
PB610 Panel Builder 600
Programming Software for
CP600 Control Panels

Manual

Microsoft®, Win32, Windows®, Windows XP, Windows Vista, Windows 7, Windows 8, Visual Studio are either
registered trademarks or trademarks of the Microsoft Corporation in the United States and other countries.
Other products and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logo, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place or event is intended or should be inferred.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 2

Contents

Contents ..2

1 Getting Started ..9
1.1 Assumptions ..9
1.2 Installing the Software ...9

1.2.1 System Requirements ...9
1.2.2 Opening Projects Created with Older Version of PB610 Panel Builder 600 10
1.2.3 Multilanguage for PB610 Panel Builder 600 ... 10
1.2.4 Crash report .. 11

2 The HMI Runtime ... 12
2.1 Runtime Modes... 12
2.2 Basic Unit Settings.. 12
2.3 Other Context Menu Options .. 13
2.4 Built-in SNTP Service ... 16

3 My First Project .. 17
3.1 Creating a New Project ... 17
3.2 The Workspace... 19
3.3 Communication Protocols ... 20
3.4 Tags .. 22

3.4.1 Tag Editor ... 23
3.4.2 Data Types ... 25
3.4.3 Dictionaries ... 26

3.5 Designing a Page ... 27
3.5.1 Importing a Page .. 27
3.5.2 Dialog Pages .. 28

3.6 The Widget Gallery ... 29
3.7 “Attach To” and Dynamic Properties .. 32

4 The HMI Simulator ... 34
4.1 Launching the Simulator ... 34
4.2 Stopping the Simulator ... 34
4.3 Simulator Settings... 34

5 Transferring the Project to Target .. 37
5.1 Download to Target .. 37
5.2 Update Package ... 40
5.3 The Runtime Loader ... 42
5.4 Upload Projects .. 44

6 Programming Concepts ... 46
6.1 Attach to .. 46
6.2 Events ... 49

6.2.1 OnClick / OnMouseClick ... 50
6.2.2 OnHold / OnMouseHold ... 50
6.2.3 Autorepeat .. 51
6.2.4 OnWheel ... 52
6.2.5 OnActivate .. 52
6.2.6 OnDataUpdate .. 52

6.3 Widgets positioning: Snap to Grid / Snap to Objects ... 52
6.3.1 Snap to Grid.. 52
6.3.2 Snap to Object .. 52

6.4 Z-order of widgets ... 53
6.5 Change properties of several widgets at once ... 53

7 Project Properties / Project Widget .. 55
7.1 Version .. 55
7.2 Context Menu ... 55
7.3 Developer Tools.. 56

7.3.1 Profiling ... 57

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 3

7.3.2 Watchdog .. 58
7.4 Buzzer on touch / Buzzer duration ... 59
7.5 Keyboard .. 59
7.6 JavaScript Debug ... 59
7.7 Allow JS Remote Debugger ... 60
7.8 Image DB enable .. 60
7.9 FreeType Font Rendering .. 60
7.10 Software Plug-in Modules ... 60
7.11 Behavior -> Home Page ... 61

7.11.1 Behavior -> Page Width / Page Height... 61
7.11.2 Behavior -> Display Mode .. 61
7.11.3 Behavior -> Project Type .. 61
7.11.4 Behavior -> PageRequest, CurrentPage and SyncOptions 61
7.11.5 Behavior -> Hold Time / Autorepeat Time .. 64
7.11.6 Events -> OnWheel .. 64

8 System Variables ... 65
8.1 Alarms ... 65
8.2 Communication ... 66
8.3 Daylight Saving Time .. 66
8.4 Device ... 67
8.5 Dump Information ... 69
8.6 Keypad .. 69
8.7 Network ... 69
8.8 Printing .. 69
8.9 Screen .. 70
8.10 SD Card .. 70
8.11 Server ... 70
8.12 Time .. 71
8.13 USB Drive ... 71
8.14 User Management .. 71
8.15 Version .. 72

9 Actions ... 73
9.1 Widget Actions .. 73

9.1.1 ShowWidget.. 73
9.1.2 TriggerIPCamera .. 74
9.1.3 SlideWidget... 74
9.1.4 RefreshEvent .. 75
9.1.5 ContextMenu .. 76
9.1.6 ReplaceMedia ... 76

9.2 Keyboard Actions.. 77
9.2.1 SendKey ... 77
9.2.2 SendKeyWidget .. 78
9.2.3 ShowKeyPad .. 80
9.2.4 KeyboardMacros .. 80

9.3 Page Actions ... 81
9.3.1 LoadPage ... 81
9.3.2 HomePage .. 82
9.3.3 PrevPage .. 82
9.3.4 NextPage .. 82
9.3.5 LastVisitedPage .. 82
9.3.6 ShowDialog... 82
9.3.7 CloseDialog .. 83
9.3.8 ShowMessage .. 83
9.3.9 LaunchApplication .. 84
9.3.10 LaunchBrowser ... 84
9.3.11 LaunchVNC .. 84
9.3.12 LaunchUpdater ... 84
9.3.13 LockScreen ... 84

9.4 MultiLang Actions ... 85
9.4.1 SetLanguage .. 85

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 4

9.5 Tag Actions ... 85
9.5.1 DataTransfer ... 85
9.5.2 ToggleBit ... 85
9.5.3 SetBit .. 85
9.5.4 ResetBit .. 85
9.5.5 WriteTag ... 85
9.5.6 StepTag .. 86
9.5.7 ActivateGroup ... 86
9.5.8 DeactivateGroup ... 86

9.6 Trend Actions .. 86
9.6.1 RefreshTrend .. 86
9.6.2 Scroll Left Trend ... 86
9.6.3 Scroll Right Trend ... 86
9.6.4 PageLeftTrend .. 87
9.6.5 Page Right Trend ... 87
9.6.6 Page Duration Trend .. 87
9.6.7 Zoom In Trend .. 87
9.6.8 ZoomOutTrend ... 87
9.6.9 Zoom Reset Trend .. 87
9.6.10 Pause Trend ... 87
9.6.11 ResumeTrend ... 87
9.6.12 Show Trend Cursor .. 87
9.6.13 ScrollTrendCursor .. 88
9.6.14 ScrollTrendtoTime .. 89
9.6.15 ConsumptionMeterPageScroll .. 89

9.7 Alarm Actions .. 90
9.7.1 SelectAllAlarms .. 91
9.7.2 AckAlarm .. 91
9.7.3 ResetAlarm ... 91
9.7.4 EnableAlarms ... 91

9.8 Event Actions .. 91
9.8.1 ScrollEventsBackward .. 91
9.8.2 ScrollEventsForward .. 91

9.9 System Actions ... 92
9.9.1 Restart .. 92
9.9.2 DumpTrend ... 93
9.9.3 DeleteTrend .. 96
9.9.4 DumpEventArchive ... 96
9.9.5 DeleteEventArchive .. 97
9.9.6 ResetProtoErrCount ... 98
9.9.7 SafelyRemoveMedia .. 98

9.10 Recipe Actions .. 98
9.10.1 DownLoadRecipe ... 98
9.10.2 UpLoadRecipe .. 99
9.10.3 WriteCurrentRecipeSet ... 100
9.10.4 DownLoadCurRecipe ... 100
9.10.5 UploadCurRecipe ... 101
9.10.6 ResetRecipe ... 102
9.10.7 DumpRecipeData ... 102
9.10.8 RestoreRecipeData .. 103

9.11 User Management Actions ... 104
9.11.1 LogOut .. 104
9.11.2 SwitchUser .. 105
9.11.3 ResetPassword .. 107
9.11.4 AddUser .. 107
9.11.5 DeleteUser .. 108
9.11.6 EditUsers .. 109
9.11.7 DeleteUMDynamicFile .. 110
9.11.8 ExportUsers .. 110
9.11.9 ImportUsers .. 111

9.12 Print Actions .. 112

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 5

9.12.1 PrintGraphicReport ... 113
9.12.2 PrintText ... 113
9.12.3 EmptyPrintQueue ... 113
9.12.4 PausePrinting ... 113
9.12.5 ResumePrinting .. 113
9.12.6 AbortPrinting ... 113

10 Using HMI Client .. 114
10.1 The HMI Client toolbar .. 114
10.2 Settings &Time Zone Options ... 114
10.3 Workspace .. 115

11 Using the Integrated FTP Server ... 116

12 Using ActiveX Client for Internet Explorer ... 117
12.1 Installing ActiveX .. 117
12.2 HTTP Access to ActiveX files ... 117
12.3 Internet Explorer Settings ... 117
12.4 Security Setting for Trusted Site Zone ... 118
12.5 Install Active X in Internet Explorer... 120
12.6 Uninstalling Active X ... 121
12.7 ActiveX information ... 121

13 Using VNC for Remote Access ... 122
13.1 VNC Server ... 122
13.2 VNC Viewer .. 123

14 Alarms .. 124
14.1 Alarm Configuration Editor. .. 124
14.2 Alarms’ State Machine .. 127
14.3 Setting Events ... 127

14.3.1 Log Events .. 128
14.3.2 Notify ... 129
14.3.3 Actions .. 130

14.4 Active Alarms Widget ... 131
14.4.1 Filters .. 131
14.4.2 Sorting .. 133

14.5 Alarms History Widget .. 133
14.6 Managing alarms at Runtime. ... 134
14.7 Enable/Disable Alarms at Runtime ... 134
14.8 Live Data in Alarms Widget .. 135
14.9 Exporting Alarm Buffers as CSV file ... 136

15 Recipes .. 137
15.1 Recipe Configuration Editor .. 137
15.2 Configuring Recipe Sets on the Page .. 139
15.3 Defining Recipe Fields .. 139
15.4 Recipe Status ... 140
15.5 Configuring Recipe Widget for Runtime Execution .. 141
15.6 Configure Recipe Transfer Macros... 141
15.7 Upload or Download Recipes during Runtime ... 142

15.7.1 Recipe Download through Recipe Widget in Runtime 142
15.7.2 Recipe Download or Upload through Recipe Transfer Macro in Runtime 142
15.7.3 Backup and Restore of Recipes Data .. 143

16 Trends .. 144
16.1 Real-Time Trend ... 144
16.2 History Trend .. 145

16.2.1 Trend Editor .. 146
16.2.2 Configuring Trend Window for History Trends ... 147

16.3 Trend Window Properties ... 148
16.3.1 Request Samples (Advanced View) ... 148
16.3.2 Color Bands .. 149

16.4 Trend Cursor ... 150

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 6

16.5 Exporting Trend Buffer Data to CSV file ... 151

17 Scatter Diagram / XY Graph .. 152

18 Data Transfers ... 153
18.1 The Data Transfer Editor .. 153
18.2 Data Transfer Toolbar Buttons ... 153
18.3 Data Transfer Fields ... 154
18.4 Exporting Data to .csv Files .. 155
18.5 Data Transfer Limitations and Recommendations ... 155

19 Offline Node Management ... 157
19.1 Offline Node Management Process.. 157
19.2 Manual Offline Node Management Process ... 158
19.3 Manual Offline Configuration .. 158
19.4 Automatic Offline NodeDetection ... 160
19.5 Offline Management Toolbar buttons ... 160
19.6 Offline Management Fields ... 161

20 Multi-Language .. 162
20.1 Add a Language to Project ... 163

20.1.1 Language Display Combo .. 164
20.2 Multi-Language Widget ... 164

20.2.1 Multi-Language for Static Text Widget ... 164
20.2.2 Multi-Language for Message Widget .. 165
20.2.3 Multi-Language for Alarm Messages .. 165
20.2.4 Multi-Language for Pop-up Messages ... 166

20.3 Export and Import of Multi-language Strings .. 166
20.4 Change Languages at Runtime .. 169
20.5 Limitations in UNICODE support .. 170

21 Scheduler ... 171
21.1 Configuring the Scheduler Engine .. 171
21.2 HighResolution ... 172
21.3 Recurrence Scheduler .. 172
21.4 Configuring Location in PB610 Panel Builder 600 ... 174
21.5 Configuring the Schedule Interface for Runtime Interaction .. 176
21.6 Schedule the Events during Runtime ... 176

22 User Management and Passwords ... 178
22.1 Configuring Security Options .. 179
22.2 Configuring Groups and Authorizations ... 179
22.3 Modifying the Access Permission of Groups .. 179

22.3.1 Widget Permissions .. 180
22.3.2 Action Permissions ... 182
22.3.3 FTP Authorizations ... 182
22.3.4 HTTP Authorizations .. 182
22.3.5 Miscellaneous ... 183
22.3.6 Access Priority .. 184

22.4 Configuring Users ... 185
22.5 Default User .. 185
22.6 Assigning Widget Permissions from Page View ... 186
22.7 Operation on Runtime .. 187
22.8 Force Remote Login ... 189

23 Audit Trails ... 190
23.1 Enable or Disable the Audit Trail .. 190
23.2 Configure Audit Events ... 190
23.3 Configure Tags in the Audit Trail .. 191
23.4 Configure Alarms in the Audit Trail ... 192
23.5 Configure Login or Logout Details in Audit Trail. .. 193
23.6 Viewing Audit Trails in Runtime .. 193
23.7 Exporting Audit Trail as CSV File ... 194

24 Reports .. 195

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 7

24.1 Adding a report ... 195
24.2 Text Report ... 195
24.3 Graphic Report ... 196

24.3.1 Page body... 196
24.3.2 Header and Footer ... 197
24.3.3 The Context Widget Gallery ... 197
24.3.4 Printer Configuration ... 197
24.3.5 Supported Printers .. 197
24.3.6 Printer tested .. 198

24.4 Print Events .. 199
24.5 Minimum requirements ... 200

25 Screen saver .. 201

26 Backup/Restore ... 203

27 Keypads ... 205
27.1 Creating and Using Custom Keypads .. 206
27.2 Deleting or Renaming Custom Keypads .. 208
27.3 Keypad Type ... 209
27.4 Keypad Position .. 210

28 External keyboards .. 211
28.1 Search and Filter .. 212
28.2 Shows ... 213
28.3 Clear Actions .. 213
28.4 Keyboard Layout... 214
28.5 Enable Keyboard .. 214
28.6 Configure Macro Actions for Keys .. 215

29 Tag Cross Reference... 216
29.1 Accessing Tag Cross Reference .. 216
29.2 Using Tag Cross Reference ... 216
29.3 Tag Cross Reference: data update .. 217
29.4 Export data in csv ... 217

30 Indexed Addressing ... 218
30.1 Creating an Indexed Addressing Set .. 218

30.1.1 Autofill tag names ... 220
30.2 Using Indexed Addressing mode in pages ... 220

31 Special Widgets ... 222
31.1 Date Time Widget ... 222
31.2 RSS Feed Widget ... 223
31.3 Control List Widget ... 224

31.3.1 State ... 225
31.3.2 Selection ... 226
31.3.3 Write on Select ... 226
31.3.4 Write on Enter ... 226
31.3.5 Read Only ... 226

31.4 Variables Widget... 226
31.4.1 Using Variables in JavaScript ... 228

31.5 IPCamera Widget ... 229
31.5.1 IPCamera tested ... 230

31.6 PTZ Controls ... 230
31.7 Multistate Image Widget ... 231
31.8 Multistate Image Multilayer ... 231
31.9 Combo Box Widget ... 234
31.10 Consumption Meter Widget .. 235

32 Custom Widgets .. 238
32.1 Creating a Custom Widget ... 238
32.2 Adding the Properties ... 239
32.3 Editing Custom Properties .. 242

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 8

33 Send an E-mail Message .. 243
33.1 Configure E-mail Server ... 243
33.2 Configure E-mails ... 244

34 JavaScript .. 246
34.1 Execution .. 246
34.2 Events ... 246

34.2.1 Widget Events... 247
34.2.2 Page Events ... 248
34.2.3 System Events .. 249

34.3 Objects .. 251
34.3.1 Widget ... 252
34.3.2 Page ... 255
34.3.3 Group .. 257
34.3.4 Project ... 258
34.3.5 State ... 266

34.4 Keywords .. 266
34.5 Global Functions ... 267
34.6 Limitations ... 267
34.7 Debugging of JavaScript .. 267

34.7.1 Remote JavaScript Debugger .. 269

35 System Settings Tool ... 270
35.1 User Mode .. 270
35.2 System Mode .. 271

36 Updating System Components in HMI Panels .. 274
36.1 List of Upgradable Components ... 274
36.2 Update of System Components from PB610 Panel Builder 600 275
36.3 Update of the System Components via USB Flash Drive .. 276

37 Access Protection to HMI Devices .. 278
37.1 Ports & Firewalling .. 279

38 Factory Restore ... 281

39 Tips and tricks to improve performance .. 282
39.1 Static Optimization .. 282

39.1.1 Best practices for max performance ... 283
39.1.2 FAQ – Static optimization ... 284
39.1.3 Templates ... 285

39.2 Page caching .. 285
39.3 Image DB .. 285

39.3.1 Best Practice to use the Image DB .. 285
39.4 Precache ... 286

39.4.1 Best Practice to use the Precache ... 286
39.4.2 Frequently asked questions – Precache .. 286

40 FAQ.. 287
40.1 How to change fill color property according to Tag values ... 287

40.1.1 Using ColorPaletteCustom Xform... 287
40.1.2 Connecting Color property to a String type Tag ... 287

41 Functional Specifications and Compatibility .. 289
41.1 Table of Functions and Limits ... 289
41.2 Compatibility ... 289

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 9

1 Getting Started

The PB610 Panel Builder 600 is a software application used to create graphical HMI pages. The PB610
Panel Builder 600 has a drag-and-drop interface that makes it easy to create complex display pages. The
same features found in many popular Windows applications are also available in the PB610 Panel Builder
600.

This document describes how to use the PB610 Panel Builder 600 application, and is divided into chapters
that represent the key operations of the PB610 Panel Builder 600. Each chapter is presented in a standalone
manner, allowing you to jump from chapter to chapter, depending on the task you wish to perform.

1.1 Assumptions

We assume that those reading this manual are using the PB610 Panel Builder 600 software to design control
panel applications that run on CP600 panels and on PC.
We also assume that you have a basic understanding of PCs, Microsoft Windows, and the type of network
environment in which you will run the application.

1.2 Installing the Software

The PB610 Panel Builder 600 contains the following as part of the installation:

PB610 Panel Builder 600
PB610 Panel Builder 600 is an application for designing custom HMI projects in a user-friendly manner,
along with a variety of options in its built-in library, the Widget Gallery.

HMI Client
HMI Client is a light-weight application that can be used on Windows computers to remotely view and
manage an application running on an HMI Runtime.

HMI Runtime
The HMI Runtime is a standalone application that runs on the CP600 HMI panels. The HMI Runtime can be
installed via PB610 Panel Builder 600 and is designed for working with WCE 6.0 OS.

1.2.1 System Requirements

PB610 Panel Builder 600 has the following system requirements:

Operating System Windows XP (SP2 or SP3)

Windows Vista (SP1 or SP2)
Windows 7
Windows 8

Storage 500 MB Min

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 10

RAM 512Mb

Other One Ethernet connection

1.2.2 Opening Projects Created with Older Version of PB610 Panel Builder 600

When a PB610 Panel Builder 600 project (file with .jpr extension) is opened, PB610 Panel Builder 600
checks for the match between the version ID stored in the jpr file and its version ID; if they match, the project
will be opened normally; if they do not match, PB610 Panel Builder 600 shows a warning message to inform
that the project has been created with a different version of PB610 Panel Builder 600 and report this version
ID if it is available in jpr.

In this case PB610 Panel Builder 600 will offer two options to convert the project:

• Convert and open the project from current path. The project will be converted without a backup copy
of the original version.

• Convert and save the project to a new location and Open. The older version is maintained as a
backup copy.

Figure 7

WARNING Do not edit projects with a version of PB610 Panel Builder 600 older than the one used to

create them. It can result in a damage of the project and to runtime instability.

1.2.3 Multilanguage for PB610 Panel Builder 600

Starting from v1.91 PB610 Panel Builder 600 is available in Multilanguage. All languages are installed by
default as part of PB610 Panel Builder 600.

To change default language (english) used by PB610 Panel Builder 600 go to Help -> Change Language
and change current with preferred language.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 11

1.2.4 Crash report

Crash report dialog appears automatically in case PB610 Panel Builder 600 freeze or crash and allows
users to save a log file of crash. The crash report may contain information important for technical support.

NOTE Crash reports are disabled in Windows XP OS

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 12

2 The HMI Runtime

The HMI Runtime is designed to support different platforms and different operating systems.
All the panels are running today on the base of the Windows CE operating system (Version 6 R3). The
operating system and all its options are built around the minimum set of requirements of the HMI Runtime;
there is no option to get direct access to the Operating system settings as all the needed components are
managed via the runtime itself or via PB610 Panel Builder 600.

Later in this document you will find more information on how to install the HMI Runtime and how to manage
the update of other system components (firmware) on the units, but always with a dedicated interface which
prevents a direct access to the operating system, often a source of complexity.

2.1 Runtime Modes

The HMI Runtime is composed of two logic units: the server and the client. The client unit is the part which
is responsible for the visualization process: using the data collected at the server side to render it on the
display as graphical information. The server unit is responsible for handling the HMI services such as
running the communication protocols, performing data acquisition, driving trend buffer sampling activities,
monitoring alarms, and so on. The server unit of the HMI Runtime can be in one of two operating modes:

• Configuration Mode: the server is idle; activity has not started; for example no project is loaded on
the panel or system files are missing.

• Operation Mode: the server is active; it is operating according to the settings defined by the system

files and by the application project.

The server operating mode is independent of the client side operating mode; you may have a visualization
running but server activity stopped.

2.2 Basic Unit Settings

The settings of the device are available from the Show system settings menu, which is accessible from the
Context Menu, if the panel has the runtime already installed, or by using the dedicated button on the unit
when in loader mode (see for this the chapter “The Runtime Loader” below in this document).

Press and hold your finger on an empty area of the screen for few seconds, until the Context Menu appears
as shown in the figure.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 13

Figure 13

Select Show system settings to access the system settings tools.

Figure 14

The System settings tool is a rotating menu through which you can scroll using the “Next" and “Back"
buttons. It includes the following entries:

Calibrate Touch To calibrate the touch screen if needed

Display settings Backlight and Brightness control

Time Internal RTC settings

BSP Settings Operating system version, Unit operating timers: power up and activated
backlight timers, Buzzer control, Battery LED control

Network IP address settings

Plug-in List Provides a list of the plug-in modules installed and recognized by the
system; this option may not be supported by all platforms and all
versions.

2.3 Other Context Menu Options

The context menu has several other options:

Zoom In/Out/100%
Select view at runtime.

