, IEC 61000-4-5
4 kV (level 4), criterion A
Conducted disturbances, induced by radio-frequency fields, IEC 61000-4-6
10 V (level 3), criterion A
Conducted, common mode disturbances in the frequency range 0 Hz to 150 kHz, IEC 61000-4-16
30 V continuous disturbance/ 300 V short duration disturbance (level 4), criterion A
Conducted emissions - symetrical network ports (0.15 MHz to 30 MHz)
EN 55032/ CISPR 32 class B

Serial interfaces (Con0)
Conducted disturbances, induced by radio-frequency fields, IEC 61000-4-6
10 V (level 3), criterion A
Conducted, common mode disturbances in the frequency range 0 Hz to 150 kHz, IEC 61000-4-16
30 V continuous disturbance/ 300 V short duration disturbance (level 4), criterion A

Ext Connector
Connector
Proprietary
For usage of the configuration stick 500NM01 to save the configuration to an external media.

Alarm output (X2)
Type of switch
Toggle (potential free)
Switching voltage
60 VDC / 25 VAC
Switching current
500 mA
Plug type
Phoenix Contact MSTBT 2,5/4-ST
Circuit classification
SELV (acc. IEC 60950-1)
Overvoltage protection
line to earth ±4 kV, line to line ±2 kV
Electrical fast transient / Burst, IEC 61000-4-4
4 kV (level 4), criterion A
Surge 1.2/50 µs, IEC 61000-4-5
4 kV (level 4), criterion A
Conducted disturbances, induced by radio-frequency fields, IEC 61000-4-6
10 V (level 3), criterion A
Conducted, common mode disturbances in the frequency range 0 Hz to 150 kHz, IEC 61000-4-16
30 V continuous disturbance/ 300 V short duration disturbance (level 4), criterion A

Switching
Flow Control
Full duplex flow control according to IEEE 802.32005 An. 31B and IEEE 802.3x-1997
Half duplex back pressure
Max. Frame size
1552 Bytes
Quality of Service
IEEE 802.1p Tag based priority
MAC Lookup Table
Max. 2048 entries
Max. 304 s hold time
Switching Mode
Store and forward

Supported Protocols
Telecontrol Comm.
IEC 60870-5-101
IEC 60870-5-104
Link Layer Discovery
IEEE 802.1AB-2009
Spanning Tree
IEEE 802.1D-2004
Class of Service
IEEE 802.1p
Supported Protocols

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN Tagging</td>
<td>IEEE 802.1Q-2005</td>
</tr>
<tr>
<td>Network Access Ctrl.</td>
<td>IEEE 802.1X-2001</td>
</tr>
<tr>
<td>UDP</td>
<td>RFC-768</td>
</tr>
<tr>
<td>IP</td>
<td>RFC-791</td>
</tr>
<tr>
<td>ICMP</td>
<td>RFC-792</td>
</tr>
<tr>
<td>TCP</td>
<td>RFC-793</td>
</tr>
<tr>
<td>ARP</td>
<td>RFC-826</td>
</tr>
<tr>
<td>Telnet</td>
<td>RFC-854</td>
</tr>
<tr>
<td>SNMP</td>
<td>RFC-1155 to RFC-1157, RFC-1901 to RFC-1908</td>
</tr>
<tr>
<td>SNMP MIB-II</td>
<td>RFC-1213</td>
</tr>
<tr>
<td>TFTP</td>
<td>RFC-1350</td>
</tr>
<tr>
<td>CIDR</td>
<td>RFC-1519</td>
</tr>
<tr>
<td>RIP</td>
<td>RFC-2453</td>
</tr>
<tr>
<td>HTTP</td>
<td>RFC-2616</td>
</tr>
<tr>
<td>L2TP</td>
<td>RFC-2661</td>
</tr>
<tr>
<td>RADIUS</td>
<td>RFC-2865</td>
</tr>
<tr>
<td>Syslog</td>
<td>RFC-3164</td>
</tr>
<tr>
<td>SSHv2</td>
<td>RFC-4254 and RFC-5251</td>
</tr>
<tr>
<td>SNTP</td>
<td>RFC-4330</td>
</tr>
</tbody>
</table>

Ordering Information

500NMD30 R0002

1KGT038890R0002

Accessories ordering information

500NMA01 configuration adapter

500NMA01 R0001

1KHW027870R0001

Accessories ordering information

500CAB06 RS-232 adapter cable RJ12 to SubD9F (DTE-PC)

500CAB06 R0001

1KGT038912R0001

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.