Pan Mode
Enables/disables pan mode; works only when you have previously activated a zoom in.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 14

Settings
Following runtime settings are available:

Context Menu
Delay (sec)

The context menu activation delay. Range is 1-60 seconds.

Show Busy Cursor When enabled, shows an hourglass when the system is busy

Use keypads When enabled, shows touch keypads when users touch/click on fields
for data entry. When disabled, does not show any keypad on screen
(useful when an external USB keyboard is connected to device).

Password Change the password protecting operations such as:
- Download Project/Runtime
- Upload project
- Board management (BSP Update)

Please ref. to Remote access protection to HMI Panels for more
information related to access protection.

Figure 15

Project Manager
When activated, a dialog box will appear (see figure below) providing options to unload (de-activate) the
current project, load (activate) another project present on the panel memory, or delete a project.
Please note that projects can be deleted only after they are unloaded. If you click on a project name other
than the active one, the option "Load project" will first unload the running application and then automatically
activate the new one.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 15

Figure 16

Update
When activated, the panel verifies first the presence of an external USB pen drive inserted in the panel USB
port, and later for the presence on its root folder of the update package. See the “Updating Runtime from
USB Pen Drive “chapter in this document for further information

Backup
Creates a backup copy of runtime and project.

Logging
Enables you to display a trace of the system operation log; it may be very useful in case there is a need to
debug a problem of any nature. The following figure shows a case in which the system reports a
communication error; the decoding of the reported information may not be immediate, but you can always
use the option “Log to file” to save the dialog context to a file that can be later provided to Technical Support
for investigation. The log file is called “logger.txt” and it saved to the folder “...\var\log” on the panel flash
disk. The file can be retrieved from the panel using an FTP client.

NOTE The “Log To File” Option is saved and retained after power cycles; when not needed any more, it

must be manually deactivated.

Figure 17

Show log at boot
Enables the logger at start up; if the “Log to file” option has been enabled, the files are saved, in this case,
from the startup phase.

Developer tools
It is a collection of utility functions useful for debugging problems at runtime.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 16

About
Shows information about the runtime version.

2.4 Built-in SNTP Service

The CP600 Panels Operating System features an integrated SNTP (Simple Network Time Protocol) that
synchronizes the internal RTC panel whenever the predefined server is available.
The server addresses are hard-coded and cannot be changed by the user. The system searches for the
following servers:

• time.windows.com

• tock.usno.navy.mil

SNTP servers are checked at power up, or once per week if the panel is not powered off.

NOTE Starting from WCE v1.76 ARM / 2.79 MIPS is possible to customize up to two SNTP servers from

System Mode (MainOS) accessible via Context Menu -> System Settings -> Time -> SNTP tab. This setting
is not available in Configuration Mode (ConfigOS).

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 17

3 My First Project

This section describes the steps to create a simple PB610 Panel Builder 600 project.

3.1 Creating a New Project

To create a new project, click on the File > New Project menu item.

The Project Wizard dialog will appear, asking for a project name and a path where the corresponding project
folder will be stored.
PB610 Panel Builder 600 projects are stored in a folder that has the same name as the project. This folder
contains all the files of the project. To move, copy or backup a project, you can simply move or copy the
project folder and all its contents to the desired location.

NOTE DO NOT rename the PB610 Panel Builder 600 Project folders manually. If you need to rename a

project, use the File > Save Project As function. Depending on the size of the project, this could take some
time.

Click Next to go to the panel selection dialog.

Figure 18

The panel selection is shown in the figure above. Here, you can scroll through a list of available HMI models
to select the model you are working with.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 18

For each model, two radio buttons are available to select the orientation: landscape (default) or portrait. In
portrait mode the device is rotated 90° clockwise.

Some software features are not rotated when portrait mode has been selected. A list of these features is
shown in the table below.

WCE dialogs all dialogs related to “System Settings”

System Dialogs ex. System Mode

ContextMenu and
related dialogs

Project Manager, About, Settings, Logging, Backup

Video Analog Video Input, IPCamera, MediaPlayer

JavaScript Alert and Print function

Dialog pages “Title” of dialog pages

Scheduler Dialogs for data entry do not support portrait

Macro ShowMessage, LunchApplication, LunchBrowser

External
applications

 VNC

Click Finish to complete the Wizard.

Once the HMI model is chosen, you can convert the project to any other model, using the project properties
portion of the screen, as shown below. This will not resize all widgets in the project to the correct size to fit a
smaller or larger screen; it will simply change the model type and give a warning if some objects will be lost
during the conversion.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 19

Figure 20

3.2 The Workspace

The PB610 Panel Builder 600 workspace is divided into following main areas:

Project View Presents the elements of theprojec in the form of a hierarchical Project

Tree.

Object View Lists the Widgets with the corresponding ID’s used in the page.

Working Area Main working space where editors create the HMI pages. The current
page or pages opened in the Editor View are indicated by a tab at the
top of the center area. You can quickly switch between the different
pages in the Editor View by clicking on the desired tab.

Properties Properties for the selected object / widgets

Widget Gallery Large library of symbols and graphic objects.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 20

Figure 21

The workspace layout can be freely changed at any time; any change is saved and maintained among
Studio activations. In case you need to reset the workspace to the original default layout, use the command
called Reset and Restart under the File menu.

Figure 22

3.3 Communication Protocols

Device Communication drivers are configured in the Protocol Editor, which is accessible from the project
tree (as shown in the figure below). Double click on the Protocols icon in the Project Tree view to open the
Protocol Editor.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 21

To add a driver, click on the “+" Icon and select the driver from the list in the controller field. Once a
communication driver has been selected, configure the driver by clicking on the browse button in the column
Configuration. A configuration dialog will be displayed, allowing you to set the parameters of the driver (as
shown in the figure below).

NOTE Refer to CP600 operating instructions manual in case you need cables information.

Figure 23

As an example, to create a project for ABB Modbus TCP, you would select the ABB Modbus TCP driver and
then configure the communication parameters by selecting the browse button in the Configuration column.

Figure 24

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 22

PB610 Panel Builder 600 configurations that include more than one communication protocol. By repeating
the steps previously outlined, you can add up to four protocols in the Protocol Editor.

NOTE while it is possible to run different Ethernet protocols over the same physical Ethernet port, you

cannot run different serial protocols over a single serial port. Some serial protocols support access to
multiple PLCs, but this is an option that has to be configured within the protocol and still counts as one
protocol.

The Other parameters in protocol editor are:

• Tag Dictionary: tags imported for a particular protocol. Ref. to chapter Dictionaries for more details
• Enable Offline Algorithm / Offline Retry Timeout: ref. to chapter Offline Node Management for

more details
• Version: version of the protocol available in PB610 Panel Builder 600 for selected target. Version of

the protocol is not read from HMI directly but from studio internal DLLs.

NOTE Refer to the appropriate manual of communication protocol for detail information.

3.4 Tags

PB610 Panel Builder 600 uses Tag names to access all device data. All fields and reference locations in the
device need to be assigned a Tag name to be used in the HMI. To assign Tags, double click on the Tags
icon in the Project View and the Tag Editor will be displayed (as shown in the figure below).

Figure 26

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 23

To add a new Tag, click on the “+" icon, and select the Address from the Communication protocol address
dialog. When Tags are initially added, these Tags are named Tag1, Tag2, etc., by default. The user can
rename the Tag with the appropriate name by clicking once on the Tag name.

The Tag Editor provides a Tag Import feature, which is available based on the protocol selected. Not all
protocols support Tag Import. If the protocol does support this feature (see specific Protocol
documentation), first select the Protocol from the filter button and then click on the Import button (as shown
in the figure below).

Figure 27

You will see the dialog that corresponds to the protocol selected, which prompts you to browse for the export
file. The export file is exported from the controller programming software.

3.4.1 Tag Editor

The tool in PB610 Panel Builder 600 used to create and manage tags is called the Tag Editor.

For each tag, the Tag Editor allows you to specify several properties:

Name
This is the unique name at the project level of the tag. This is the primary key used to identify the information
in the internal runtime tag database. Note that you cannot use the same tag name even if you are referring to
different communication protocols.

Group
After the tags have been defined in the Tag Editor, they are used in the project by attaching them to the
widgets' properties (see chapter “Attach To” for a complete explanation).
For each screen the system is able to identify which tags are used in the specific page and identifies them as
part of the "page group". This allows easy handling at run time of the requests made by the communication
protocol to the connected controller(s): only the tags included in the displayed page are queued for polling
from the controller memory.
This mechanism is fully automatic and there is no intervention required by the user.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 24

The tag editor allows you to define groups of tags not belonging to a specific page but, for instance, grouped
according to their logical meaning.
We can call these groups "Users' groups". Users' groups have no meaning for the local visualization, but
they are very useful when external software communicates with the runtime requesting sets of data that must
be independent from the currently displayed screen.
The Runtime web server publishes a set of communication interfaces that can be used from a 3rd party
application to interface with the local tag database and read the tags according to their grouping.
The group column allows you to define the users' groups and assign tags to them.

Driver
Specifies the communication protocol for which the tag is defined.

Address
This shows the PLC controller memory address. To edit it, click on the right side of the column to get the
dialog box where you can enter the address information.

Encoding
Encoding type for string data type (UTF-8, Latin1, UTF-2 and UTF-16)

Comment
Allows you to add a description of the tag.

Rate (ms)
Define the refresh time for tag. Default is 500ms that means tag is updated every 500ms.

R/W
This option determines if the tag must be managed as Read only (R), Write only (W) or Read/Write (R/W).
When a Tag is Write Only (W), the system never reads the tag value (& status) but can only write it. When
communication is not active, content of Write Only tags may not be available in widgets.

Active
As explained above, tags are grouped per page and, if needed, in users' groups. By default, tags are not
active (are not read from the controller); this means they are automatically activated by the runtime when the
visualization requires them (for example when used on current page). You can force the system to
continuously read a certain tag even if not present in the current page by setting its Active property to true.
We recommend that you normally leave this parameter to false to avoid unexpected results in terms of
communication performance.

Simulator
PB610 Panel Builder 600 provides online and off-line simulation. The behavior of each tag during offline
simulation mode can be specified by choosing between several profiles.

Scaling
Tag values are normally transferred "as they are" from the protocol to the real time tag database. You can
specifically apply scaling to the tag values before they are stored in the database. The available scaling
options are By formula and By range. Scaling can be specified in terms of linear relationship as a formula
or as range conversion.

The tag name must be always unique at the project level; often it may happen that the same tags, from the
same symbol file have to be used for two different controllers. Since having tags with the same name is not
supported, you can use the “Alias” feature to automatically add a prefix to the imported tag to make them
unique at the project level.
When importing tags for a Protocol, the tag names may be prefixed by the name given in the “Alias” item of
the protocol configuration dialog box. Please note that not all protocols support the “Alias” feature. See
protocol documentation for specific information.

PLC Tag Name
This is the original name of the tag when imported from PLC. This field is managed automatically by Tag
Importer and is available as R/W in advanced view just to allow users to change it if any problem during tag
import operation. For tags not imported from external files usually this field is empty and can be ignored.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 25

PLC Tag Name are used so as link between tags used by HMI application (Tag Name) and tags exported
from PLC.

3.4.2 Data Types

When creating a tag, PB610 Panel Builder 600 shows a dialog box in which you need to specify the tag
properties. The tag Memory Types are specific to the selected Protocol.

The tag Data Type must be selected from the list of available PB610 Panel Builder 600 Data Types,
according to the internal representation you need for the selected controller address. PB610 Panel Builder
600 Data Types are summarized in the following table.

Data Type Description

string Character strings. The characters are coded in UTF-8 format.

boolean Boolean is one bit data (0..1)

float
Float corresponds to the IEEE single-precision 32-bit floating point type
(1.17e-38 ... 3.40e38)

double
Double corresponds to IEEE double-precision 64-bit floating point type
(2.2e-308 ... 1.79e308)

binary Binary represents arbitrary binary data

int Int is signed 32 bit data (-2.1e9 ... 2.1e9)

short Short is signed 16 bits data (-32768..32767)

byte Byte is signed 8 bits data (-128..127)

unsignedInt UnsignedInt is unsigned 32 bit data (0 ... 4.2e9)

unsignedShort UnsignedShort is unsigned 16 bit data (0..65535)

unsignedByte UnsignedByte is unsigned 8 bit data (0..255)

time Time data

boolean [] Array of Boolean

byte [] Array of byte

short [] Array of short

int [] Array of int

unsignedbyte [] Array of unsignedbyte

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 26

unsignedshort [] Array of unsignedshort

unsignedint [] Array of unsignedint

float [] Array of float

double [] Array of double

time [] Array of time

3.4.3 Dictionaries

A dictionary is a list of tags imported in the tag editor for a specific protocol. Usually these files are generated
by 3d party tools and are in .csv, .xml or other formats. Refer to Tag Import section of each protocol for
details related to supported formats.

Dictionaries folder in ProjectView list all files imported in the tag editor for each protocol. Selecting a
particular protocol, it is possible to delete or look at the imported dictionary files for the related protocol.

Figure 29

To import a new Dictionary proceed as follow in Tag Editor:

1. From top toolbar, select interested protocol
2. Click on >] button to call importer
3. Verify controller type and select format of file to import (.csv, .txt, .sym – protocol dependent)
4. Click OK
5. Select file to import

As result, a new dictionary file is added to the Dictionaries folder and a list of tags imported are available in
the tag editor and shown at the bottom of the tag editor page. Tags shown in dictionary can be imported into
the project using following:

• Import Tags (to add new tags to the project)

• Update Tags (to update tags already imported previously)

NOTE When importing tags, the "." period is replaced with a "/" forward slash character. This is normal and

the protocol will use the correct syntax when communicating to the PLC. The "." is a reserved character and
cannot be used in a tag name.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 27

NOTE The “&” ampersand character cannot be used in a tag name, as it can cause communication issues.

3.5 Designing a Page

When a project is created, a page is automatically added to the project and shown in the Page Editor. To
add objects to a page, simply drag and drop the objects from the Widget Gallery to the page.

To add a new page, right click on the Page node from the project tree and select “Insert new page”. A dialog
box will appear asking for the name of the new page.

Figure 30

3.5.1 Importing a Page

A page can also be imported from another project. By right clicking on the page folder in the Project View,
you will see an option named “Import Page”. Please refer to the Figure below.

Figure 31

After selecting a page to be imported from the desired project, when you click OK, you get a warning
message in the editor as shown in the figure below.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 28

Figure 32

Page Import can support only import of the page and the widgets in it, but not the Macro actions and data
links attached to the widget. By selecting “Yes” all the data links and the Macro actions attached to the
widgets will be removed. Only the Widgets will remain. By selecting “No” the macro actions and the data
links will remain attached to the widgets, but may not function properly during runtime, unless the tags
associated with the Macros and data links are present or created in the new project.

NOTE The page import can be done between projects made in the same version of the software. If the

versions are different, a warning message will pop up to save the project in the new version, and then try
again to import the page.

3.5.2 Dialog Pages

Dialog pages are windows opened at runtime on top of the current page when requested by the application.
Dialogs are used to inform user about something happening (ex. alarms/notifications/status errors) or to
allow user to answer a question.

Dialog type can be defined in the property window of each dialog and can be:

• Modal: user cannot return to main project window/page until dialog is closed.
• Non-Modal: user can continue to use main project window (or other dialogs non- modal) while a

dialog is shown on top of it.

Figure 33

Max number of dialogs allowed is reported in Table of functions and limits. When max number of open
dialog has been reached, the runtime will close automatically the oldest dialog open to open the new one.

A dialog can have a Title Bar on top of it. When Title Bar is enabled (Title Bar = true), a Title Name may be
shown.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 29

Runtime Position can be used to specify a fixed position for the dialog window.

3.6 The Widget Gallery

The Gallery is adjacent to the Property View panel and can be opened by clicking on the Widget Gallery tab
(as shown in the figure below).

Figure 34

Select the desired object from the Widget Gallery, then drag and drop it on the page.
To change the appearance of the object, select the desired property from the property pane and change the
property settings.

All the HMI objects required to build an application are available in the Widget Gallery. The Widget Gallery is
accessible as a slide in pane from the right side of the workspace (as explained in the previous chapter).
The gallery is divided into several categories, each with collections of different types of objects.
Click on a category to display its sub-categories.
For each sub-category, the gallery offers the option of applying different styles to the objects within that
category (when possible).

The figure below shows the Widget style button for round gauges.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 30

Figure 35

Clicking on the style button will display the available styles for the current object.
Select one of the available styles to apply it to the gallery objects.
This is done using the Page Toolbar shown in the figure below.

NOTE Style change may not be available for all widgets.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 31

Figure 36

Once on the page, the object can still be subject to additional style changes.
This is done using the Page Toolbar shown in the figure below.
Depending on the object selected, you can have options for the style, frame, fill colorUalong with the font
type and size and other standard object properties

NOTE Some widgets are composed of many sub widgets. For example a button is a complex widget

composed by two Image widgets, a button widget and label. This is clearly visible in the ObjectView when
the widget is selected. To select a sub widget like the label in a button, use ObjectView or Shift + leftClick of
mouse. In this way sub widget can be changed without ungroup all widget.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 32

Figure 37

3.7 “Attach To” and Dynamic Properties

PB610 Panel Builder 600 allows for simple binding between Tags and Widget Properties. Many different
Widget Properties can be attached to a Tag, which allows you to control the device and animate objects
based on live data.

To attach a Tag to a property, click on the property in Property view. A [+] button will be displayed on the
right side of the property. Click on this button and select the item Attach To@ from the menu (as shown in
the figure below).

For example, when working with a gauge object, the most common action taken by the programmer is to
attach a Tag to the needle, so that the value of the Tag referenced in the controller memory is represented
by the needle movement.

Figure 38

To attach the Tag to the needle, single click on the object to display its properties in the Property view.
Locate the Value property and click on the [+] button on the right part of the field as shown in above figure.
Select the Attach To@ menu item and a dialog will be displayed as shown in the figure below.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 33

Figure 39

When attaching a Tag, you can attach four types of data sources:

• Tag: tag defined in the Tag editor

• System: predefined system tags (example date and time)
• Widget: connect to a widget property (example: value of a slider widget)

• Recipe: recipe data from Recipe Manager

Select the Tag from the Tag list and Click OK to confirm.

Tags can be attached to many different properties of the object. You can attach a Tag to a property by
selecting the property in the Property view and clicking on the Attach To or you can right-click on the object
and select the Attach ToU menu item.

NOTE A chapter in this document describes in detail the “Attach to” concept.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 34

4 The HMI Simulator

The HMISimulator provides the ability to test the project functionality before downloading it to the panel. This
feature is useful to test the project when no PLC or HMI hardware is available and to speed up development
and debugging of projects.

The HMI Simulator support online simulation in communication with real devices (PLC based on Ethernet or
RS-232 based protocols) and offline simulation (where using Tag Editor -> Simulator field allows the
configuration behavior of each tag in simulation mode).

4.1 Launching the Simulator

Start the Simulator with the menu item Run > Start Simulator.

Figure 40

At this point, the Simulator is running in the computer, similar to the way the server runs on a panel.

4.2 Stopping the Simulator

Figure 41

To stop the Simulator, select the Run >Stop Simulator menu item. You can also exit the Simulator using the
close button of the Simulator or by using the Exit option from the Context Menu.

4.3 Simulator Settings

The Simulator can be used with real protocols & PLCs (Ethernet or RS-232 based protocols) or with
simulated protocols.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 35

Figure 42

When we invoke the Simulator Settings button, a dialog showing the protocols used in the project will pop-
up. Users can select to use actual or simulated protocols by using the Use Simulation checkbox.

By default the Simulator uses simulated protocols defined in the Tag Editor Simulator column for each Tag
(see Figure 43). Unchecking flag Mode, the Simulator will communicate using real protocols with devices.

NOTE Some protocols, for example the Variables protocol, does not support communication with devices

(Win32) and, for these protocols, this option remains disabled. Usually all protocols based on ETH or RS-232
can be simulated in win32 platform or in general all protocols that do not require special hardware.

Figure 43

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 36

When defining Tag values, the Tag Editor also includes a field Simulator to select a method for simulating
the data. Tag values can be simulated in the following ways:

Variables The data is stored in a variable in the simulator. This variable holds the

value of the Tag so the client can read and write to the Tag value.

SawTooth A count value is incremented from “Offset” to “Amplitude + Offset” value
with a “Period” of 60..3600 seconds. When the counter reaches
“Amplitude + Offset”, the value is reset to “Offset” and the counter
restarts.

Sine Wave A sine wave value is generated and written to the Tag value. The Min,
Max and Period values of the Sine wave can be defined for each Tag.

Triangle Wave A triangle wave value is generated and written to the Tag value. The
Min, Max and Period values of the wave can be defined for each Tag.

Square Wave A square wave value is generated and written to the Tag value. The Min,
Max and Period values of the Sine wave can be defined for each Tag.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 37

5 Transferring the Project to Target

The PB610 Panel Builder 600 project can be transferred to the runtime in two ways:
1. Using the Download to Target item in the Run Menu.
2. using an Update Package via USB

5.1 Download to Target

Run -> Download to Target can be used to transfer project and runtime via Ethernet from the PB610 Panel
Builder 600 to the runtime.

NOTE The panel must have a valid IP address assigned. Please see the chapter “Unit Basic Settings” for

further information on how to assign an IP address to the panel.

Once the panel has a valid IP address assigned, it will become discoverable on the local network. Click on
the discovery button and select the HMI from the list of IP addresses.

Figure 44

Click on the Download button to start the process. The system will switch the Target to Configuration mode
and transfer the files. When the download operation is completed, the Target is automatically switched to
Operation mode and the downloaded project is started.

Any time a project is changed, the modified files needs to be transferred to the Target device. When
updating a Target, PB610 Panel Builder 600 provides the option Download only changes to transfer only
the modified files to the device. The figure below shows the Advanced options expanded.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 38

Figure 45

The other option is Delete Dynamic Files. There are files that can be modified in the HMI at runtime, for
example you can create new users at runtime or you can upload new values to the recipes. If the option to
delete the files is selected, the edited configuration of the recipes, or users, or the schedulers will be deleted
and overwritten by the project configuration.

NOTE Dynamic files are not deleted using Delete Dynamic Files if storage type is external (example USB /

SD Cards).

IMPORTANT Please make sure to check carefully before selecting this option as some data can be lost.
Data cannot be restored after it has been deleted.

When transferring a project, the Studio uses a combination of HTTP and FTP connection. The HTTP
connection is used to issue commands to the target device like “switch to transfer mode” or “unload running
project”; the FTP session is instead used to transfer the files to the panel flash memory.

The Default port for HTTP connections on the Target is set to 80. However, the user can change the port
number to a different value. To set the port number from PB610 Panel Builder 600, click on the Run >
Manage Target, and then click on Target Setup on the dialog. The HTTP, FTP port or HTTPS, FTPS port
can be set for the target.

The Host Name can be defined by the user, in the appropriate box in the Target Port pop-up. This will allow
each panel to be easily identified on a network with multiple panels. The drop down box will no longer show
HMI@10.2.0.6, but will show, for example, Machine1@10.2.0.6.
After renaming the host, it is necessary to download the system files to the target.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 39

Figure 46

NOTE Transferring a project after the above settings will result in a change of the default configuration. At

the next download, the new ports will be used on the target and the new ports will have to be specified in the
software to match the new selection.

In the download dialog, click on Advanced Menu and set the port.

Figure 47

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 40

Set the HTTP/HTTPS port and FTP/FTPS port of the Target. They represent the port numbers the software
uses to connect to the FTP(S) and the HTTP(S) servers on the Target. This is useful whenever default ports
are, for some reason, in use by other applications or services, or if the local network requires using different
port settings.

Figure 48

When Target Flash Memory is Low

While trying to download a project to the Target, if the project size is almost near or greater than the free
space available in the flash memory, then it is not possible to download the project directly. The difference
between the project size and available free memory should be at least 2MB.

Figure 49

While clicking Download, a warning message will pop up mentioning that the Target memory is low and
whether you need to delete some projects (as in the figure given above). Soon after you click “Manage
Target”, the Manage Target window will open showing all the available projects in the Target. Deleting the
unwanted projects from the target creates more memory space, hence making it possible to download the
current project. By pressing Cancel, the dialog will close, and the download operation is aborted.

NOTE The automatic check for available space for project download is a feature present from PB610 Panel

Builder 600 and runtime version 1.80.

5.2 Update Package

Both Runtime and project can be installed or updated using an update package via USB. To create an
update package proceed as follows:

1) From the Run menu in the top toolbar, select Update package
2) Select the target and components you need to update
3) Specify the output directory for update package (example. USB flash drive)
4) Click Create to generate package

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 41

5) Assuming you have stored the package in the root folder of a USB drive, remove the drive from the PC,
plug it into the HMI, activate the context menu by holding your finger for a few seconds on the screen (see
also “Basic Unit Settings“) and select “UpdateU” as shown in the figure below.

Figure 50

6) The system will automatically check for the presence of the update package in the root of the USB drive
and ask confirmation to proceed with the update according to the figure below.

Figure 51

7) Mark the “Auto select best match” check box and click the “Next” button. The rest is automatically done by
the system.

IMPORTANT It is always recommended to create update packages with both flags Project and HMI
Runtime checked. Use latest runtime with old project not converted with PB610 Panel Builder 600 can
originate stability problems.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 42

Figure 52

Target Target type. When a project is open the target type is selected

automatically otherwise it is responsibility of the user to select the correct
target type.

Project Project opened in PB610 Panel Builder 600 is added to the update
package.

HMI Runtime &
Plug-In

HMI Runtime is added to the update package. If a project is open in
PB610 Panel Builder 600, also required plugins will be added to update
package.

Set Target
Password

Can be used to set password used by HMI Runtime to protect operations
like upload of projects, board management, download of projects, etc.
Ref. to Remote access protection to HMI Panels for more information on
to access protection.

Encrypted Enable Encryption of update package; it cannot be read by any user and
can be unzipped only by the HMI Runtime.

Location Path for saving the update package.

5.3 The Runtime Loader

The explanations provided in the previous chapters are valid when using a panel with the runtime system
already installed.
The HMI devices are delivered from the factory without the runtime. When you power up the unit for the first
time, it starts with the “Runtime Loader” screen as shown below.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 43

Figure 53

NOTE The Runtime Loader is a feature dependent on the device Operating System and may not be

available on all the units. The description provided in this chapter assumes that you are using PB610 Panel
Builder 600 V1.80 or later. On MIPS based units, the Runtime Loader is available from version V2.65; on
ARM based units the Runtime Loader is supported from BSP version V1.52.

When you click on “System settings” you can activate the System menu in User mode, where you can set
the IP address of the panel. See the chapter “System settings tool” for additional information on this tool.

Once the IP address is assigned and the panel is connected to a valid network, the easiest way to install the
runtime is to download a project from the PB610 Panel Builder 600. See the chapter “Transferring the
Project to Target“ for additional information.

The normal download procedure in Studio is able to recognize the need for transferring the runtime and the
process is automatically started. As soon as the panel IP is selected from the list of available units in the
network, Studio will recognize the need for transferring the runtime, providing the information as shown in the
following figure.

Figure 54

Just click on the Install runtime button to proceed.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 44

The process will automatically go through the required steps, ending with the project download.

On an off-the-shelf unit the runtime can be installed also using an USB pen drive.

Prepare the Update Package according to the instructions provided in the chapter “Transferring the Project
to Target“ and make sure to mark all the check boxes for the HMI Runtime as shown in the following figure.

Then plug the USB drive in the panel and click on the “Transfer from disk” button.

Figure 55

Then follow then the instructions on the screen.

NOTE The Runtime Loader on the panel does not support the automatic installation of the runtime with

versions prior to 1.80; in case an older version of the runtime has to be used on a unit with the Runtime
loader, please contact technical support for additional information.

5.4 Upload Projects

You can retrieve a project from a target device using the command “Upload Project”. A copy of the project is
transferred from runtime to the computer running PB610 Panel Builder 600.

To upload a project proceed as follows:

1. Run -> Manage Target
2. In tab “Runtime”, Select IP of the device from “Target” menu.

Figure 56

3. Click on “Retrieve Projects” to list all projects available in the target device
4. Select project to upload
5. Click on “Upload Project”
6. Enter password

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 45

7. Upload process starts

Once upload has completed, a copy of project is available in: C:\Users\username\Documents\PB610 Panel
Builder 600\workspace\Uploaded\RuntimeIPAddress\workspace\ProjectName

Starting from PB610 Panel Builder 600 v1.90 (build 608) upload is no longer based on User Management for
access protection but is protected by a dedicated password scheme. Please refer to Remote access
protection to HMI Panels for more information related to access protection.

NOTE If upload operation failed please verify firewall settings of PC where PB610 Panel Builder 600 is

installed.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 46

6 Programming Concepts

The programming guidelines for PB610 Panel Builder 600 are based on a few basic concepts, which are
common in many parts of the system.

6.1 Attach to

In PB610 Panel Builder 600 the basic programming techniques are used to configure the properties of an
object placed on a page. Object properties can be set at programming time or configured to be dynamic.

To change a property at programming time you can use the page toolbar or the property pane which shows
the properties available for the selected object.

Figure 57

The page toolbar permits a quick change of the most commonly used object properties.
When you need a complete view of all the properties of a certain object, you need to use the property pane.
You have to select an object to see its properties shown in the property pane.
The property pane allows you to both change a property at programming time and attach the property to a
dynamic element.
From the property pane, when you click on the right side of a property cell, you get the ability to "Attach to"
the property to a tag. This operation is done using the "Attach to" dialog shown in the figure below.

Figure 58

The “Attach to” dialog has two tabs. The first is called "Tag" and allows you to attach the property to an
element. The "source" can be selected using the radio buttons.

The elements to which the property can be attached are:

• Tags

• System Variables (see chapter System Variables for an explanation of the meaning of all System
Variables)

• properties from another Widget
• elements of a Recipe

The radio buttons at the bottom allow you to set the access type.
The TagIndex selection is used in the case of arrays to determine the array element.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 47

Figure 59

When adding Tags, the Protocols used in the Project are shown in the tag Dialog box and when expanding
each protocol, the corresponding tags can be seen. The tags will be arranged in alphabetical order inside
each Protocol.

There is an Option to search the tag to be attached by its name as shown in the Figure above.
This makes it easy to find Tags. The search can be done in two ways: first, you can start typing the tag name
in the left box and this will “jump” into the list to the first tag starting with the characters you have entered;
second, you can type in the search box any part of a tag name and this will automatically apply a filter to the
view so that only the tags which contain the search characters are displayed.

Scale/XForms allows you to apply transformations to the numeric value of the source element before it is
applied to the property of widget. Transformations can be simple linear relationships or generic
transformations.
Linear scaling can be configured when selecting the "Scale" tab and they can be specified in terms of a
formula or "By range". In case the range mode is selected, you just need to specify the input and output
range and the system will automatically calculate the factors for the formula.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 48

Figure 60

XForms transformations are applied to the result of scale transformation. Supported transformations are:

Color conversion Allows you to define a map between numeric values of the tag and

colors to be assigned to the property. This feature is used to change the
color of a button, for example, based on the value of a tag. If the tag is
an integer, you can have many different colors based on the tag value

Bit and Byte index Allows extracting a single bit or byte content from a word depending on
the specified bit or byte number.

Example of transformation: scaling (100/10*value + 5), byteIndex(0), bitIndex(1) , equivalent to:
bitIndex (byteIndex (100/10*value+5,0) , 1)

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 49

Figure 61

6.2 Events

In a PB610 Panel Builder 600 application, Events are the way to trigger Actions at the application level.

Main types of Events:

• Events related to buttons / touch (Click, Press, Release, Release)
• Events related to external input devices like keyboards & mouse (Click, Press, Hold, Release,

Wheel)

• Events related to data changes (OnDataUpdate)
• Events related to switch of pages (OnActivate, OnDeactivate)
• Events related to alarms

• Events related to scheduler

Whenever the system generates an Event, you can attach one of the following actions to the event:

• an Action/Macro (or sequence of) selected from a list of predefined actions
• a JavaScript function

The figure below shows an example of an Action activated by pressing a button.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 50

Figure 62

By associating Actions to Events, the programmer configures user interaction with the program.

6.2.1 OnClick / OnMouseClick

This Event occurs when the button/key is pressed and released quickly.

Figure 63

6.2.2 OnHold / OnMouseHold

This Event occurs when the button/key is pressed and held pressed for a certain Hold time. Actions
programmed for this Event will be executed only after the Hold time has expired.

Default Hold time is configured in project properties but can be redefined for each button/key.
When a value -1 is specified as Hold time for a certain button, the project default value will be used.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 51

Figure 64

6.2.3 Autorepeat

It is possible to enable autorepeat for Press event or for Hold event of a button/key.
Autorepeat Time is specified in Project properties but can be redefined for each button/key.

Figure 65

Figure 66

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 52

6.2.4 OnWheel

This Event occurs when a wheel (example: a USB mouse wheel or a handheld wheel) value change. A
wheel usually is used to increment/decrement a value in data entry or attached to a tag.

6.2.5 OnActivate

This event triggers when a page is loaded and before widgets being initialized with the values read from Tag
Manager.

6.2.6 OnDataUpdate

This event triggers when a data field attached to a widget changes. Upon page change, data is updated
asynchronously at a time that depends on the time needed to read data from protocol. As a consequence,
the OnDataUpdate event can be triggered or not, depending on whether data becomes available from
protocol respectively after or before widgets being initialized for first time. In particular page change
notifications are more likely to happen with slow protocols and remote clients.
Moreover, note that the value we read during OnActivate can be the same we get from a subsequent
OnDataUpdate event, since OnDataUpdate notifications are sent asynchronously.

6.3 Widgets positioning: Snap to Grid / Snap to Objects

To help user in precise widgets positioning two editing options options are available in PB610 Panel Builder
600:

- Snap to Grid
- Snap to Object

“Snap to” positioning can be enabled via the top toolbar �View menu items.

6.3.1 Snap to Grid

In Snap to Grid mode when you move or resize an object, its top left corner will align or "snap to" the
nearest intersection of lines in the grid, even if the grid is not visible. If default settings does not fit your
needs, you can either switch off the function of customize the grid.

The Grid can be enabled from View �Show Grid and customized from View�Properties where it is
possible to choose:

- Spacing X: space in pixel between two lines/dots in X axis
- Spacing Y: space in pixel between two lines/dots in Y axis
- Type: type of grid, dot or line
- Color: the color of grid

6.3.2 Snap to Object

In Snap to Object mode when you move an object, it will align or "snap to" other objects.

When you select an object to move, one of the following hot points is selected as the source of the snap
point, depending on the area you pressed: top, top left, top right, bottom, bottom left, bottom right, left, right,
center:

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 53

Figure 67

The algorithm tries to find a matching hot point among the neighbourhood widgets hot points which matches
either x or y coordinates of the source snap point.

For line widget the source snap points are the terminal points of the line.

6.4 Z-order of widgets

Z-order is an ordering of overlapping two-dimensional objects / widgets such as shapes (or objects in a 3D
application). One of the features of widgets is that they could overlap, so that one widget hides part or all of
another. When two widgets overlap, their z-order determines which one appears on top of the other.

A widget with greater z-order is always in front of an element with a lower z-order.

Z-ordering of widgets is essential for performances since overlapping dynamic widgets can invalidate static
optimization and reduce performance of hmi applications.

In PB610 Panel Builder 600 a new toolbar is available to help user understand widgets overlapping. The
toolbar allows to:

- Enable visual filtering: hide widgets stacked above and/or below selected widgets (using the two
buttons available in toolbar).

- Check z-order of widgets using the combobox. An icon allows to distinguish between static (picture
icon) and dynamic (movie frame icon) widgets. The combobox is listing widgets in z-order.

Visual filtering reduces the opacity of the widget above the currently selected widget, so user can easily edit
widgets hidden by overlapping items.

Figure 68

6.5 Change properties of several widgets at once

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 54

For widgets of the same type (ex. two or more labels, two or more fields, two or more gauges etc) the user
can change common properties in few steps using PB610 Panel Builder 600.

To change multiple properties of widgets proceed as follow:

1) Select all widgets of the same type where is required to change common properties
2) Change common properties from property pane

When multiple widgets are selected, the property pane title changes to “<MultipleObjects>” indicating that
all properties changes will be applied to all widgets selected on the page.

Figure 69

NOTE Not all properties can be modified for multiple widgets simultaneously and must therefore be

modified individually.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 55

7 Project Properties / Project Widget

Project properties contain settings for the project. Project properties are available from Project View.
The Properties window on right side of the PB610 Panel Builder 600 contains the list of project level user-
configurable data.

Figure 70

7.1 Version

The Version field is available for users to report the project version.

7.2 Context Menu

The default method for users to access the runtime settings is to press and hold for a few seconds on an
empty area of the runtime screen. Using this property you can choose how the context menu should appear:

on delay (default) press and hold

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 56

on macro command via macro/action controlled by HMI application

Figure 71

7.3 Developer Tools

Developer tools are a collection of utilities useful for debugging problems at runtime. To use developer tools
proceed as follow:

1) set to true Project properties ->Developer tools in PB610 Panel Builder 600
2) Download the project to the target
3) Open context menu
4) Select Developer tools

Figure 72

The list of items available in developer tools is reported below.

Show/Hide all Show an overview of all main information about device

status like CPU Load, memory usage, event queues etc.
in one dialog in overlay.

Cpu statistics

Show information about CPU load. On top the actual

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 57

machine time is shown along with the total machine
uptime. CPU statistics are collected with a frequency of
2000 milliseconds. The actual period time and the
overhead required to collect and visualize statistics are
displayed as well. The more the actual period time is far
from the nominal 2000 milliseconds the more the system
is busy. Cpu consumption of threads of is listed reporting
the name of the thread (if available, main thread is marked
with a *), the thread ID, the thread priority and cpu time
spent during the 2sec period, divided in user and kernel
time.

Memory statistics

Show information about CPU load. In particular the free
system RAM is shown along with the difference of
memory usage from previous iteration (a negative value
means free memory is decreasing).

Event queues

Show information about the size of event queues. Many
core components of the HMI are event driven. For each
event queue the actual size of the queue, the maximum
achieved size of the queue, the total number of events
processed and the last and maximum times required to
process events are shown respectively (timing statistics
are only available for non-UI queues).

Timelog summary

Show information about time spent for loading active
page. See 7.3.1 for more details.

Embed window

Allows to embed in runtime the scene or leave the
developer tool window as a standalone window (dialog).

Reset queue stats

Reset information collected related to event queues.

Disable watchdog

Disable the watchdog and avoid system restart in case of
freeze or crash of services

Ignore exceptions

Usually when an exception is captured the crash report
panel is shown. By setting this option exceptions will be
ignored and no crash report window appears.

Launch VNC

Launch VNC server if available in runtime. VNC server is
available as a plugin for WCE target only.

Profiling

Using this option it is possible to check the time spent for
loading/rendering the active page.

7.3.1 Profiling

Using this option of the developer tools, it is possible to check time spent for loading/rendering the active
page. Profiling will be available from the next page load and only for the first painting of the page to the
screen (please note that the configuration is retained).

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 58

Figure 73

Profiling data can be:

- saved to file (Save timelog to file): save a .txt report of time spent loading project & pages. Usually
is better to avoid it since it could have high and unpredictable effects on page change performance.
However it’s useful to export & share profiling details.

- visualized using context menu (Timelog summary): a summary about current page (and related
template if any). There you can see partial times for different operations. Usually the most important
ones are:

o Time parsing: time spent for parsing current page file / .jmx. Parsing time usually is
proportional to the number of widgets in a page (so to the complexity of a page).

o Time gfx creation: which is mainly contributed by the OnLoad methods, where typically
images are loaded.

o Time rendering: time spent for rendering the scene
o Time unloading: time spent for unloading page(in case the current page comes from

another page).

Times are provided in couples: wall time/cpu time. Wall time is the absolute time required by this
part which can be higher than the actual cpu time used to do it because we can have higher
priority threads running (for instance protocols). There is also a start time column which is
relative to page load start time. It can be useful to track the actual time required to load a page,
since partial ones only focus on the most time critical functions missing the rest that often
contributes significantly to the total time. For example the actual total wall time required to load a
page is rendering (which is the last step) start time + rendering wall time.

- overlayed as colored rectangles on the view (Overlay OnLoad/Rendering times):this view allows to

effectively represent time spent on single widgets and is available only for the rendering and OnLoad
steps. The view gives an immediate feeling of where time is spent. Red zones represent the most
time critical zones. Detailed widget times are visualized by a tooltip window (on Win32 platform
attached to mouse hover event, on WCE press drag and release over the region of interest). In case
of out-of-the-scene widgets some arrows allow to navigate to these areas and hovering on them the
tooltip will show the area summary.

7.3.2 Watchdog

One of the most important items in the Developer tools is related to the watchdog. This item allows the
developer to disable the watchdog to avoid a system restart in case of a runtime crash, to have time to save
the crash report or check system status information (example: memory available, CPU load, events queue
size etc).

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 59

Crash report dialog appears automatically in case of a system freeze or crash and allows users to save a
log file of crash. The crash report may contain information important for technical support.

Figure 74

7.4 Buzzer on touch / Buzzer duration

Using this feature the runtime buzzes when a user presses one of the following widgets:
- Buttons
- HotSpots
- Needles
- Fields
- External keys
- Combobox
- Tables items
- Control list items

Using Project properties ->Buzzer duration defines the duration of the buzz when an event is fired. Buzzer
duration is a value in ms, default is 200ms.

NOTE Buzzer on touch requires WCE v1.76 ARM / 2.79 MIPS and can be used as an alternative to the

Touch buzzer feature available WCE side that buzz when user touch any point into the touchscreen.
Buzzer on touch is supported also by Win32 runtime.

7.5 Keyboard

Enable the use of keyboard Macros at runtime when using external keyboards.

7.6 JavaScript Debug

Enable the JavaScript debugger at runtime for current project.

NOTE For UN20 target (WCE MIPS hmi panels), local debugger has been disabled. However, remote

debugger is available to debug JS from a PC connected to HMI panel via Ethernet.

NOTE Remote debugger not supported in HMI Client and ActiveX.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 60

7.7 Allow JS Remote Debugger

Enable the JavaScript remote debugger for current project.

NOTE For UN20 target (WCE MIPS hmi panels), local debugger has been disabled. However, remote

debugger is available to debug JS from a PC connected to HMI panel via Ethernet.

NOTE Remote debugger not supported in HMI Client and ActiveX.

7.8 Image DB enable

Enabled by default, this property activates an engine used by the runtime to optimize project performance.
Available in the Project Properties, should be disabled just by tech support for debugging in case of a
problem. Disabling it can create performance problems at runtime.

7.9 FreeType Font Rendering

The “FreeType Font Rendering” property is used to switch between old font engine used by PB610 Panel
Builder 600 & Runtime up to v1.80 (native OS-based font engine) and the font rendering based on FreeType.
All projects created with PB610 Panel Builder 600 v1.90 (b608) or newer use the FreeType font engine as
default while all projects created with older versions of PB610 Panel Builder 600 continue to use old font
engine after the conversion to avoid potential backward compatibility issues in font rendering.
Moving to the FreeType Font Rendering is recommended to all users; to enable it set true in “FreeType Font
Rendering” in Project Properties, save and verify that all texts are shown correctly in all HMI project pages.

Example of rendering issues that could appear when switching between old and new font engine are:

• text require few more/less pixels for rendering and this could change text layout

• size to fit could result in change in size of widgets.
• better rendering using antialiasing (feature not available in v1.80). Antialiasing can be disabled in

v1.90 for texts (it is a property of text widgets).

7.10 Software Plug-in Modules

The Software Plug-in concept allows users to choose if certain software modules must be downloaded to the
runtime together with the project. Example of Software Plug-in are:

• WebKit (module required by browser widget – if available).

• PDF Reader
• VNC Server
• ActiveX

Not all Software Plug-in modules are compatible with all targets. New software plug-in modules will be added
in the future to extend optional features of the product.

Once enabled, a Software Plug-in is considered as part of the runtime. You can use PB610 Panel Builder
600 to install it in the target using one of the following procedures:

• Installing runtime / Updating runtime
• Update Package

Plug-ins can be removed once installed using one of the following operations from System Mode:

• Format Flash

• Restore Factory Settings

The system is not able to detect automatically if any Software Plug-in is required by the HMI application, so it
is up to the user to select the Software Plug-in manually from the project properties when required.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 61

Software Plug-in support has been designed for embedded HMI panels where storage is limited and
reducing software footprint is critical. This option is not supported in Win32 platform.

7.11 Behavior -> Home Page

Define Homepage of project. The homepage is the first page loaded at runtime (after log-in page if security is
enabled in project).

When Security is enabled, it is possible to specify a different homepage for each groups of users, in this
case this property is ignored. Refer to User Management for more details.

7.11.1 Behavior -> Page Width / Page Height

Define default size in pixel of an HMI page. Default is target type dependent (depend on HMI panel screen
resolution).

7.11.2 Behavior -> Display Mode

Define HMI panel orientation, Landscape or Portrait.

7.11.3 Behavior -> Project Type

Define target type / HMI panel model. Based on model, many features and properties of project are
automatically adjusted to fit it in the right way.

7.11.4 Behavior -> PageRequest, CurrentPage and SyncOptions

The HMI projects contain properties that let you know which page is currently displayed on the HMI and to
force the HMI to switch to a specific page. These properties can be used to synchronize pages showed on
the HMI and HMI Client or to control an HMI with a PLC.

Double click on project name present into ProjectView pane to open the project properties page:

Figure 75

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 62

Expand the properties view of the Properties pane, by clicking on "Show Advanced Properties" button:

Figure 76

Following properties, highlighted in green in the picture above, can be configured:

PageRequest This property determines the page to be shown on the HMI and on HMI

Client.
Attached Tag must contain an integer value within the range of the
available project pages.
The attached Tag must be available at least as a Read resource.

CurrentPage This property represents the page number actually displayed on the HMI
or on HMI Client or on both.
Attached Tag must be available at least as a Write resource and must
have data type that allows containing an integer value.

SyncOptions value can be set as one of following options:

• Local: if you want that CurrentPage represents the number of
page actually displayed on HMI,

• Remote: if you want that CurrentPage represents the number of
page actually displayed on HMI Client.

SyncOptions This property determines the synchronization of the project pages with

the value contained into the CurrentPage property.

• Disable: CurrentPage value is ignored.
• Local: CurrentPage value corresponds to the page displayed on

HMI.
• Remote: CurrentPage value corresponds to the page displayed

on HMI Client.
• Local + Remote: CurrentPage is changed according to page

displayed on HMI and on HMI Client, if different pages are
displayed; CurrentPage refers to the last page loaded.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 63

Examples related to the use of PageRequest and CurrentPage.

Example 1
Force page change from PLC to HMI and HMI Client.

PageRequest attached to Tag "A"

CurrentPage Empty

SyncOptions Disabled

Changing value of "A", HMI and HMI Client will show page requested.

Example 2
Force page change from PLC to HMI and HMI Client. Read current page loaded on HMI.

PageRequest attached to Tag "A"

CurrentPage attached to a Tag "B" as Read/Write

SyncOptions Local

Changing value of "A", HMI and HMI Client will show page requested. On "B" will be written page currently
showed by HMI.

Example 3
Force page change from PLC to HMI and HMI Client. Read current page loaded on HMI Client.

PageRequest attached to Tag "A"

CurrentPage attached to a Tag "B" as Read/Write

SyncOptions Remote

Changing value of "A", HMI and HMI Client will show page requested.
On "B" will be written page currently showed by HMI Client.

Example 4
Force page change from PLC to HMI and HMI Client. HMI Client page Synchronization with HMI (not vice
versa) .

PageRequest attached to a Tag "A" as Read/Write

CurrentPage attached to the same Tag "A" as per PageRequest

SyncOptions Local

Changing value of "A", HMI and HMI Client will show page requested. Changing page on HMI same page
will be forced on HMI Client.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 64

Example 5
Force page change from PLC to HMI and HMI Client. HMI page Synchronization with HMI Client (not vice-
versa).

PageRequest attached to a Tag "A" as Read/Write

CurrentPage attached to the same Tag "A" as per PageRequest

SyncOptions Remote

Changing value of "A", HMI and HMI Client will show page requested. Changing page on HMI Client same
page will be forced on HMI.

Example 6
Synchronize displayed page between HMI and on HMI Client.

PageRequest attached to a Tag "A" as Read/Write

CurrentPage attached to the same Tag "A" as per PageRequest

SyncOptions Local+Remote

Changing page on HMI, same page will be shown on HMI Client and vice-versa.

7.11.5 Behavior -> Hold Time / Autorepeat Time

Define default values for hold time and autorepeat time for buttons and external keyboards. However, for
each button/key, they can be redefined in related widget instance.

7.11.6 Events -> OnWheel

A wheel is used by special products like handhelds or USB mouse with a wheel input device. Usually a
wheel is used to increase/decrease the value of a Tag without the need to use an external keyboard device.

From Project Widget it is possible to attach to a change of wheel status an action like StepTag to
increase/decrease a tag value.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 65

8 System Variables

System variables are special tags containing information about the runtime.
System variables are available in the Attach to dialog from the "Source” selection as shown in figure.

Figure 77

System variables are divided into categories.

Starting from v1.90 (b608), System Variables are available also as a standard protocol in the Protocol Editor.
This protocol can be used for data transfer betweens System Variables and tags from devices, or when is
necessary to specify a custom refresh rate for a System Variable.

8.1 Alarms

Variables return information on the actual number of alarms according to the status.

Not Triggered
Acknowledged

Total number of alarms “Not Triggered Acknowledged”

Not Triggered Not
Acknowledged

Total number of alarms “Not Triggered Not Acknowledged”

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 66

Triggered
Acknowledged

Total number of alarms “Triggered Acknowledged”

Triggered Not
Acknowledged

Total number of alarms “Triggered Not Acknowledged”

Triggered Alarms Total number of alarms “Triggered”

Number of missed
alarm events

Total number of missed alarm events

All these System Variables are Int type (32 bit), read only.

8.2 Communication

Variables return information on the status of the communication between the HMI device and the controllers
configured in the Protocol Editor.

Protocol
Communication
Status

The variable is read only Int (32 bit), and can have 3 values:
0 = No protocol running; it may occur if the protocol driver has not been
properly downloaded to the target system.
1 = Protocol has been properly loaded and started; no communication
errors
2 = At least one communication protocol is reporting an error

Protocol Error
Message

This variable returns an ASCII string containing a description of the
actual communication error. The communication protocol acronym is
reported between square brackets to recognize the source of the error in
case of multiple protocol configurations.
The variable is a read only string. If no errors are present, the string will
be blank.

Protocol Error
Count

This variable returns the number of communication errors that occurred
since the last time it was reset.
The variable is a read only integer. The reset of this variable is only
possible using the dedicated Action “Reset Protocol Error Count“

8.3 Daylight Saving Time

Variables return information on the system clock and allow adjusting it from the application. They contain
information on the "local" time.

All the variables are read only; this means that you cannot change them to update the system RTC. All the
variables are bytes (8 bit) except for the DLS and Standard Offset that are shorts (16 bit).

Standard time is the "solar time" and other is Daylight Savings Time.

Standard offset Represents the offset in minutes when standard time is set, with respect

to GMT. (with respect to the picture it is -8*60 = - 480 minutes)

Standard week the week in which the Standard time starts (w.r.t. the picture it is First =
1)

Standard Month the month in which the standard time starts (range of the variable is [0 -
11] so w.r.t. the picture it is November = 10)

Standard Day day of week in which the standard time starts (w.r.t. the picture it is
Sunday = 0)

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 67

Standard hour hour in which the standard time starts (w.r.t. the picture in Time field it is
02 = 2)

Standard minute minute in which the standard time starts (w.r.t. the picture in Time field it
is 00 = 0)

Dst offset Represents the offset in minutes when DLS time is set, with respect to
GMT. (w.r.t. the picture it is -7*60 = - 420 minutes)

Dst week Week in which the DLS time starts (w.r.t. the picture it is Second = 2).

Dst Month month in which the DLS time starts (range of the variable is [0 -11] so
w.r.t. the picture it is March = 2)

Dst Day day of week in which the DLS time starts (w.r.t. the picture it is Sunday =
0)

Dst hour hour in which the DLS time starts (w.r.t. the picture in Time field it is 02 =
2)

Dst minute minute in which the DLS time starts (w.r.t. the picture in Time field it is 00
= 0)

Figure 78

8.4 Device

Variables can be used to adjust specific device settings and obtain operational information.

Available System
Memory

Returns the free available RAM memory in bytes; it is a 64 bit data; it is a
read only variable.

Backlight Time Returns the activation time in hours of the display backlight lamp since
production of the unit; it is a read only variable.

Battery LED Enable/Disable the use of the front LED indicator to report the low
battery status. It can have values 0 (disabled) or 1 (enabled).

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 68

Battery Timeout Reserved

Display Brightness This variable is an integer of R/W type. Its range goes from 0 to 255. It
can be used to check brightness level and adjust it from the application.
Typical use is connected to a slider widget.
When set to a low level (0..3), the backlight assume a low but visible
value for around 8 seconds (to let the user change it otherwise nothing is
visible on the display) and after that display appears as switched-off.
However, even with a value of 0, the backlight is still on and the counter
of backlight life time continues to increase.

External Timeout Allows setting the non-operational time after which the display backlight
is automatically turned off. The backlight is automatically turned back on
when the user presses on the touchscreen.
The variable is an int of R/W type.
-1 = switch off backlight and disable touch (switch display off). Backlight
counter is stopped.
0 = switch backlight on (so switch display on)
1..n = set a timeout for switch off backlight, so work like a screensaver
timer

Flash Free Space Returns the free space left in the device internal flash.

System Font List List of system fonts. The variable is a read only string.

System Mode Returns a value informing the operation status of the runtime. Possible
values are:

1. Booting
2. Configuration mode
3. Operating mode
4. Restart
5. Shutdown

System UpTime Returns the total time in hours in which the system has been powered

since production of the unit. It is a read only variable.

Touch Buzzer,
Buzzer Setup,
Buzzer Control,
Buzzer Off Time,
Buzzer On Time

Touch Buzzer: allows enable/disable the touch audible feedback. It can
have values 0 (disabled) or 1 (enabled).

Starting from BSP 1.66.6 ARM / 2.73.1 MIPS, buzzer control has been
extended as below:

Buzzer Setup (replace Touch Buzzer System Variable)
0: disabled, no buzzer sound under any condition.
1: enabled, buzzer sounds as audible on any touchscreen event.
2: buzzer status controlled by System Variable "Buzzer Control"

Buzzer Control
 0: Buzzer off
 1: Buzzer on
 2: Buzzer blink (on and off times programmed by System Variables
Buzzer On and Off)

Buzzer Off Time
duration in milliseconds of off time when blink has been selected
minimum value: 100
maximum value: 5000
default value: 1000

Buzzer On Time
duration in milliseconds of on time when blink has been selected
minimum value: 100

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 69

maximum value: 5000
default value: 1000

8.5 Dump Information

Variables return information about the status of the copy process to external drives (USB or SD Card) for
trend and archive buffers

Dump Trend
Status

Returns value 1 during the copy process of the trend buffers. If the copy
duration time is less than one second, the system variable does not
change its value.

Dump Archive
Status

Returns value 1 during the copy process of the archive buffers. If the
copy duration time is less than one second, the system variable does not
change its value.

8.6 Keypad

Variables return information about the status of the keypads.

Is keypad open Returns value 1 if a keypad is open, 0 if no keypads are open.

8.7 Network

Variables allow you to show network device parameters. The network system variables are all strings in
Read Only.

Gateway Gateway address of the main Ethernet interface of device

IP Address IP address of the main Ethernet interface of device

Mac ID MAC ID of the main Ethernet interface of device

Subnet Mask Subnet Mask of the main Ethernet interface of device

8.8 Printing

Variables return information about the printing functions. All the variables are read only.

In the table below you can read the description of the available system variables.

Completion
percentage

The percentage of competition of the current print job. It ranges from 0 to
100.

Current disk usage The size (in bytes) of folder where PDF reports are stored (it is
reportspool if option Spool media type is Flash).

Current job The name of the report the job is processing. Current job is the following:
- [report name] for a Graphic Report

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 70

- [first line of text] for a Text Report

Current RAM
usage

The size (in bytes) of the RAM used to process the current job.

Disk quota The maximum size (in bytes) of the folder where PDF reports are stored.

Graphic job queue
size

The number of the available graphic jobs in the printing queue.

RAM quota The maximum size (in bytes) of the RAM used to generate reports.

Status A string representing the status of the printing system. The possible
values are idle, error, paused and printing.

Text job queue
size

The number of the available text jobs in the printing queue.

8.9 Screen

Variables return information on the screen status.

Time remaining to
unlock

Return time remaining to unlock screen (ref. LockScreen action)

X Screen
resolution

It shows the x screen resolution of the display

Y Screen
resolution

It shows the y screen resolution of the display

8.10 SD Card

Variables return information on the external SD Card plugged into the panel. They are 64 bit variables,
except the drive name which is a string. All the variables are read only.

SD Card
FreeSpace

Size in bytes of the available space.

SD Card Name Name of the SD card.

SD Card Size Size in bytes of the card plugged in the slot.

SD Card Status Status of the SD card.

8.11 Server

Variables return information on the Server status. All following system variables refer to server, not to client
(ex. HMI Client).

Current page Return the name of current page.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 71

Current project Return the name of current project.

Operating mode
time

It shows the number of seconds elapsed after the last display start in
operating mode.

Project load time It shows the date time string in milliseconds, like the System Date
format, when the project was loaded in runtime

8.12 Time

Variables return information on the System Time expressed in UTC format.
They are all Int (32 bits) of read/write type, except for the System time which is a 64 bit variable, still of
read/write type. This is actually the UTC time which also is available as date/time from the other variables.

Day Of Month Day of the month (1..31)

Day of Week Day of the week (0=Sunday, .. , 6=Saturday)

Hour Hour (0..23)

Minute Minute (0..59)

Month Current month (1..12)

Second Second (0..59)

System Time System time

Year Current Year

8.13 USB Drive

Variables return information on the external USB drive connected to the panel; they are 64 bit variables,
except the drive name which is a string. All the variables are read only.

USB Drive free space Size in bytes of the available space

USB Drive Name Name of the USB device

USB Drive Size Size in bytes of the device plugged in the USB port

USB Drive Status Status of the USB device

8.14 User Management

Variables return information on users and groups.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 72

No of Remote-Clients Alive Number of HMI Client connected to the server.

This is a read only short (16 bit).

This Client Group-Name Name of the group to which the current logged user belongs to.
This is a read only string.

This Client ID The variable is valid with reference to the HMI Client scope. Local
and remote clients connected to the same "server" (same runtime)
get a unique ID returned by this variable.
This is a read only short (16 bit).

This Client User-Name Name of the user logged to the Client where the system variable is
displayed
This is a read only string.

8.15 Version

Variables return information on OS & Runtime version.

Main OS Version Return the version of Main OS. Ex. UN30HSxx60M0166

Runtime Version Return the version of runtime. Ex. 1.90 (0) – Build (682)

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 73

9 Actions

Actions are the function used to interact with the system; they are normally executed when events are
triggered.

When considering events generated by buttons (pressed or released) not all the actions are available for
both states. In case the selected action is not supported for the actual state, the software will report a
warning message as shown in the following figure.

Figure 79

9.1 Widget Actions

The following chapters will include the description of a set of actions dedicated to handling widget visibility
and control.

9.1.1 ShowWidget

The ShowWidget macro allows you to show or hide the page widgets. In the macro properties, select the
widget you want to show or hide, then set the show properties as follows: false to hide and true to show
widget.

Figure 80

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 74

9.1.2 TriggerIPCamera

The TriggerIPCamera macro allows you to start the image capture from an IP Camera. Select the IP Camera
Widget in the Macro Properties to trigger the capture from the IP Camera.

Figure 81

9.1.3 SlideWidget

The SlideWidget macro allows you to show the sliding effect of a Widget, or of a Widget group, in HMI
Runtime.

NOTE The widget or grouped widget can actually be outside of the page in the project and slide in and out

of view.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 75

Figure 82

Widget
The Widget to slide

Direction
Sliding Direction

Speed
The transition speed of the sliding Widget

X Distance
The travel distance of the X coordinate of Pixel

Y Distance
The travel distance of the Y coordinate of Pixel

Slide Limit
Enable/Disable limiting the movement with Respect to the Coordinates (X and Y) of the Widget.

X Limit
When specified, automatically stops the slide action when the widget reaches the specified position.

Y Limit
When specified, automatically stops the slide action when the widget reaches the specified position.

Toggle Visibility
Toggle the Visibility of the Widget at the end of each Slide action.

Image Widget
Allows an image to show during the movement; the specified image will be shown during the Slide Operation
between the start and end point of the movement.

9.1.4 RefreshEvent

The RefreshEvent macro allows you to refresh the selected Event Widget. The Event Widget is a component
of the Alarm History Widget (see paragraph Alarms History Widget.).

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 76

Figure 83

9.1.5 ContextMenu

Context menu is used to configure runtime parameters like Zoom level, to update runtime & project using an
update package, to show the log window, to access the rotating menu for basic HMI configurations like IP
Address or device local time etc. By default the context menu appears when the user press/click and hold for
few seconds in the runtime area (in an area free of widgets like buttons). However, in the project area, it is
possible to disable the OnHold event and configure the HMI to open the context menu just when the macro
ContextMenu is called by the user. Usually this macro is attached to a button and protected to be used just
by system administrators.

Figure 84

9.1.6 ReplaceMedia

ReplaceMedia macro is used at runtime to replace/update existing Media files of a project with new files
provided via USB/SD or any other external device. Usually this macro is used to update project Images,
Video or Music.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 77

Following parameters are available:
- MediaType: Image, Video or Music. Define type of files to update.
- Device: define storage where runtime will search new media files (ex. \USBMemory).
- sourcePath: define folder where runtime will search new media files (ex. images).
- Image Resize: if enabled, the macro will resize images to the size of images at runtime. This is

applicable for image media type only.
- Silent: if enabled, will execute replace media macro without user interaction. Otherwise a dialog will

appear to allow user to select MediaType & storage where new media files are located (USB stick,
SD Card etc).

Figure 85

ReplaceMedia Macro is working in WCE and Win32 OS. When ReplaceMedia is executed in remote using
HMI Client or via ActiveX, files are searched on HMI local storages.

ReplaceMedia macro for Video & Music has been design to work in combination with MediaPlayer widget.
ReplaceMedia macro for Images has been design to replace project images.

Follow API Javascript for replaceMedia method:

void replaceMedia(var sourcePath, var bSilent, var Device, var nMediaType, var bResize)
project.replaceMedia("Images", true, "\USBMemory", 1, true);

9.2 Keyboard Actions

The Keyboard macro actions include Send Key and Send Key Widget.

9.2.1 SendKey

The SendKey macro is used to enter the predefined character to the Read/Write Widget. Define the
predefined key code and Shift key code to the Macro actions property. In runtime, first click the R/W numeric
Widget, then execute the Macro to send the predefined keys to the Numeric Widget. The action works on the
field currently being edited.

NOTE To use the SendKey macro, you must define the keypad type as Macro in the Numeric Widget

properties.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 78

Figure 87

Figure 88

9.2.2 SendKeyWidget

The SendKeyWidget macro is used to enter the predefined character or function for a specific Widget. To
use the macro, define the Widget ID and the key code in the Macro Properties.

The Control List Widget (available in the advanced category of the Widgets Gallery) is a good example of
how this macro command can be used. Here Up and Down buttons have been implemented using the
SendKeyWidget macro. See the figure below for reference.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 79

Figure 89

NOTE To use the SendKey macro, you must define the keypad type as “Macro" in the Numeric Widget

properties.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 80

Figure 90

9.2.3 ShowKeyPad

ShowKeyPad is used to show the default operating system touch keypad. Some operating systems might
not support it.

9.2.4 KeyboardMacros

KeyboardMacros enable and disable the use of keyboard Macros at runtime when using external keyboards.

You can also enable/disable macro execution related to keyboard studio side at the project level and at the
level of the single page.

A dedicated property is available in the project property sheet and in the page property sheet.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 81

Figure 91

9.3 Page Actions

The Page Actions macros are used for page navigation and to load-specific pages. Please note that the
Page Actions are programmable ONLY in the released state.
The Page Actions macros are available for Alarms, Schedulers and Mouse Release Events.

9.3.1 LoadPage

The LoadPage macro allows you to load the selected page of the project when the macro is executed.

Figure 92

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 82

9.3.2 HomePage

The HomePage macro allows you to specify the home page.
By default, the home page is the first page of the project. However, you can change the home page in the
project configuration properties. To change the home page, double click on the project name item in Project
View. Once in Properties, choose the home page (as shown in the figure below).

Figure 93

9.3.3 PrevPage

The PreviousPage macro allows you to navigate the HMI Runtime to the previous page.

9.3.4 NextPage

The NextPage macro allows you to navigate the HMI Runtime to the next page.

9.3.5 LastVisitedPage

The LastVisited page macro allows you to load the page previously displayed on HMI Runtime.

9.3.6 ShowDialog

The ShowDialog macro allows you to display the Dialog Pages defined in the project. After the execution of
this macro, the HMI Runtime displays the specified Dialog Page.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 83

Figure 94

9.3.7 CloseDialog

The CloseDialog macro is applicable only to Dialog pages. The Close Dialog macro allows you to close the
dialog page currently displayed.

9.3.8 ShowMessage

The ShowMessage macro allows you to display warning message popup when the macro is executed. Type
the message that you wish to have displayed while executing the macro.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 84

9.3.9 LaunchApplication

The LaunchApplication macro allows the user to launch an external application when the macro is executed.
To configure, the following information must be provided in order to execute the requested application.

App Name
Name of the executable file complete with extension. For example, if you want to run Notepad application,
the argument should be “notepad.exe"

Path
Application path; when the target platform is Windows CE, the path is \flash\qthmi. This is the folder that you
see and have access to, when connecting to the panel via FTP.

Arguments
Some applications may need arguments to be passed. For example, to open a pdf file, specify the file name
so that, while launching the application, the file name set in the argument is loaded on the application. For
example, \flash\qthmi\Manual.pdf will open the document “Manual.pdf”.

Single Instance
This argument allows the application to start in a single instance or multiple instances. When single instance
is selected, the system first verifies whether the application is already running. If it is running, then the
application pulls it up (the operating system puts it in the foreground to the user’s attention); if it is not
running, then the application is launched.

9.3.10 LaunchBrowser

LaunchBrowser opens the default web browser. You can define the URL address of the webpage in the
arguments.

NOTE This macro only works in platforms that have a default web browser as application. Not all platforms

are equipped with a default web browser. For example, this macro is supported in OS based on Windows CE
PRO with Internet Explorer enabled.

9.3.11 LaunchVNC

Use this macro to execute VNC server configuration form. This macro is working only on embedded devices
WCE based.

9.3.12 LaunchUpdater

Use this macro to update project and/or runtime searching for it into an external device. Using “Path”
parameter is possible to specify folder where searching the update package.

Examples of path could be:

- \USBMemory (for USB devices in WCE)
- \Storage Card (for SD devices in WCE)

NOTE This macro is supported only in hmi panels based on WCE OS.

9.3.13 LockScreen

Use this macro to lock touch screen temporary. Usually this action is used to allow users to cleanup touch
screen without fire events pressing buttons or other widgets on page.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 85

Screen � Time remaining to unlock system variable can be used to check time remaining to unlock
screen.

9.4 MultiLang Actions

The Multi-Language (MultiLang) actions are used to select and modify the languages used in the application.

9.4.1 SetLanguage

The SetLanguage macro allows you to set the current display language. In Macro Properties, enter in the
Language. At runtime, while executing the macro, the selected language will be applied to all applicable
Widgets.

9.5 Tag Actions

The Tag Actions macros are used to interact with the application Tags.

9.5.1 DataTransfer

DataTransfer macros allow you to exchange data between two controllers, between registers within a
controller, or from system variables to controllers (and vice versa). “SrcTag" refers to the source Tag and
“DestTag" refers to Destination Tag. The various Tag types include a Controller Tag, a System Tag, a
Recipe Tag and Widget Property.

9.5.2 ToggleBit

Toggle Bit macros allow you to “toggle" (meaning set or reset) a bit of a tag. The BitIndex allows you to
select the bit to be inverted: this requires a read-modify-write operation; the read value is inverted and then
written back to the controller tag.

9.5.3 SetBit

The SetBit macro allows you to set the selected bit. When the macro is executed, the value of the selected
bit is set to “1".
The BitIndex property allows you to select the bit position inside the Tag.

9.5.4 ResetBit

The ResetBit macro allows you to reset the selected bit. When the macro is executed, the value of the
selected bit value is set to “0”
The BitIndex property allows you to select the bit position inside the Tag.

9.5.5 WriteTag

WriteTag allows you to write constant values to the controller memory. In the Macro properties you have to
specify the Tag name and the value to be written.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 86

9.5.6 StepTag

The StepTag macro allows you to increment or decrement the value of a Tag.

TagName
Name of the Tag you want to Step

Step
Step value

Do not step over limit
Step Limit enables

Step Limit
If the “Do not step over limit” is true, then the macro will work until the Tag value reaches the specified value.

9.5.7 ActivateGroup

This macro activates tags update for a group of Tags.

Usually tags are updated when used in the current page (or always when defined in Tag Editor as Active
=True). Using this macro it is possible to force the system to keep a group of tags always active (updated)
independently if they are used on the current page or not.

9.5.8 DeactivateGroup

Deactivate a group of tags. Using this macro system stops reading a group of tags that had been previously
activated

9.6 Trend Actions

Trend actions are used for both Live Data Trends and the Historical Trends Widget.

9.6.1 RefreshTrend

The RefreshTrend macro is used to refresh the Trend window. You have to specify the Trend Widget in the
macro properties. This macro can be used in any of available graph widgets like Historical trends, Scatter
Diagram and Consumption Meter.

9.6.2 Scroll Left Trend

The ScrollLeftTrend macro is used to scroll the Trend window to the left side, by one-tenth (1/10) of the
page duration.

NOTE With the Real-Time trend it is recommended pausing the trend using the macro PauseTrend,

otherwise the window is continuously shifted to the current value.

9.6.3 Scroll Right Trend

The ScrollRightTrend macro is used to scroll the Trend window to the right side, by one-tenth (1/10) of the
page duration.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 87

NOTE With the Real-Time trend it is recommended pausing the trend using the macro PauseTrend,

otherwise the window is continuously shifted to the current value.

9.6.4 PageLeftTrend

The PageLeftTrend macro allows you to scroll the Trend window by one-page duration. For example, if the
page duration is 10 minutes, then, with the PageLeftTrend macro you can scroll the trend left for 10 minutes.

9.6.5 Page Right Trend

The PageRightTrend allows you to scroll the Trend window by one-page duration. For example, if the page
duration is 10 minutes, then, with the PageRightTrend macro, you can scroll the trend right for 10 minutes.

9.6.6 Page Duration Trend

The PageDuration macro is used to set the page duration of the Trend window. In Macro Properties, you
must define the Trend Name and Page Duration.

NOTE You can also use a combo box Widget to select the page duration at Runtime.

9.6.7 Zoom In Trend

ZoomInTrend macro allows you to reduce the page duration.

9.6.8 ZoomOutTrend

ZoomOutTrend macro allows you to make the page duration longer.

9.6.9 Zoom Reset Trend

ZoomResetTrend macro allows you to reset the zoom level back to the original zoom level.

9.6.10 Pause Trend

PauseTrend macro allows you to stop plotting the Trend curves in the Trend window. When used with Real
Time Trend the plotting stops when the curve reaches the right border of the graph. The Trend logging
operation is not stopped from the panel when this macro command is used.

9.6.11 ResumeTrend

ResumeTrend macro allows you to resume a Trend plotting you previously paused. After executing the
ResumeTrend macro, the Trend window will start to plot the data to the Trend once again.

9.6.12 Show Trend Cursor

The ShowTrendCursor macro allows the user to know the value of the curve at a given point on the X-Axis.
Use this macro to activate the Trend Cursor. At Runtime, upon executing the macro, a Vertical Line (Cursor)
will display in the Trend Widget. When the Graphic Cursor is enabled, the scrolling of the Trend is stopped.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 88

You can implement Scroll Cursor macros to move the Graphic Cursor over the curves, or to move the entire
Trend window.

Figure 95

9.6.13 ScrollTrendCursor

The ScrollTrendCursor macro allows the user to scroll the Trend Cursor in forward or reverse time direction.
The Y-Cursor value will display the Trend value at the point of the cursor. The scrolling percentage can be
set at 1% or 10%. The percentage is calculated based on the Trend window duration.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 89

Figure 96

9.6.14 ScrollTrendtoTime

The ScrollTrendtoTime is used to scroll the Trend Window to a particular point in time. When you execute
this macro the Trend Window will move to the time specified in the Macro Properties.

Figure 97

This Action may be very useful when you need to scroll at a specific position in a trend window based on the
time at which a certain event occurs. This can be achieved by configuring an action for that alarm (event)
that executes a Data Transfer of the system time into a Tag; when selecting that tag as “ScrollTrendtoTime”
parameter (see above figure) the trend windows will be centered at the time in which the event has been
triggered.

9.6.15 ConsumptionMeterPageScroll

The ConsumptionMeterPageScroll Macro is used to scroll page back/forward in ConsumptionMeter widget.

Available parameters are:

• Trend Name: Trend widget ID (ex. TrendWindow3)
• Page Scroll Direction: Forward/Reverse

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 90

Figure 98

9.7 Alarm Actions

Alarm Actions are macros used to acknowledge or reset the alarms. The actions listed here can be used to
build a custom Widget for the alarm display; you can observe an example of how these are used in the
default Alarm Widget, available in the Widget gallery.

Figure 99

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 91

9.7.1 SelectAllAlarms

This macro allows you to select all the Alarms in the Alarm Widget.

9.7.2 AckAlarm

The AckAlarm macro allows for acknowledging the selected Alarms.

9.7.3 ResetAlarm

The ResetAlarm macro allows you to reset the selected acknowledged Alarms.

9.7.4 EnableAlarms

The EnableAlarms macro is used in conjunction with the “Save” button of the Alarm widget; it is required to
properly save at runtime the changes made in the “Enable” check boxes from the “Enable” column in the
alarm widget.

Figure 100

9.8 Event Actions

9.8.1 ScrollEventsBackward

Macro used by Alarm history widget to scroll events/alarms backward in table view (event buffer widget).

9.8.2 ScrollEventsForward

Macro used by Alarm history widget to scroll events/alarms forward in table view (event buffer widget).

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 92

9.9 System Actions

The System Actions macro allows you to use the system properties in Runtime.

9.9.1 Restart

The Restart system macro allows you to restart Runtime. After executing the macro, the Runtime goes to
configuration mode and restart..

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 93

9.9.2 DumpTrend

The DumpTrend macro is used to store the Historical Trend data to external drives, such as a USB drive or
an SD card. In the macro properties, you must configure the Historical Trend name you want to store and the
destination folder path. If you use a USB drive plugged into the USB port, the path will be \USBMemory or if

you use an SD Card, the path will be \Storage Card, followed by the specified folder in the memory.

NOTE The execution of the Dump action will automatically force a flush to disk of the data temporarily

maintained in the RAM memory. See the chapter “Trend Editor” for further information about the policy used
to save sampled data to disk.

NOTE The external drives plugged on the USB port of the panel must have format FAT or FAT32. NTFS

format is not supported.

Figure 102

DumpAsCSV
If this option is set to true, then the buffer will be directly dumped to the specified location as a *.CSV file in
the format specified below. If it is set as False, then the dump of the trend file will be in binary format; the
result of the dump operation is actually a couple of files, one with extension .dat and one with extension .inf.
An external utility is then required to convert it to a CSV format. These two files are both required by the
utility to operate the conversion.

DateTimePrefixFileName
When this Option is enabled the dumped File will have the Date and Time as Prefix to the name of the File.
For example if we are making a Dump at 10.10AM on 1-1-2012, then the file name will look like
D2012_01_01_T10_10_Trend1.csv. [DYear_Month_day_THour_Minute_Filename]
This helps to know the Time at which the Dump was executed and also to identify which one is the latest.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 94

timeSpec
This option defines the time format used when dumping the trend to file.

• Local: the time values exported are the time of the HMI device.

• Global: the time values exported are in the Coordinated Universal Time (UTC) format.

Example:

Local 2012-10-11T05:13:43.724-07:00
Global 2012-10-11T12:13:43.724Z

NOTE The software tool required to convert the dump files to CSV are available in the PB610 Panel Builder

600 folder called “Utils” under the directory where the software is installed.

The tool needed to convert trend buffers is called “TrendBufferReader.exe".

The TrendBufferReader.exe tool can be invoked using a batch file with the following syntax:

TrendBufferReader -r Trend1 Trend1.csv 1

where Trend1 is the name of the trend buffer without extension resulting from the dump (original file name is
trend1.dat) and Trend1.csv is the name desired for the output file.

The resulting CSV file has 5 columns with the following meaning:

Data Type, Value, Timestamp(UTC), Sampling Time(ms), Quality

Where:

Data Type:
Code that gives information about the data type of the sampled Tag according to the following codes:

Code Type

0 Empty

1 Boolean

2 Byte

3 Short

4 Int

5 Unsigned Byte

6 Unsigned Short

7 Unsigned Int

8 Float

9 Double

Value
Value of the sample

Timestamp(UTC)
Timestamp in UTC format

SamplingTime(ms)
Sampling interval time in milliseconds

Quality

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 95

Gives information on the tag value quality. The information is coded according the OPC DA standard; the
information is stored in a byte data (8 bits) currently defined in the form of three bit fields; Quality, Sub status
and Limit status. The 8 Quality bits are arranged as follows: QQSSSSLL

For a complete and detailed description of all the single fields, please refer to the OPC DA official
documentation. Shown below are the most commonly used quality values returned by the HMI acquisition
engine:

Quality Code Quality Description

0 BAD The value is bad but no specific reason is known

4 BAD
There is some server specific problem with the configuration.
For example, the tag in question has been deleted from the
configuration file (tags.xml).

8 BAD
This quality may reflect that no value is available at this time,
for reasons such as the value may have not been provided by
the data source.

12 BAD A device failure has been detected

16 BAD Timeout occurred before device responded.

24 BAD Communications have failed.

28 BAD
There are no data found to provide upper or lower bound value
(trend interface specific flag).

32 BAD

No data have been collected (i.e. archiving not active. Trend
interface specific flag).
When the HMI return online after a reboot or from a condition
where sampling stopped, a sample with quality value 32 is
added to indicate this temporary offline status.

64 UNCERTAIN There is no specific reason why the value is uncertain.

65 UNCERTAIN
There is no specific reason why the value is uncertain. (The
value has ‘pegged’ at some lower limit)

66 UNCERTAIN
There is no specific reason why the value is uncertain. (The
value has ‘pegged’ at some high limit.)

67 UNCERTAIN
There is no specific reason why the value is uncertain. (The
value is a constant and cannot move.)

84 UNCERTAIN
The returned value is outside the limits defined for it. Note that
in this case the “Limits” field indicates which limit has been
exceeded but the value can move farther out of this range.

85 UNCERTAIN

The returned value is outside the limits defined for it. Note that
in this case the “Limits” field indicates which limit has been
exceeded but the value can move farther out of this range.
(The value has ‘pegged’ at some lower limit)

86 UNCERTAIN

The returned value is outside the limits defined for it. Note that
in this case the “Limits” field indicates which limit has been
exceeded but the value can move farther out of this range.
(The value has ‘pegged’ at some high limit.)

87 UNCERTAIN

The returned value is outside the limits defined for it. Note that
in this case the “Limits” field indicates which limit has been
exceeded but the value can move farther out of this range.
(The value is a constant and cannot move.)

192 GOOD

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 96

9.9.3 DeleteTrend

The DeleteTrend macro allows you to delete saved Trend data from the file. In Macro Properties, define the
Trend name from which you want to delete the trend logs.

9.9.4 DumpEventArchive

The DumpEventArchive macro is used to export the Historical Alarm log and Audit Trail data to external
drives, such as a USB memory or SD card. If you use a USB drive the path will be \USBMemory or if you

use an SD Card the path will be \Storage Card, followed by the specified folder in the memory.

NOTE The external drives plugged on the USB port of the panel must have format FAT or FAT32. NTFS

format is not supported.

In the Macro Properties, you need to configure the Event buffer name that you want to dump and the
destination folder path. The DumpConfigFile property must be set to true when you plan to convert the
dumped files to CSV.

DumpAsCSV
If this option is set to true, the buffer will be directly dumped to the specified location as a *.CSV file. If it is
set as false, then the dump of the trend file will be in binary format an external tool is then required to convert
it to a CSV format.

DateTimePrefixFileName
When this option is enabled the dumped file will have the Date and Time as prefix to the name of the file.
For example if we are making a Dump at 10.10AM on 1-1-2012, then the file name will look like
D2012_01_01_T10_10_alarmBuffer1.csv. [DYear_Month_day_THour_Minute_Filename]
This helps to know the Time at which the Dump was made and also to identify which one is the latest

NOTE This option is only supported when exporting to CSV directly.

timeSpec
This option defines the time format used when dumping the event archive to file.

• Local: the time values exported are the time of the HMI device.
• Global: the time values exported are in the Coordinated Universal Time (UTC) format.

Example:

• Local 2012-10-11T05:13:43.724-07:00

• Global 2012-10-11T12:13:43.724Z

When exporting Event buffers in binary format assuming the DumpConfigFile option is set to true
(recommended settings), the result of the dump action execution is 2 folders; one is called “data” and it
contains the data files, the second one is called “config” and it does contain the configuration files needed by
the tool to recover the complete information for proper conversion to CSV.
Once the two folders are copied from the root of the USB drive to the computer disk, the folder structure will
look as follows:

.\config\
 alarms.xml
 eventconfig.xml
.\data\
 AlarmBuffer1.dat
 AlarmBuffer1.inf
.\
AlarmBufferReader.exe

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 97

NOTE The utility is distributed in PB610 Panel Builder 600 in the folder ABB\Panel Builder 600\Utils.

The AlarmBufferReader can be called from command line with the following syntax:

AlarmBufferReader AlarmBuffer1 FILE ./AlarmBuffer1.csv

Where AlarmBuffer1 is the name of the dumped .dat file without extension and AlarmBuffer1.csv is the
desired output file name.

Figure 103

The utility called “AuditTrailBufferReader.exe" is available for Audit Trail buffers.

NOTE The action must to be configured with the option DumpConfigFile set to true.

The result of the dump is a directory structure similar to the one generated for Events.
The conversion tool can be called from the command line according to the following syntax:

AuditTrailBufferReader AuditTrail FILE ./AuditTrail.csv

Where AuditTrail is the name of the dumped buffer without extension and AuditTrail1.csv is the desired
output file name.

9.9.5 DeleteEventArchive

The DeleteEventArchive macro allows you to delete saved Event buffers log data from the file. In the macro
properties, define the Event buffer name that you want to delete from the Event logs.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 98

9.9.6 ResetProtoErrCount

The ResetProtoErrCount macro is used to reset the Protocol Error Count System Variable. See the chapter
“System Variables“for further information about system variables.

9.9.7 SafelyRemoveMedia

If you unplug an SD Card or a USB drive from the HMI while it is transferring or saving information, you risk
losing some information. This macro provides a way to help you safely remove such devices.

Figure 104

9.10 Recipe Actions

The Recipe Actions macros are used in programming the recipe management.

9.10.1 DownLoadRecipe

The DownloadRecipe macro allows you to transfer a set of Recipe data to the controller. In macro properties,
select the Recipe in the Recipe Name field and select the Recipe set you want to download. To download
the currently selected Recipe set, select “curSet" in RecipeSet.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 99

Figure 105

9.10.2 UpLoadRecipe

The UploadRecipe macro allows you to transfer the controller data to the Recipe set data. In the macro
properties, select the Recipe in the Recipe Name and select the Recipe set that you want to upload. To
upload to the currently selected Recipe set, select “curSet" in RecipeSet.

Figure 106

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 100

9.10.3 WriteCurrentRecipeSet

The WriteCurrentRecipeSet macro allows you to set the selected Recipe as current Recipe Set. In Macro
Properties, select the Recipe and Recipe Set you want to set as the Current Recipe in runtime.

Figure 107

9.10.4 DownLoadCurRecipe

The DownloadCurRecipe macro allows you to transfer the current set of Recipe data to the controller. No
parameter is required in the Macro Properties. This will download the currently selected Recipe and Recipe
set to the controller.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 101

Figure 108

9.10.5 UploadCurRecipe

The UploadCurRecipe macro allows you to transfer the set of controller data values to a Recipes set. No
parameter is required in the Macro Properties. This will upload the currently selected Recipe from the
controller.

Figure 109

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 102

9.10.6 ResetRecipe

The ResetRecipe macro allows you to restore the factory settings for the Recipe data. The uploaded
Recipes will be replaced with the original Recipe data. In the macro property, select the Recipe that you want
to reset to factory settings.

Figure 110

9.10.7 DumpRecipeData

The DumpRecipeData macro is used to dump recipes to internal or external storages. In the Macro
Properties, define the location where to save the dumped file. Recipe data is saved in CSV format.
Dump can be done in any external storage like USB, SD or network path.

NOTE The external drives plugged in the USB port of the panel must have format FAT or FAT32. NTFS

format is not supported.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 103

Figure 111

DateTimePrefixFileName
When this option is enabled the dumped file will have the Date and Time as prefix of the filename.
For example: if we are making a Dump at 10.10AM on 1-1-2012, then the file name will look like
D2012_01_01_T10_10_recipe1.csv. [DYear_Month_day_THour_Minute_Filename]
This helps to know the Time at which the Dump was executed and also to identify which one is the latest.
TimeSpec define time format, Local for HMI time and Global for UTC time.

9.10.8 RestoreRecipeData

The RestoreRecipeData macro allows you to restore the Recipe data previously saved. In Macro Properties,
provide the file full path of the Recipe files. Recipes to restore can be in any external storage like USB, SD or
network paths.

NOTE The external drives plugged on the USB port of the panel must have format FAT or FAT32. NTFS

format is not supported.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 104

Figure 112

9.11 User Management Actions

User Management Actions macros have been designed for user management and security settings in
Runtime.

9.11.1 LogOut

The LogOut macro allows you to log off the current user in Runtime. After executing the LogOut macro, the
HMI behavior depends on whether a Default user is configured in the project or not.
If there is a Default user, the LogOut automatically logs in the Default user. If there is not a Default user or
you logout from the Default user, then the log-in screen is shown.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 105

Figure 113

9.11.2 SwitchUser

The SwitchUser macro allows you to switch between two users without logging-out the logged-in user. The
server continues running with the previously logged-in user, until the next user logs in. This means, after
executing the SwitchUser macro, the runtime will display the User Login template. Internally, however, the
server runs with the previously logged-in user. This action is useful for ensuring that there is always one user
logged onto the system.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 106

Figure 114

Click on the “Back" button to go back to the previously logged-in user.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 107

Figure 115

9.11.3 ResetPassword

The ResetPassword macro allows the current user to restore his or her original password; this macro will
restore settings specified in the project for the current user password. No parameter is required to set this
macro.

Figure 116

9.11.4 AddUser

The AddUser macro is used to add users at runtime. When this macro is executed, a template page pops up,
where parameters for the user can be set. These parameters include Username, Password, Group,
Comments, flags like ‘password must contain numbers’, ‘password must contain special character’, ‘user
must change his initial password’, ‘enable logoff time’ and ‘Inactivity Logoff Time’. The User Log is shown in
the figure below.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 108

Figure 117

9.11.5 DeleteUser

The DeleteUser macro is used to delete users at runtime. Upon executing this macro, a template page will
pop up where you can select the user you wish to delete. No parameters are required to set this macro. After
executing the macro, the Delete User form will be displayed, as shown in the figure below.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 109

Figure 118

9.11.6 EditUsers

The EditUsers macro is used to edit users at runtime. When executing this macro, a template page pops up.
Here you can select a user and modify this user’s parameters (such as Username, Password, Group,
Comments, flags like ‘password must contain numbers’, ‘password must contain special character’, ‘user
must change his initial password’, ‘enable logoff time’ and Inactivity Logoff Time). After executing the macro,
a User Edit form will pop up, as shown in the figure below.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 110

Figure 119

9.11.7 DeleteUMDynamicFile

The DeleteUMDynamicFile macro allows you to delete the dynamic user management file. This means that
the users created, edited, or deleted in Runtime will be erased, and the server will restore the settings from
the project, originally downloaded from PB610 Panel Builder 600. No Macro Properties are required.

9.11.8 ExportUsers

The ExportUsers macro allows exporting user details to an xml file (usermgnt_user.xml). User details will be
in encrypted form. In the Macro Properties, the destination folder path must be set to the location where the
usermgnt_user.xml file is saved.
If using a USB drive plugged in to the USB port, the path will be “\USBMemory", followed by the specified
folder in the memory (or left empty for root folder).

NOTE The external drives plugged in the USB port of the panel must have format FAT or FAT32. NTFS

format is not supported.

Since the file is encrypted, there is no way to edit the user configuration from this exported file. This action is
most useful for making a backup to be used for a later restore.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 111

Figure 120

9.11.9 ImportUsers

The ImportUsers macro allows importing user details from an xml file named “usermgnt_user.xml". The path
of the folder where the usermgnt_user.xml file is located must be specified in the Macro Properties.
If using a USB drive plugged into the USB port, the path will be “\USBMemory", followed by the specified
folder in the memory (or left empty for root folder).

NOTE The external drives plugged in the USB port of the panel must have format FAT or FAT32. NTFS

format is not supported.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 112

Figure 121

9.12 Print Actions

Figure 122

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 113

9.12.1 PrintGraphicReport

The PrintGraphicReport macro allows you to print a graphic report. You have to specify the report name in
the combo box reportName. The option silent (default value is true), if set to false, allows you to open a
dialog at runtime which asks the user to adjust printer properties.

9.12.2 PrintText

The PrintText macro allows you to print the string written in the field text. The option silent (default value is
true) allows, if set to false, you to open a dialog at runtime which asks the user to adjust printer properties.

NOTE PrintText work in line printing mode using a standard protocol common to all printers that support it.

No custom drivers required for line printing.

NOTE In line printing, text is printed immediately line by line or after a timeout custom for each printer

model (could take also minutes for some models not design for line printing).

9.12.3 EmptyPrintQueue

The EmptyPrintQueue macro allows you to empty the current printing queue. If the macro is executed in the
middle of the execution of a job, then the queue will be cleared at the end of the job.

9.12.4 PausePrinting

The PausePrinting macro allows you to put on hold the current printing queue. If the macro is executed in
the middle of the execution of a job, then the queue is paused at the end of the job.

9.12.5 ResumePrinting

The ResumePrinting macro allows you to start the queue if previously it was put on hold.

9.12.6 AbortPrinting

The AbortPrinting macro allows you stop the execution of the current job and remove it from the queue. If
the queue has another job, then, after aborting, the next one starts immediately.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 114

10 Using HMI Client

The HMI Client provides remote access to the Runtime, and is included in the PB610 Panel Builder 600
installation. The HMI Client consists of a simple standalone application; although it uses the same graphic
rendering system as the server, it relies on a specified Runtime as Server for live data.

HMI Clientfor Windows is available in the Runtime folder of the PB610 Panel Builder 600 root folder. Execute
the HMI Client application from the Runtime folder or from the start up menu (PB610 Panel Builder 600- HMI
Client). The client will open in a browser-like style window. Type the server IP address (the panel’s IP
address) in the address bar (for example: http://192.168.1.12). The Client will connect to the server and the
same graphical application running on the Server panel will be loaded in the client window.

HMI Clientacts as a remote client and communicates to the server, sharing the local visualization with those
Tag values that are maintained or updated by the communication protocol.

The HMI projects contain properties that let you know which page is currently displayed on the HMI and to
force the HMI to switchto a specific page. These properties can be used to synchronize pages showed on
the HMI and HMI Client or to control an HMI with a PLC. Please refer toSyncOptionsfor more details.

NOTE If any of the project files downloaded fromPB610 Panel Builder 600 to the hmi panel change for any

reason (because corrupted or because has been manually changed via FTP client for example) an error
message appears into theHMI Client while downloading project. Error message appear like a “checksum
does not match”.

10.1 The HMI Client toolbar

The HMI Client toolbar contain following:
- URL related to the hmi panel address
- A led indicating network requests. During data exchange the led becomes red.
- Reload button, useful for forcing project reload. Use “F5” to reload project from cache (simple reload

of project) or “Shift” + “F5” to force a full clean redownload of project to the client (useful when
project is changedin the target).

- Bookmark
- Settings

Figure 123

10.2 Settings &Time Zone Options

HMI Clientprovides an additional option to handle the visualization of the timestamp information of a project
and to configure client settings.

From the Settings dialog you now have access to a set of new options:

- Update Rate (default 1 second): polling frequency used by HMI Client to synchronize data from
server.

- Time Out (default 5 seconds): max time wait from HMI Client before considering a request lost and
repeating it.

- Reuse connection: allow to reuse the same TCP connection for multiple HTTP requests reducing
network traffic and latency. Please note that in some circumstances, enabling this option can lead to
the opposite result: very high latency. In particular this can happen when connecting through a HTTP

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 115

proxy, like often seen in 3G connections, if proxy server is not immediately terminating old requests
(causing server to saturate the available connection sockets).

- Enable compression: enabling this flag can improve download times on very slow connections. For
LAN ones, the cpu overhead required to accomplish compression server side is just too high. So by
default the flag is disabled.

- Time Settings:information is used by the client to adapt the widget timestamp information according
to the desired behavior. Options for Time Settings:

Use Widget
Defaults

For each widget use time information according to the widget settings
provided at the time of programming.

Local Time
Translates all timestamps used in the project into the PC local time
where the client is installed.

Global Time Translates all timestamps used in the project into UTC format.

Server Time
Translates all timestamps used in the project into the same used by HMI
panel/server in order to show the same time.

NOTE This feature requires you to set the HMI RTC with the correct time zone and DST (Daylight Savings

Time) options.

10.3 Workspace

Using HMI Client, project files will be uploaded from panel and placed into a cache directory.
Cache folder where project are temporary stored is under:
• %appdata%\ABB\[build number]\client\cache

where [build number] is a folder named as build number like 01.90.00.608.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 116

11 Using the Integrated FTP Server

The HMI Runtime system features an integrated FTP server that can be used to get access to the internal
flash disk data.

NOTE Folders present on the Flash disk external to the runtime directory are not accessible via FTP;

external USB drive and SD Storage Card are not accessible via FTP.

You can use any standard FTP client program to connect to the panel FTP server. The FTP server responds
to the standard port 21 when using the IP address assigned to the panel as host.

NOTE The server supports only ONE connection at a time; if you are using an FTP client which is

configured to multiply the connections to the server in order to speed up the transfer operation, you will need
to disable this feature in the client program or set the maximum number of connections per session to 1.

The FTP server is configured by default to accept incoming connection from the following account (when
User Managemnt/Security is disable):

• User name: admin

• Password: admin

FTP permissions and account information can be changed from the “UserGroups” under the “Security” item
of the project folder as shown in the following figure.

Figure 124

Additional information can be found later in this document in the chapter titled “FTP Authorizations”.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 117

12 Using ActiveX Client for Internet Explorer

In the standard distribution of PB610 Panel Builder 600, a HMI Client and an ActiveX Client is provided.
ActiveX components are NOT installed by default to the Target devices, in order to save space in the flash
memory.

12.1 Installing ActiveX

The ActiveX component is distributed with the PB610 Panel Builder 600 installation package. The related
files are located in the Runtime folder of the PB610 Panel Builder 600 installation directory. The files,
“HMIAX.cab" and “HMIClientAX.html", should be copied into the workspace folder of the Target device,
where the Runtime is installed. The file copy can be done using the panel FTP server.

Starting from v1.90 (b608) of PB610 Panel Builder 600 has been introduced software plug-in support (ref. to
chapter on software Plug-ins chapter for more details) to simplify ActiveX installation. Just enable ActiveX
plug-in from project properties and install/update runtime to add ActiveX files to the runtime and transfer it
into the target without the need of manual copy of it via FTP.

NOTE This ActiveX requires Microsoft Visual C++ 2008 Redistributable Package (x86) installed on your

system. You may need to download the Microsoft Visual C++ 2008
Redistributable Package (x86) from the Microsoft web site.

NOTE The ActiveX plug-in require about 10MB of space. Enable it only if required by the HMI application to

keep the smallest footprint for the application.

12.2 HTTP Access to ActiveX files

When security is enabled, ActiveX files “HMIAX.cab” and “HMIClientAX.html” have tobe accessible from the
http server embedded into the runtime. Refer to HTTP Authorizations chapter for more details.

12.3 Internet Explorer Settings

Internet Explorer settings must be changed adding the panel’s IP to the list of the trusted sites.
In Tools – Internet Option Security tab choose “Trusted sites". Then click on the “Sites" button. Type in the IP
address of the Target device the location where the ActiveX component has been installed and it will be
loaded to the browser.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 118

Figure 125

12.4 Security Setting for Trusted Site Zone

Set your Internet Explorer Browser as seen in the following images:

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 119

Figure 126

Figure 127

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 120

Figure 128

12.5 Install Active X in Internet Explorer

In Internet Explorer, allow the installation of the ActiveX component when the question pops up in your
browser.

Figure 129

In case you are using a Vista or Windows 7 operating system, you need to click on Yes on User Account
Control, as shown in the following picture.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 121

Figure 130

12.6 Uninstalling Active X

To remove the ActiveX component from your system, you must delete it from the computer. By default, the
component is installed in the following folder:
C:\Program Files\ABB\HMIClientAX

12.7 ActiveX information

The ActiveX is able to show projects at a maximum pixel resolution of 1200 x 800.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 122

13 Using VNC for Remote Access

VNC is a software for remote control. With VNC, you can see the HMI application remotely and control it with
your local mouse and keyboard, just like you would if you were in front of it.

VNC is useful for administration and technical support. To be used it requires that a server is started on the
HMI device; a viewer is used for connecting from a remote location.

13.1 VNC Server

Starting from v1.90 (b608), the VNC Server has been added as plugin (ref. to Plugins chapter for more
details) to allow developers of hmi applications to choose if enable & download it as part of the runtime. Just
enable it from project properties -> plugins and install/update runtime to download it into the target.

VNC server is located in folder \Flash\qthmi\VNC and can be activated using macro launchVNC.

LaunchVNC macro is used to open the VNC configuration dialog. From the configuration dialog you can:

• Start / Stop / Restart VNC Server in Control Tab

• Enable security and set password in Options tab that will be used later for access using a VNC
viewer.

• Enable Autostart in Advanced tab to activate VNC server automatically every time the HMI panel
start.

o Silent Startup (usefull only when Autostart is enabled) prevents the VNC dialog from
appearing at panel start-up and keeps it open in the background.

Figure 131

OK button on top/right of VNC server configuration dialog is used to confirm and save changes.

Advanced configurations are provided for expert users when VNC server is used in conjunction with a
VNC repeater to bypass firewall problems or to optimize VNC performances based on network
configuration.

NOTE The VNC server uses port 5900/TCP.

NOTE The Password of VNC server is null as default. Password can be changed via VNC viewer

or with an external usb keyboard attach to the hmi panel.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 123

NOTE For developers, a macro LaunchVNC is available in Developer tools.

NOTE Show Taskbar icon flag is used by tech support when debugging problems out of KIOSK

mode. This flag is not usefull for standard hmi users.
NOTE The VNC Server has been design for embedded HMI panels WCE based. Win32 platform

not supported for VNC Server.
NOTE The VNC Server allows only one single client. Two or more connected in the sametime is

not allowed.
NOTE Drag and Drop of Windows is not supported yet by VNC server.

13.2 VNC Viewer

A VNC viewer is not provided as part of PB610 Panel Builder 600. However, many types of VNC viewers are
freely available. One example of compatible VNC viewer is TightVNC.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 124

14 Alarms

The Alarm handling has been designed to provide alerts through pop-up messages, typically to issue
warnings, to indicate any abnormal conditions or any malfunctions in the system under control. Whenever a
Bit goes high, or the value of a Tag crosses the limit of deviation defined in the Alarm configuration, the
respective Alarm message(s) will be displayed in a special dialog. Or, alternatively, you can program certain
macro actions to be executed when the Alarm is triggered.
Please note that, in PB610 Panel Builder 600, there is no default action associated with a triggered Alarm.
The visualization of a specific page containing the Alarm Widget is optional, and the specific action executed
when the trigger condition is verified can be any one of the actions found on the Action list.

The configuration of an Alarm determines whether or not the alarm requires user acknowledgement. It can
also be used to determine how the Alarm appears when displayed on the HMI device (like background and
foreground color). Alarm Configuration also determines whether, and when, the corresponding alarm is
logged to the Event list.

For Alarms displaying critical or hazardous operating and process status, a stipulation can be made requiring
the plant operator to acknowledge the Alarm.

The Alarms are configured in the alarm manager and, thus, are a component of all screens of a project.
More than one Alarm can be displayed simultaneously in the alarm widget, depending on its configured size.
An Event can trigger the closing and reopening of the Alarm window.

Please note that, in PB610 Panel Builder 600, working with Alarms is similar to working with Events. In
general, there is no absolute need to have a pop-up dialog when an Alarm is triggered. Any “background"
action (from the list of available actions) can be associated with this Event.

14.1 Alarm Configuration Editor.

In the Project Workspace, double click on Alarms to open the Editor. Then add the Alarms by clicking the “+"
button.

Figure 132

Name
Specifies the name of the Alarm.

Enable
A user can enable or disable the triggering of particular alarms. Alarms can be enabled or disabled on
Runtime as well (for more information, please see Chapter Enable / Disable Alarms in Run-time).

Acknowledgement

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 125

For an alarm that needs to be acknowledged by the operator (when the alarm is triggered), select the check
box to enable the Acknowledgment. If checked, an operator is required to acknowledge this alarm any time it
is triggered, before it will be cleared from the Active alarm widget.

Reset
This check box, specific to each alarm, works in conjunction with the acknowledge check box. After an alarm
requiring acknowledgment has been acknowledged, it will be cleared from the alarm list. If the Reset check
box is checked, the alarm will continue to be listed in the alarm list, as “Not Triggered Acked”, until the Reset
button present in the alarm widget is pressed.

Buffer
Specifies the Buffer file to which the Alarm history will be saved.

Trigger
This selection determines the triggering condition for an alarm.
Three Alarm types are available:

• Limit Alarm A Limit Alarm is triggered when the monitored Tag value goes OUTSIDE of its given
boundaries (low limit and high limit). When the Tag value is equal to its low or high limit, the alarm is
not triggered.

• Bitmask Alarm To get a valid trigger, the bitwise AND operator compares each bit of the bitmask
with the Tag value corresponding to that Alarm. If both bits are on, the alarm is set to true. When the
Bitmask Alarm is selected, you can specify one or more Bit positions inside the Tag. When one of
the Bits is set, the alarm is triggered. The Bit position must be given in decimal format; if more Bits
are specified, each position must be separated by a “,".
Bitmask is a position, so it starts from zero (0).

• Deviation Alarm For the Deviation Alarm, a predefined “set point", as well as a value for

“deviation" will be given. If the percentage of deviation of the Tag value from the set point exceeds
this deviation, then the trigger condition becomes true.

Tag
Attach the Tag for which the Alarm shall periodically check the Tag value, so that the respective alarm(s) is
triggered when this deviates from its limits. (The Alarm function will refer to the value of this Tag, or to the
state of a Bit, in the case of Bitmask, to determine when to trigger the Alarm.)

Actions
Define the action(s) to be executed for the specific Alarm. Actions are executed by default when the
specified trigger condition becomes true. Additional conditions can be specified in the “Events" configuration
(in the last column of the Alarm editor, as explained in the chapter Action Enable).

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 126

Figure 133

Description
This is the description of the alarm. The Alarm description is normally text; this text supports the multiple
language features. The text can be a combination between static and dynamic parts, where the dynamic
portion includes one or more tag values. Please see the chapter “Live Data in Alarm Description” for further
information about this feature.

Color
Foreground and Background colors of alarm rows (Active alarms widget) can be applied based on the status
of alarm (ex. Triggered, Triggered Ack etc).

Figure 134

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 127

AckBlink
Make alarm row (of Active alarms widget) blink when an alarm is triggered. Stop blink when alarm has been
ack-ed. Blink can be used only with alarms that have the Ack flag enabled.

Severity
A user can indicate the Severity of each alarm. If multiple Alarms are triggered simultaneously, the actions
will be executed based on Severity settings.

Events
These options allow you to specify conditions relating to the following matters: when the Alarms events are
to be logged, when the Alarms Widget View is to be refreshed or updated by the system, and some
particular options for action execution. Setting Events is described in a dedicated chapter.

14.2 Alarms’ State Machine

The HMI system implements an alarm State Machine which is described by the following figure.
The graph includes states and transitions between them according to the selected options and desired
behavior.

Figure 135

14.3 Setting Events

This chapter describes how to set Events in the Alarm Configuration Editor.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 128

14.3.1 Log Events

Select the “Log" tab in the dialog box (as shown in figure). The list below this represents a set of conditions
for which you may want to store the specific event in the Alarm History Buffer. Click the check boxes
corresponding to the application requirements.

Figure 136

The Alarm Events History can be accessed by logging in a dedicated buffer called “Event Buffer"; to
configure the Event Buffer, you have to double -click on “Buffers" in the Configuration Editor (as shown in the
figure below). Here there is an Option for Selecting the storage type.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 129

Figure 137

When the events’ buffers are stored in persistent storages (Local, USB, SD etc), the system saves the file on
disk every 5 minutes. However, events of type alarms are saved immediately.

14.3.2 Notify

The user can choose the conditions under which the Alarms should be posted in the Alarm Widget.
This specifically refers to the default Alarm Widget, available in the Widget gallery. The user can decide
when the Widget will be updated with a change of an Alarm Status. We recommend leaving the default
settings here, and changing only those necessary for specific application requirements.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 130

Figure 138

14.3.3 Actions

The user can specify the conditions under which the action(s), configured for the specific Alarm, must be
executed.

Figure 139

By default, the actions are executed only when the Alarm enters the triggering condition; you may change
this by configuring the system to execute the configured action also for the other alarm states available.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 131

14.4 Active Alarms Widget

You can insert the Active Alarms Widget in a page to see the status of alarms and to acknowledge or reset
or enable/disable alarms.

Figure 140

The Alarm Widget will display the Alarms in Runtime.

14.4.1 Filters

A Filter is available to show/hide just a subset of all configured alarms. Using the Combo box Filter it’s
possible for example to Hide Not Triggered alarms.

Another Filter (Filter 2) is available in widget properties and can be used to add a second filter based on
another alarm field like Alarm name, or based on Severity or Description of an alarm.

Figure 141

To customize a filter proceed as follow:

1) Select Active Alarms widget
2) Into the property pane select one of the two filters availables:

Filter -> (Filter Column 1 | Filter Column 2)
and related value to filter (Name | State | Value | Time | Description | Severity | Enable)

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 132

3) Attach Combobox widget to Filter 1 | Filter 2 DataLink.
4) Select ComboBox using “Shift” + “Mouse Left Button”
5) From property pane select List property and open dialog to customize combobox values
6) Using combobox configuration dialog, specify String List (options shown to user into the combobox)

and regular expression to use for filtering values.

More details about Regular expressions avialble here:

http://www.gnu.org/software/gawk/manual/gawk.html

Follow examples of filters:

Filter
By

String List Data List

State
Hide Not

Triggered
^((Not Triggered Acked|Not Triggered Not Acked|Triggered).*$)

Value 10 < Value < 20 ^(1[0-9]$)

Value
20 <= Value

<100
^([2-9].$)

Value
100 < Value <

200
^(1[0-9][0-9]$)

Value Value 2?/3?/4?/5? ^([2-9].*$)

Value Value >= 100 ^([1-9][0-9][0-9].*$)

Value Value >= 20 ^([2-9].*$|[1-9][0-9][0-9].*$)

Figure 142

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 133

14.4.2 Sorting

You can enable or disable the column sorting option, available at Runtime for the Alarms Widget, by clicking
on the column header. The sorting order is based on the string sorting.

Figure 143

NOTE Starting from version 1.80, the Alarms’ widget provided in the gallery no longer has the “Priority”

column. The widget has a new column called “Severity” which comes by default next to the ID column.
Severity column takes the values from the Severity settings from the Alarm Editor.

14.5 Alarms History Widget

PB610 Panel Builder 600 automatically logs the Alarm list based on the Flag Settings set in the Alarms
Editor, under “Log Event Types". To see the Historical Alarm list, you can use Alarms History Widget.

Figure 144

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 134

The selection of the Event Buffer is available in the property panel (as shown in the figure).

Figure 145

NOTE For each of the different Alarm Buffers, a specific Event Widget must be configured for the project;

the current version of the Event List Widget does not allow you to switch between buffers.

14.6 Managing alarms at Runtime.

When an Alarm is triggered, the Alarm will be displayed in the Active Alarms Widget. The Widget allows you
to acknowledge and reset the Alarm.
The Alarm display can be filtered by “Hide Not Triggered", “Show All" and other custom filters.
Please note that the visualization of the Alarm Widget is not automatic. If the Widget has been placed on a
certain page, when an alarm is active, you must add a dedicated action that will go to the page showing the
Alarm widget.

14.7 Enable/Disable Alarms at Runtime

You can enable or disable the alarms at runtime. If you want to disable an alarm, just uncheck the alarm
from the Enable column in the Alarm Widget and execute the Save command. This way the alarm will not get
triggered and the disabled alarm will not be displayed at Runtime.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 135

Figure 146

Later, if you want to enable again the Alarm, select the Alarm and check the Enable check box. Then
execute the Save command. The Alarm will now be subscribed and subject to being triggered.

14.8 Live Data in Alarms Widget

This feature is used to view the live Tag data value inside the alarm description. It is applicable for both
Active Alarms and History Alarms widget.

To configure the live data visualization in the Alarm Widget, follow a simple syntax rule.
The Tags to be included must be specified in the alarm description string, including the Tag names in square
brackets:

[Tag name]

An example is shown below.

Figure 147

During Runtime in the Alarm Widget, the markers and Tag name will be replaced in the description column
by the actual value of the Tag. The Widget automatically refreshes and shows the current values of the Tags
in the Widget.
In History Alarm Widget, it will show the value of the Tag at the moment the alarm was triggered.
Into the CSV file resulting from the Dump of the alarms events list, the Tag values can be seen in the
description column.
Result will be displayed as shown in the figure below.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 136

Figure 148

NOTE The ability to store the alarm description with tag values in the event buffer is a feature supported

starting from version 1.80

NOTE use '\' before '[]' where there is a need to show the '[]' in the description string. So, if the string to

show is [Tag[1]], the correct syntax to use is [Tag\[1\]]

14.9 Exporting Alarm Buffers as CSV file

The historical alarm list (the event buffer) can be exported using the action called “DumpEventArchive”...

NOTE The tag values included in the Alarms description are also included in the event log stored in the

event buffer The tags are sampled at the moment the alarm is triggered and that is the value recorded and
included in the description. In the Alarm description, displayed by the Alarm widget, the value may change
because it is constantly updated, but no additional values are recorded. This feature is supported starting
from version V1.80.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 137

15 Recipes

Recipes are a feature for organizing data storage in the HMI device and include services for exchanging data
with connected controller devices.
This data can be written to the controller, and, conversely, the data can be read from the controller and
saved back on the HMI panel. This concept offers you a powerful way to extend the capabilities of the
controller. This is especially true for controllers that have a limited amount of memory.

The Recipe memory is the physical storage for the Recipes. The “Recipe Tag" block basically identifies the
“current Recipe". From the Recipe memory, you select one Recipe data record or Recipe set and designate
it “current/active Recipe". Then, you can transfer this recipe data, to or from the controller. Recipe tags can
be displayed and edited on a page.

Currently, the Recipe data is configured in the PB610 Panel Builder 600 workspace and the user can specify
default values for each element of the data records. On Runtime, the data can be edited; this new data is
saved to a new and separate data file, different from the original one containing the default values. Any
change to recipe data is stored on disk. The use of a separate data file on Runtime ensures that modified
Recipe values are retained throughout different project updates. In other words, a subsequent project update
does not influence the Recipe data modified by the user on Runtime.

NOTE To reset the recipe data to the default values, there is a dedicated action called “Reset recipes”; see

below in this chapter for further information.

The User can also select where the Recipe needs to be stored. There are three options for this: FLASH,
USB, and SD Card. The user can select any one.

You can configure Recipes by adding the required controller data items to a page from the Recipe Widget. A
Recipe can be associated with a particular page and is composed of all the Recipe data items on that page.
Recipe data items contain all the information associated with normal controller data items; but, rather than
the data being read and written directly to the controller during the course of normal operation, the data is
instead read from and written to the panel memory that is reserved for the data item.

This chapter describes how to configure and use the Recipes in the PB610 Panel Builder 600 application.

15.1 Recipe Configuration Editor

In the Project View pane, select Recipes and right click. Then choose Insert Recipe if you want to create a
new Recipe. The newly added Recipe item will be added in the project workspace.

Figure 149

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 138

Figure 150

Double click on the Recipes to open the Recipe Editor, as shown in the figure below.
Add the recipe elements by clicking the “+" button, and then link the tags to the recipe element.

By clicking on the button “Storage Type” you can select where to store recipe data.

Figure 151

A dialog in which the selection can be made will open. See the figure below.
For USB and SD card you can provide the folder location.

WARNING Recipes configuration files are created automatically when the project is saved. Recipes files

are saved into the subfolder data of the project folder into the PC by PB610 Panel Builder 600. When
external storages are used, please copy this folder into the external storage selected. Default path is
“/Storage Card/data” for SD or “/USBMemory/data” for USB storage. However, a subfolder of it can be used
like “/USBMemory/MyRecipes/data”. The subfolder name “data” cannot be changed and is required for the
recipes to work.

Figure 152

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 139

15.2 Configuring Recipe Sets on the Page

The number of parameter sets can be changed in the “Number of sets” field in the property pane. From there
you can also change the name of each Recipe set.
Recipe values for all the parameter sets can be entered into the Recipe Editor window.

Figure 153

15.3 Defining Recipe Fields

The user can define the Recipe field on the page by using the numeric field Widget from the gallery and
attach the Tags from the Recipe data source. The figure below shows an example of a Tag attached to a
Recipe field.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 140

Figure 154

The “Attach to” Dialog allows you to attach to the numeric field all the different Recipe variables, such as:

• Current Recipe ->Current selected Recipe set-> Element -> value (or) name
• Selected Recipe -> Selected Set0 -> Element -> Value (or) Name

• Selected Recipe list
• Currently selected Recipe list

• Recipe Status

When the numeric fields are defined as Read/Write, the default Recipe data can be edited at Runtime. As
explained in the introduction, these new values are stored in a separate file as modified Recipe data.

15.4 Recipe Status

After every Recipe Upload or Download, or Recipe set modification, the Recipe Status parameters contain a
value with the result of the operation.
The following are the values and conditions for the Recipe Status system variable.

Code Function Description

0 Set modified Current selected set changed.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 141

1 Download triggered Triggered a download request.

2 Download Done Download action completed.

3 Download Error
Error occurred when doing download - errors like unknown set,
unknown recipe, controller not ready, Tags write failed etc.

4 Upload triggered Triggered an upload request.

5 Upload done Upload action completed.

6 Upload Error Error occurred when doing upload - errors similar to download errors.

7 General Error Errors like data not available.

NOTE When the panel starts up the value of Recipe Status is 0.

15.5 Configuring Recipe Widget for Runtime Execution

Two default Recipe Widgets are available in the advanced Widget Gallery category.
The “Recipe Set" Widget allows you to select a Recipe set for the upload and download operations. If you
have more than one Recipe in the project, then the “Recipe Menu" Widget can be directly used to manage all
the Recipes from a single Widget, listing Recipes and selecting the sets for each Recipe.

Figure 155

15.6 Configure Recipe Transfer Macros.

The Recipe transfer action can be completed through the action list dialog. The transfer of Recipes can be
achieved by any of the following methods:

Attaching an action to an event for button or switches

Configuring the action from the Alarms action list.

Using the Scheduler actions list.

Description of actions available for Recipes is included in the relevant chapter.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 142

Figure 156

15.7 Upload or Download Recipes during Runtime

15.7.1 Recipe Download through Recipe Widget in Runtime

Drag and drop the Recipe Widget (as described in the Chapter” Configuring Recipe Widget for Runtime
Execution”) into the project to execute the Recipe transfer in Runtime. Select the Recipe from the drop down
box, and select the Recipe set from the set dropdown list. Then press the “Download" button to download the
current selected Recipe set, or press the “Upload" button to upload the current selected Recipe set.

15.7.2 Recipe Download or Upload through Recipe Transfer Macro in Runtime

The Recipes can be Downloaded or Uploaded through the Recipe transfer macro. At runtime, execute the
macro (if the macro is programmed with a push button, then press the button). The Recipes data will then be
transferred to the controller, or uploaded from the controller, depending on the action programmed. The
figure below shows a simple example of a project using Recipes at Runtime.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 143

Figure 157

15.7.3 Backup and Restore of Recipes Data

The Recipe data stored in the HMI device can be exported for backup purposes and later restored. Please
refer to the actions “Dump Recipe Data“and “Restore Recipe Data” for further information.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 144

16 Trends

Trending is a method of sampling and recording the values of a specified Tag according to sampling
conditions (normally, the time).

Trending is divided into two main parts: Trend acquisition and Trend viewing. Trend acquisition (programmed
with the Trend Editor) collects the data into a database. The Trend viewer (Trend Widget) displays the data
from this database in a graphical format.

16.1 Real-Time Trend

In real-time Trend, the data will be presented directly in the Trend window, and the changes to the live data
can be seen directly in the format of a curve on the Trend window. Users can manage the process by seeing
the Trend on the HMI. The real-time Trend Widget is just a viewer for a Tag, and it does not refer to any
saved data in any buffer. Any curve plotted is lost when the page containing the Widget is changed.

To configure the Real-time Trend, just drag and drop the Real-time Trend Widget from the gallery.

Figure 158

Select the Trend Widget and, in the properties pane, attach to the “Curve x Value" property the Tag for which
you want the data to be plotted. Data is always plotted against time.

Following is the list of main parameters of Real-time Trend widget:

Num Curves Number of trend curves in the Trend window. A maximum of 5 curves

can be configured in a Trend window.

Page Duration Time range of the X-Axis. However, you can dynamically change the
page duration in Runtime with the Date Time combo widgets, attaching it
to the Trend window page duration properties.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 145

X Labels Number of Labels in the X-axis scale

Y Labels Number of Labels in the Y-axis scale.

Title Trend title and font properties (font size, label, etc.)

Curve x Tag or ì Trend buffer that will be plotted into the trend window.

Scaling can be applied to the Tag values. To apply scaling, use the X Forms attached to dialog.
You can set the Minimum or Maximum of the curves. You can also attach a Tag to these minimum and
maximum properties. This enhances the ability to change the min and max dynamically in the Runtime.
Also you can modify the properties, such as colors, update time, number of samples, etc. of the Trend
curves through the property view.

16.2 History Trend

If you want to analyze the data at a later time, the Trend data will need to be stored. For this purpose you
use History Trend. When you select History Trend, you can store the data information with reference to time.

The first step in creating a History Trend is to create a Trend Buffer.
The purpose of the trend buffer is to save a sequence of values of a specified Tag in order to record the
state of the tag while time changes. Once values are stored in the buffer, a dedicated widget, called History
Trend viewer, can be used to display the curve in a graphical format.
The History Trend viewer is available in the widget gallery.

In the History Trend widget the start time of the Trend window will be the current time and stop time will be
the current time + duration of the window.
The plot starts from the left end of the Trend window as in the figure below. The graph will be automatically
refreshed during a certain interval of time, until the stop time. When the curve reaches the stop time, the
graph will scroll left and the update of the curve will continue until it again reaches the right side of the
viewer. At that moment a new scroll is automatically done and the process repeats.

NOTE Automatic refresh is an option available starting from version 1.80.

Figure 159

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 146

16.2.1 Trend Editor

Historical trends require a proper configuration of trend data buffer. Trends’ buffers are configured using the
Trend Editor.

Trend buffers are stored in data files. There is an option to store these files on the internal storage (Local),
USB Memory, SD card or custom folders based on target platform.

Figure 160

In the Project View pane, double click Trends to open the Trend Editor. Then add the trend buffer, by
selecting the “+ Add" button on the editor. By clicking “+” near each trend buffer, the corresponding buffer
configuration is expanded.

The “Total Memory Space” bar shows how much memory has been used by the trend buffers currently
configured. The max number of samples allowed for a project is 1200000. The memory use is the
percentage of this number. As in the Figure above, suppose the total number of samples used in the project
is 80000. Then the total memory used will be shown as 3%. This is calculated by the formula

As we Increase the number of samples, the percentage of usage also increases and this will be shown in the
bar.

The following are the properties of each trend buffer in the Trend Editor:

Trend Name Defines the trend buffer name, which will appear when you define the

buffer to a trend window property pane. A default name is assigned by
the system; the name can be modified by the user.

Active Specifies if the trend runs by default when the system starts up.
NOTE The trend buffers cannot be activated during Runtime

Source This combo list allows selecting the Tag which is sampled by the Trend
manager system.

Sampling Time Samples are collected and stored in the disk data file on a cyclical basis.
Default sampling condition is the time; the sampling time specifies the

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 147

sampling period in seconds.

Trigger When the Trigger tag is specified, the source tag is not sampled on a
cyclical basis but on the Trigger tag value change. In any case, the
samples are plotted with respect to the time. The Trigger tag and source
tag can be the same.

Number of
Samples

This represents the buffer size expressed in samples.

Storage Device This is an option to select where the trend buffer data file will be stored

Buffer Trend data is organized as a FIFO queue. Once the buffer gets full, the
oldest values will be erased to create space for storing the new values.
If Save a copy when full is selected, when the buffer gets full, before
overwrite it, system create a backup copy of it into external storages.

Sampling Filter /
Trigger Filter

When the triggering condition is the time, a new sample is considered
significant (and then stored) only if its value, in comparison with the last
saved value, goes out from the specified boundaries.
In case the triggering condition is based on a trigger tag value change,
the boundaries are applied to the trigger tag value.

16.2.2 Configuring Trend Window for History Trends

The History Trend widget (trend window) is the area used to display the trend buffer in a curve format. After
configuring the trend buffer in Trend Editor, you can use the Historical Trend viewer widget to plot the trend
curve on the screen. From the trend gallery page, drag and drop the “History Trend" widget to the page.

Figure 161

Then, in the property pane of the Trend window, attach the trend buffer to be plotted in the trend window (as
shown in the figure below).

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 148

Figure 162

16.3 Trend Window Properties

With the help of the property pane of the trend window, you can customize the Trend window properties,
such as, X Axis time, Y Axis value, number of trend curves, changes to the labels, grids, number of samples,
etc.

16.3.1 Request Samples (Advanced View)

In the “Curve x” category there is one property called “Request Samples” as shown in the figure below.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 149

Figure 163

This property represents the maximum numbers of samples read by the widget at one time from the buffer
data file; this block size can be adjusted to fine tune performances in trend viewer refresh, especially when
working with remote clients. The default value is normally a good compromise for most cases.

16.3.2 Color Bands

Color Bands property of trends allow users to color the graph background based on the day of the week
(Sunday..Saturay) and time (0..23).

Using the button “+” , you can be add as many color bands (colors) as needed.
Select multiple cells and click on a color band to assign color to that range of time.

NOTE Color Bands feature is working just using Local Time in trend viewer (not Global).

Figure 164

Figure 165

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 150

16.4 Trend Cursor

The Trend Cursor allows you to see the trend value at a point. Use Show Trend Cursor macro and Scroll
Trend Cursor macro to enable the Trend cursor and move it to the required point to get the value of the
Curve at particular instant in time.

Figure 166

To display the value of the Trend Cursor on the page, define a numeric field and attach the Cursor Value
Widget Tag (as shown in the figure below). This is the Y axis Value of the Cursor.

Figure 167

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 151

To get the Time at the Particular Point where the Cursor is placed, define a numeric field and attach to the
“Widget Tag” as shown in the figure below.

Figure 168

The Widget tag shown in the figure above represents the X axis cursor value for the trend window.

16.5 Exporting Trend Buffer Data to CSV file

The trend buffers stored in the selected media can be exported to CSV file using dedicated actions. Please
refer to “Dump Trend” for further information.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 152

17 Scatter Diagram / XY Graph

A scatter diagram is a type of mathematical diagram using Cartesian coordinates to display values for two
variables from a set of data. The data is displayed as a collection of points, each having the value of one
variable determining the position on the horizontal axis and the value of the other variable determining the
position on the vertical axis.

Figure 169

In Scatter Diagram a linear interpolation of points is done.
To create a new Scatter Diagram you have to proceed as follows:

• Add Scatter Diagram widget into the page
• Select the number of curves (Graph1...Graph5) to show

• Customize the general graph properties as for Trends like X Min, X Max, Grid details
• Define the max number of samples/values to consider (Max Samples) for each curve. This

parameter set the max number of values to show in the graph starting from first element in the array.
Ex. Tag1[20] and Max Samples = 10 will show just first 10 elements of the Tag1 array.

• Define for each curve the two Tags of type Array to show (X-Tag and Y-Tag).

When the array tags change, is possible to force a refresh using the dedicated macro RefreshTrend.

NOTE The ScatterDiagram is considered as a different type of Trend Widget. However only the

RefreshTrend macro is supported for it.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 153

18 Data Transfers

The Data Transfer feature allows the transfer of variable data from one device to another.
Using this feature an HMI panel can operate as a gateway between two devices, even if they do not use the
same communication protocol.

18.1 The Data Transfer Editor

To configure each data transfer job, you need to correctly map the tags. This mapping is performed from the
Data Transfer editor.

To configure the data transfer:

1. Double click on Config node.
2. Double click on Data Transfer item.
3. To add a tag, click on the “+" icon: a new tag line is added.

Figure 170

Each line in the Data Transfer editor defines a mapping rule for the alignment of the two tags.
You can define more mapping rules if you need different update methods or directions.

18.2 Data Transfer Toolbar Buttons

Import/
Export

Data Transfer settings can be imported and exported in .csv format. This feature can be
effectively used whenever it is more convenient to perform changes directly in the .csv file and
then reimport the modified file.

Filter Sort only rows containing that keyword. Click on the list box to select the column where you

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 154

keyword need to apply the filter.

18.3 Data Transfer Fields

TAG A/
TAG B

Names of the pair of tags to be mapped in order to be exchanged through the HMI panel.

Direction A->B and B->A: Unidirectional transfers, values are always received by one tag and sent by the
other tag in the specified direction.

A<->B: Bidirectional transfer, values are transferred to and from both tags.

Update
Method

OnTrigger: Data transfer occurs when the value of the tag set as the trigger changes above or
below the values set as boundaries of a tolerance range. Limits are recalculated on the previous
tag value, the same that triggered the update.

NOTE this method applies only to unidirectional transfers (A->B or B->A).

OnUpdate: Data transfer occurs whenever the value of the source tag changes.

NOTE this method applies both to unidirectional and to bidirectional transfers (A->B, B->A and

A<->B).

NOTE The runtime monitor source tags (the trigger tag when using OnTrigger or tags to transfer

when using OnUpdate) for changes in a cyclic way based on Tag Editor “Rate” parameter. So, if
rate of source Tag is 500ms (default) system check for updates every 500ms. All changes on
source tag < “rate” time are ignored.

on
Startup

When checked, execute data transfer on startup if quality of source tag is GOOD.

NOTE Data transfers executed on Startup could have major impact on hmi boot time. Avoid to

use it where not really needed.

Trigger,
High
limit,
Low limit

Tag values that trigger the data transfer process. When this tag changes its value outside the
boundaries set as High limit and Low limit, data transfer is started. The range of tolerance is
recalculated according to the specified limits on the tag value which triggered the previous
update. No action is taken if the change falls within the set limits.
This mechanism allows triggering data transfers only when there are significant variations of the
reference values.

NOTE if both Low limit and High limit are set to "0", data transfer is triggered as soon as there

is a change in the value of the trigger tag.

NOTE Low limit is less or equal to zero.

 Below an example where:
 High limit=1,9
 Low limit=- 0,9
 • = points where the data transfer is triggered

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 155

Figure 171

18.4 Exporting Data to .csv Files

Configuration information for data transfers exported to a .csv file. Example is shown in figure below.

Figure 172

Columns A through G contain the same data as in the Data Transfer editor. Some additional columns are
present.

Column H Unique identifier automatically associated by the Data Transfer to each line.
When you edit the .csv file and you add one extra line, make sure you enter a unique
identifier in this column.

Columns I-J reserved for future use.

18.5 Data Transfer Limitations and Recommendations

Correct definition of data transfer rules is critical for the good performance of the HMI panels.

To guarantee reliability of operation and performance keep in mind the following rules:
• The OnTrigger method allows only unidirectional transfers, (A->B or B->A)
• The OnUpdate method allows changing the values in accordance with the direction settings only

when the source value changes.

• PB610 Panel Builder 600 is not a supervisory system. Its performance depends on:

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 156

• number of data transfers defined in the Data Transfer editor

• number of data transfers eventually occurring at the same time
• frequency of the changes of the plc’s variables that are monitored

• Number and size of features used in the project (i.e. tags, Alarms, TrendsU). Always test
performance of operation during project development.

• If inappropriately set, data transfer tasks can lead to conditions where the tags involved
create loops. Identify and avoid such conditions.

• Using the “OnUpdate” mode of the Data Transfer you force the system to continuously read all the

defined source tags to check if there are changes that need to be transferred. Consider to reduce
the update rate of the source tags that need to be checked. The default value of the update rate of
each tag is 500 mSec and can be modified from the tag editor using the advanced view. To use two
different rates for data transfer & Pages, tags can be defined two times in tag editor, one for pages
and another for data transfers.

• Data Transfer configured using the OnTrigger mode is preferred over the OnUpdate mode because
you have the possibility to force the Data Transfer based on your needs. You can use the scheduler
to calibrate the update rate based on the performance of your entire application. Also using
OnTrigger system is monitoring just trigger tag and not all tags to transfer.

• Using tags of type array allows server engine to optimize data transfer and reduce workload.

• Too many Data Transfers can introduce side effects on page change time and on boot time.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 157

19 Offline Node Management

When one of the devices communicating with the HMI panel goes offline, this may reduce the overall
communication performance of the system.

The offline node management feature recognizes offline devices and removes them from communication
until they come back online.

Additionally if you know that any of the devices included in the installation is going to be offline for a certain
time, you can manually disable it to maximize system performance.

NOTE This feature is not supported by all communication protocols. Check protocol documentation to know

if it is supported or not.

19.1 Offline Node Management Process

Steps of the process are:

• A certain device is online and it is regularly polled by the system: if the device does not answer to a
poll, the system polls it again twice before declaring the device offline.

• When a device is offline, the system polls the device with a longer interval, called Offline Retry Time
(ORT). If the device answers to the poll, the system declares it online and starts polling it at regular
intervals.

The following schema shows the three polling attempts and the recovery procedure that starts when the
Offline Retry Time is elapsed:

Figure 173

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 158

19.2 Manual Offline Node Management Process

Offline Node Management can be done manually.
• a specific device on a Node ID is online and it is regularly polled by the system

• Using a macro action connected to a button the user can declare the device offline: the system stops
polling it.

• Another macro action can be used to declare the device online: the system restarts polling it at
regular intervals.

19.3 Manual Offline Configuration

When you know that some devices in communication with the HMI are going to remain offline for a certain
period of time, you can exclude them from data polling using the Enable node macro action.
For example, you can customize your page to contain a button and associate it to an action that will allow
you to exclude and/or include a specific device node as needed.

The following example explains how to create a button that, when pressed, will disable an associated device.
To do this:

1. In a page of your project add a button.
2. Associate an event to the button (for example OnMouseRelease)

Figure 174

3. Click on the event row, click the '+' button and select Add action
4. Add the Tag Action EnableNode to the event (Tag Action -> EnableNode).

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 159

5. Make sure that the Enable field is set to “false”.

Figure 175

6. Enter the correct Protocol and Device ID and click Ok.

Figure 176

7. The event set is shown in the row. The associated device is indefinitely disabled and therefore no
longer polled for data collection.

In the situation described above, you may want to create another button to re-enable the device when
needed, in this case the Enable field will have to be set to “true”.

WARNING: all disabled device nodes will remain disabled if the same project is downloaded on the panel,
on the other hand, if a different project is downloaded, all disabled devices will be re-enabled. The same
happens on package update.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 160

Tip: to make this feature more dynamic, you may decide not to indicate a specific NodeID but attach it to the
value of a tag or to an internal variable created to identify different devices that might be installed in your
network.

NOTE when using the action Enable Node described above to force a device node back online, data

polling will start immediately.

19.4 Automatic Offline NodeDetection

HMI panels can automatically disregard connected devices which are found to be offline.
When a device is found offline the first time, it is polled twice before being disregarded.
When it is declared offline it is polled at different intervals that can be set by the user.

To set the offline polling on one node ID:
1. Click the Config node and click Protocols.

2. Select the desired node ID.
3. Click on the Show Advanced Properties button: more columns are added to the table.
4. In the table set the Offline Retry Time parameter: the device on this node ID will be polled with this

frequency when offline.

Figure 177

19.5 Offline Management Toolbar buttons

 Advanced properties It shows/hides the advanced properties columns.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 161

19.6 Offline Management Fields

PLC Protocol type and name.

Configuration Protocol settings.

Tag dictionary Tags imported for the protocol

Enable Offline
Algorithm

 Enable the Offline Management for the protocol

Offline Retry Time Interval, expressed in seconds, between when the node was disregarded and when
the recovery procedure started. Max value for ORT is 86400sec (24h).

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 162

20 Multi-Language

A true Multi-language feature has been implemented in PB610 Panel Builder 600 through code pages
support from the Microsoft Windows systems. The Multi-language feature handles different code pages for
the different languages. A code page (or a script file) is a collection of letter shapes used inside each
language.

The Multi-language feature can be used for a project by defining languages and character sets. PB610 Panel
Builder 600 also extends the TrueType Fonts (in short TTF) provided by Windows systems to provide
different font faces associated with different character sets.

PB610 Panel Builder 600 has features that allow users to provide strings for each of the languages.
When in edit mode, PB610 Panel Builder 600 provides support to change the display language from a
language combo box. This helps users see the page look and feel at design time.

NOTE In Windows XP operating systems, for the proper operation of the Multi-language editor in the

Studio, you will need to install the support for complex script and East Asian languages as shown in the
figure below.

Figure 178

PB610 Panel Builder 600 is actually supporting a restricted set of fonts for the Chinese languages.

For Simplified Chinese, following fonts are supported:

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 163

Fangsong simfang.ttf

Arial Unicode MS ARIALUNI.TTF

Kaiti simkai.ttf

Microsoft Yahei msyh.ttf

NSImsun simsun.ttc

SimHei simhei.ttf

Simsun simsun.ttc

For the Traditional Chinese, following fonts are supported:

DFKai-SB kaiu.ttf

Microsoft Sheng Hai msjh.ttf

Arial Unicode MS ARIALUNI.TTF

MingLiU mingliu.ttc

PMingLiU mingliu.ttc

MingLiU_HKSCS mingliu.ttc

20.1 Add a Language to Project

To add a language to a project, launch Multi-language from the Project View pane. Click the “Add" button to
add the language, then select the Writing system and the Default Font used by all the “table like" widgets
(such as alarms or events). Use the “Default" button to set the default language used when the Runtime
starts Multi-language.

Figure 179

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 164

20.1.1 Language Display Combo

This combo can be used to change language at the design phase. This helps users to view the page in the
different supported languages at design time itself.

Figure 180

20.2 Multi-Language Widget

Multi-language support is available for different objects, like push buttons, static text, message, alarm
description and pop-up messages.

20.2.1 Multi-Language for Static Text Widget

When you double click a text widget on the page, the dialog shown below will open. Here, you can edit the
text for the selected language and select the font.
The bold, italic and color properties are set for all the languages globally for the widget. Text for each of the
languages can be given, by selecting the language from the combo box. However, it is recommended that
you use the export and import features, as described in the chapter “Export and Import of Multilanguage
Strings”.

Figure 181

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 165

20.2.2 Multi-Language for Message Widget

PB610 Panel Builder 600 allows you to use Multi-language in the message widget. After you drag and drop a
message widget, select the language from the Language combo box and enter the message description for
the selected language. . Again, you can also use the export and import features, as described in the chapter”
Export and Import of Multilanguage Strings”.

Figure 182

20.2.3 Multi-Language for Alarm Messages

PB610 Panel Builder 600 allows you to use Multi-language for Alarm messages.
To add a Multi-language string for an Alarm message, open the alarm editor, select the language list from
the tool bar (Language combo) and add the alarm messages. You can also use the export and import
features, as described in the chapter “Export and Import of Multilanguage Strings”.

Figure 183

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 166

20.2.4 Multi-Language for Pop-up Messages

For the popup message macro, you can define the Multi-languages. To do this, you first need to select the
language from language list combo, and then enter the message in the Show Message macro (as shown in
the figure below).

Figure 184

20.3 Export and Import of Multi-language Strings

The easiest way to translate a project into multiple languages is to use the Export feature, exporting all text
to a file. The translation can be done in that document, then using the Import feature, brings all text for all
languages back into the project.
The Multi-language strings will be exported in CSV file format, then you can modify the strings with an
external editor, and import it back to the PB610 Panel Builder 600.
The CSV file exported by PB610 Panel Builder 600 is coded in Unicode. To edit it, you need a specific tool
that supports CSV files encoded in Unicode format.
To export the Multi-language strings, open the Multi-language editor and switch to Text view. Then, click the
Export button and save the CSV file. You can then modify the exported CSV file and Import back to PB610
Panel Builder 600. Click the Save button to save the text.

NOTE It is recommended that you set all languages that will be used in the project before exporting the file.

This will guarantee that the exported file will contain all columns and language definitions for that project.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 167

Figure 185

The strings are imported matching the widget ID and the page number of each widget.
To change the separator used in the exported file, please have the regional settings of your work PC
changed. Upon importing, the separator information is retrieved from the file; if not found, the default
character "," is used. Immediately after the Import, the modified strings will be displayed in the text tab. Once
the user hits the button to "Save" the changes, the changes are saved to the internal widgets.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 168

Figure 186

The feature Import supports two formats (Figure 187):

• Comma Separated Values (.csv)

• Unicode Text (.txt)

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 169

Figure 187

The Unicode Text file format must be used every time you import a file modified by Microsoft® Excel®. You
can save your Excel® sheet in this format choosing File > Save As@ and choose the option Unicode Text
(*.txt) from the Save as type: combo.

20.4 Change Languages at Runtime

After the project download, Runtime will start using the Default Language. However, you can change the
language on Runtime using the “SetLanguage" macro.

LangID is the language index corresponding to the language ID, as it can be read from the Language
Configuration Editor.

NOTE After languages are changed at runtime with the macro execution, the current language is saved and

retained for the next run.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 170

20.5 Limitations in UNICODE support

PB610 Panel Builder 600 has been designed for working with UNICODE text. However, for compatibility
reasons with all platforms, UNICODE is supported only in a subset of field types.

Area Field Charset Accepted Reserved Chars/Strings

Protocol Editor Alias ASCII [32..126] (space) , ; : . < * >'

Tag Editor Name ASCII [32..126] . \ / * ? : > < | " & # %;=

 Group ASCII [32..126] <New> \ / * ? : > < | " & # % ;

 Comment Unicode

Trends Name ASCII [32..126] \ / * ? : > < | " & # % ;

Printing Reports Name ASCII [32..126] \ / * ? : > < | " & # % ;

Alarms Name ASCII [36..126] \ / * ? : > < | " & # % ;

 Description Unicode [] - for live tags, \ escape seq
for [and \

Events Buffer Name ASCII [32..126] \ / * ? : > < | " & # % ;

Scheduler Name ASCII [32..126] \ / * ? : > < | " & # % ;

Languages Language Name ASCII [32..126] \ / * ? : > < | " & # % ;

 Texts in widgets Unicode

 Texts from import
files

Unicode

User Group Group Name a-z A-Z _ admin,guest,unauthorized

 Comments Unicode

User Name ASCII [32..126] \ / * ? : > < | " & # % ;

 Password Unicode

 Comment Unicode

Recipes Name ASCII [32..126] \ / * ? : > < | " & # % ; !
$'()+,=@[]{}~`

 Set Name ASCII [32..126] \ / * ? : > < | " & # % ; !
$'()+,=@[]{}~`

 Element name ASCII [32..126] \ / * ? : > < | " & # % ; !
$'()+,=@[]{}~`

General Project Name A-Z,a-z,0-9,-,_ “PUBLIC”, “readme”,
“index.html”

 Page Name A-Z,a-z,0-9,-,_

 Dialog Page Name A-Z,a-z,0-9,-,_

 Template Page
Name

A-Z,a-z,0-9,-,_

 Keypad Name A-Z,a-z,0-9,-,_

 Files
(Images/Video/etc..)

A-Z,a-z,0-9,-,_

 Widgets ID A-Z,a-z,0-9,-,_

Runtime PLC Communication UTF-8, Latin1, UCS-
2BE, UCS-2LE, UTF-
16BE, UTF-16LE

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 171

21 Scheduler

PB610 Panel Builder 600 provides a scheduler engine that can be easily configured to program the
execution of specific actions at repeated intervals, or on a time basis.

Depending on your application, creating a schedule is typically performed with a 2-step process:

1. The first step is to define the parameters of the schedule to run on the panel. This includes selecting
the actions to perform when the scheduled event is activated. The first step is performed using the
Scheduler Editor.

2. The second step is to create a Runtime user interface that allows the end-user to change settings
per each defined scheduler. For example, the Runtime user interface will allow the user to turn on a
device at 5:00 pm, and turn the device off at 10:00 pm, every day. This can be done by dragging and
dropping a predefined Scheduler widget, from the Gallery, and placing it on the page. Once on the
page, you can set the properties of the individual GUI elements to create the desired interface to be
presented to the end-user.

21.1 Configuring the Scheduler Engine

The configuration of the Scheduler Engine is done using the Scheduler Editor. The Scheduler Editor is
accessible from the ProjectView pane (as shown in the figure below).

Figure 188

Click on the “+" symbol to add a schedule item. Schedule items can be of two different types as listed below
and shown in the figure below:

• Recurring Scheduler
• HighResolution Scheduler

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 172

Figure 189

Name
Allows you to define the name of the Scheduler.

Type
Allows you to select the type of Scheduler.

Schedule
Allows you to select different Scheduler options, which are described in chapters Recurrence Scheduler and
Type.

Action
Allows you to define macros, which have to be executed at the scheduled time.

Priority
Allows you to set a priority level for the event. This is used in case two distinct schedules occur at the same
time. The event with the higher priority will be executed before those of lower priority.

21.2 HighResolution

The HighResolution scheduler can be programmed to perform an action, or sequence of actions, repeatedly,
at a specific duration. The High Resolution scheduler can be set in milliseconds. To configure the
HighResolution scheduler, select “HighResolution" from the Type column and set the desired duration from
the schedule column.

Figure 190

NOTE The HighResolution scheduler cannot be changed during Runtime. If the user needs to change the

schedule Runtime, then the Recurrence scheduler should be used by selecting “Every", which is described in
the following chapters. The minimum time resolution, when using a Recurrence scheduler in “Every" mode,
is one second.

21.3 Recurrence Scheduler

The Recurrence Schedulers can be programmed to perform an action, or sequence of actions, and the
schedule can be modified during Runtime.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 173

Figure 191

By default, when a schedule is added, the “Enable schedule” checkbox is marked. You have the option to
keep a schedule in the project but disable it by unchecking the box.

Each Scheduler can be configured to run once at Startup (when the “On Startup” check-box in marked).
Additionally, you can specify the scheduler to be enabled only at the first start up run by using the “Execute
only at startup” check box.

Type
The Type combo allows you to select the type of Schedulers (as shown in the figure below). However, you
can change the type of scheduler at any time during the Runtime, as described in the chapter: Schedule the
Events during Run-time.

Options available for Type are the following:

By Date By Date scheduler allows you to define the schedule for the specific date

and time when the actions shall be executed.

Daily Daily schedules define the execution of a set of actions on a daily basis
by specifying the time of day in which the actions are to be executed.

Every The Every Scheduler is much like the High Resolution scheduler, with
the ability to change it in Runtime. The “Every" Scheduler allows you to
execute macros with a specific time interval. The time interval can be set
from 1 sec to 1 day.

Hourly The Hourly Schedules allow you to execute a set of actions on an Hourly
basis, by specifying the minute in which the actions have to be executed.

Monthly The Monthly Schedules allow you to execute a set of actions on a
Monthly basis, by specifying the day in which the actions have to be
executed.

Weekly Weekly schedules allow you to execute a set of actions on a Weekly
basis by specifying the time and day(s) in which the actions have to be
executed.

Yearly The Yearly schedule allows you to execute a set of actions once a year,
specifying the date and time in which the actions have to be executed.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 174

Mode
Mode parameter is available for a subset of scheduler types. It is not supported by scheduler of type Every,
Hourly. This parameter allows choosing between following way of working:

Time This is the default. In this case is needed to specify details about

time/date/week. Parameters depend on Type of scheduler selected.

Random10 Executed 10 minutes before/later the time specified. So, if time is 10:30,
actions is executed in range 10:20...10:40 where 20...40 is random.

Random20 Executed 20 minutes before/later the time specified. So, if time is 10:30,
actions is executed in range 10:10...10:50 where 10...50 is random.

Sunrise+ Executed n minutes/hours after sunrise time based on a specific location
as explain in next chapter.

Sunrise- Execute n minutes/hours before sunrise time based on a specific
location as explain in next chapter.

Sunset+ Executed n minutes/hours after sunset time based on a specific location
as explain in next chapter.

Sunset- Execute n minutes/hours before sunset time based on a specific location
as explain in next chapter.

21.4 Configuring Location in PB610 Panel Builder 600

In PB610 Panel Builder 600 there is a unique scheduler feature based on sunrise and sunset. Before you
start the sunrise or sunset scheduler, you need to define the location. Based on the UTC location, the
system automatically calculates the sunrise and sunset time.

In the installation, only a few locations are set by default. If your location does not show up in the list, you
can add your location by entering the latitude, longitude and UTC information in the “Target_Location.xml"
file located in the PB610 Panel Builder 600\studio\config folder.

For example, the information for the city of Verona is shown below:

 After entering the location information, the software displays the city name in the Location combo list, and
you can see the sunrise and sunset time on the dialog (as in the figure below).

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 175

Figure 192

Condition
The Condition combo allows you to select a Boolean Tag (Yes/No) to be evaluated, before activating the
specified actions, at the moment the timer is triggered. If Tag = True, actions will be executed, and if Tag =
False, the actions will not be executed.
By default, there is “none" => the actions are executed when the timer is triggered.

NOTE The condition combo will list only the Tag attached to the Boolean data type.

Actions
From the Action List dialog, you can add as many Actions as desired. The Actions will automatically be
executed when the Schedule time occurs.

Figure 193

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 176

NOTE The Actions should be programmed in the Studio. Actions cannot be modified at Runtime, all other

scheduler parameters can be modified in Runtime (such as, type, mode, location, etc.)

21.5 Configuring the Schedule Interface for Runtime Interaction

The User Interface for Runtime is the Widget called Scheduler. To add this to the project, just drag and drop
it from the advanced section of the Widget Gallery. Once the object is on the page, in order to select the
Scheduler items to be displayed in the Widget, click on the + button of the “Name" property that is part of the
Scheduler object. A Dialog page will open (as shown in the figure below) where you can add the schedule
from the list at Runtime.

Figure 194

In the Properties pane, you can customize the scheduler Widget to adjust row colors, column width, and
show or hide column, etc.

21.6 Schedule the Events during Runtime

If you defined the scheduler GUI on a page (as described in the chapter “Configuring the Schedule Interface
for Run-time Interaction”), then you can schedule the event, and modify this schedule, during Runtime on the
server.

In Runtime, the user has the flexibility to change all possible types and change the possibility to modes as
described in the dedicated chapter.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 177

Figure 195

Occurrence
The Occurrence column specifies the date selected by the type of column, as shown in the figure.

Condition
The Condition column lists the available Boolean Tags from the project. If a Tag is selected as a condition,
then the scheduler will trigger only when the condition Tag value is 1, otherwise the scheduler will not trigger.

Enable
The Enable check box allows you to enable or disable the schedule. The scheduler will trigger when the
enable check box is set. If you want to disable the scheduler temporarily, then uncheck the Enable check
box.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 178

22 User Management and Passwords

This chapter describes the user management system. The main purpose of User management module is to
restrict access to various objects/widgets and/or operations, by configuring user groups and their
authorization level. Users, user groups and authorizations are the 3 entities defined for user management
handling.

The basic entity is the user, representing an individual that has the need to work with the system.
Each user must be a member of a group. Users can be a member of just one group. Each group will have
different types of authorizations and permissions assigned to them.

Authorizations and permissions for the groups are divided in two basic categories:

• Widget permissions: hide, read only, full access
• Action’ permissions: allowed or not allowed.

The proper combination of these groups and permissions will implement the required level of security options
for the application.

Figure 196

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 179

22.1 Configuring Security Options

The section describes how to configure security settings in the PB610 Panel Builder 600.

NOTE To enable/disable the user management feature, right click on the “Security" folder in the Project

View and set Enable or Disable. See the following figure as a reference.

Figure 197

22.2 Configuring Groups and Authorizations

Open UserGroups to configure in the ProjectView.

Figure 198

New User groups can be added by clicking the “+” Button.
Three predefined groups are available by default, these groups cannot be deleted and their names cannot
be changed.
Predefined group authorizations and comment fields can instead be changed according to the application’s
requirements.
For each group of users you can assign a Home Page. This means that, whenever a user from this User
Group is logging in, the selected Home Page for that group will appear.
There is one additional option called ‘Use Last Visited Page’. If enabled, and a user logs in, the page visited
by the previous user will be displayed.

22.3 Modifying the Access Permission of Groups

To modify and assign the permissions, click the browse button on the Authorization Setting column.
The Admin Authorizations dialog will open, giving you access to tabs for the different available options.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 180

22.3.1 Widget Permissions

The following figure shows the dialog where you can change the widgets permissions.

Figure 199

For the widget, the possible options are:

• Full-Access,
• Read-Only

• Hide

When you click on “Base settings” the right part of the dialog shows the permissions that will be valid as
default and at the project level.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 181

Figure 200

The widgets’ security settings can be changed, not only globally, but also for each single widget defined
within the project; all the widgets can be reached from the tree structure on the left part of the widget tab.

Permissions can be given at three levels:

• Project level
• Page level
• Widget level

In the tree structure the permission for a page can be set as

• Full Access
• Hide
• Read Only

All the widgets on this page will take the settings that have been assigned to the page with a type of
hierarchy logic.
Suppose the page permission is set as ‘Read Only’, then all the widgets in the page will have the permission
as “Read Only”. On selecting a widget inside the page from the tree structure, you can see that the
permission is given as “Use Base Settings”. This means that it takes the permission given to the page (Read
Only).

The widget permission takes the priority as follows:

• Low priority Basic settings (widget settings in general for the project)

• Medium priority Page settings (settings for all the widgets on a particular page)
• High priority Widget settings (individual widgets or its group/parent widget permission of

any page).

For example, suppose a widget is set at “Read Only” permission at project Level and it is given “Full Access”
at page Level then the page Level Settings will be taken.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 182

Later in the chapter, we explain how to modify permissions for a specific widget directly from the page view
(rather than locating the widget from the tree view shown in the authorization dialog).

22.3.2 Action Permissions

Figure 201

With this dialog, it is possible to assign the authorizations for the actions with respect to a project. The
access is either Allowed or Not Allowed.
As for the widgets, the authorizations can be assigned globally, but also for each single page, and the widget
programmed into the project.
Later in the chapter, we will explain how to modify permissions for a specific action directly from the page
view (rather than locating the action from the tree view shown in the authorization dialog).

22.3.3 FTP Authorizations

For each group of users you can set specific authorizations related to the use of the FTP server.

FTP permissions can be enabled or disabled. If enabled, you can specify from the "Permissions" combo box
the access level selecting between All, Write, Read, Browse, and None.
The IP Address list access allows you to specify from which IP an incoming FTP connection should be
accepted.

NOTE IP access list configuration is common to all groups.

22.3.4 HTTP Authorizations

The HTTP authorization dialog allows to configure restrictions related to http access to the web server
integrated into the runtime. HTTP settings are common to all groups and are valid just if security flag is
enabled.

IP list can be used to list allowed ip addresses. Default is Allow all. Only IP listed in IP list will be authorized
to access to http server embedded into the runtime.

Access limits is used to allow or restrict access to particular files and folders into the workspace. Based on
Force Remote Login flag default workspace access change and as conseguence using Access limits is
possible to open or close access to specific resources.

Force Remote Login Default Access to
workspace

Access limits

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 183

- FULL -

Disable FULL Can be used to block
access to some
files/folders or to require
auth for it

Enable No Access Can be used to open
access to files/folders

Figure 202

Set default access limits icon on the left of “+ - “ can be used to restore default configuration removing
user customizations. Default is allow following public resources:

• PUBLIC folder and Index.html, that contain web console and public resources

• ActiveX files (hmiclientax.html, hmiax.cab)

22.3.5 Miscellaneous

The Miscellaneous tab contains different settings related to several options as indicated in the following
picture.

Please note that as indicated in the picture, some settings are related to the group, but some settings are
global to all groups.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 184

Figure 203

Can enter config
mode

Allow users of group to move runtime to configuration mode (for
maintenance usually).

Can manage other
users

Allow users of group to manage other users like a superuser at runtime.
A user with this permission can add new users, remove users or change
user permissions.

Can load factory
settings

Users setting can be changed at runtime by authorized users and are
saved into internal storage usually. A user with this authorization can
execute a macro to clear these dynamic files and restore user
management setting as was at beginning after first project download.

Can zoom Allow user to zoom in/out using context menu at runtime

Can see log Allow user to see logs at runtime

Can create backup Allow user to backup project.

Number of users
allowed to login

Max number of users that can be connected to runtime in the same time.
Default is 3.

22.3.6 Access Priority

If the Access control is applied to a Widget, page and or even the Global Access, then the top priority goes
to the Widget access.

• Top Priority Control from Widget
• Medium Priority Page Access or its Parent Access

• Low Priority Global Access

This means that “exceptions" configured for an action or a Widget, directly from the page view, has priority
over the base settings.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 185

22.4 Configuring Users

To configure users double click on Users from the Project View, and then click on the + sign to add a new
user. A user named admin is already present by default and this user cannot be deleted.

Figure 204

Name User Name

Default User Identifies the user which is automatically logged-in by the system when
starting, re-starting or after a logout; only one default user is allowed.

Group Groups of the user. Groups are used to assign authorizations to users.

Password Password for the user

Change Initial
Password

If True, the user is forced to change his password on first logon

Comments Comments for the user

Logoff time (In
Min)

The user will be automatically logged off after the specified time with no
actions on the panel. After Log off, the Runtime goes to the default user.

Minimum Length The minimum length of the password. It should be equal or greater than
the set value.

Must Contain
Special Characters

If True, the password should contain at least one special character

Must Contain
Numbers

If True, the password should contain at least one numeric digit.

22.5 Default User

You can program a Default User for a project. When the system starts or reboots, the Runtime is logged in
with the default user. All the privilege settings of the default user will be activated in the system. If you want
to log in as a different user in Runtime, you can use either the Switch User macro or the Log Off macro.

The default user will automatically get logged in if any user (other than default user) logs off.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 186

22.6 Assigning Widget Permissions from Page View

You can assign different levels of security, to different user groups, on a single widget, directly from the
project pages.
Select the widget, then right click and select security settings from the context menu. Next, choose the group
and assign the security properties to access the widget (as shown in the figure).

Figure 205

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 187

Figure 206

22.7 Operation on Runtime

After starting the Runtime, if a default user is specified within the project, the system will provide automatic
login of that user without prompting for a user login. If no default user is configured, the system will ask for a
User name and Password, and based on the user, the Runtime will allow only the configured permissions for
that logged user.

There are specific actions for user logout, edit user, add user, remove user and switch user.
Users can be edited, added or removed on Runtime as explained in the chapter User Management Actions.

All the users’ information modified at Runtime is stored in a separate file, thereby preventing loss of the
users’ configurations in case of a new project download. To remove dynamic files and changes applied to
user’s configuration during runtime there’re two ways:

• Runtime side: DeleteUMDynamicFile action

• PB610 Panel Builder 600 side: Delete Dynamic Files flag available in download dialog.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 188

Figure 207

Figure 208

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 189

22.8 Force Remote Login

Starting from v1.9 of PB610 Panel Builder 600, a new flag is available to force user to LogIn when using
remote access (via Activex or HMI Client), this is working when user management is enabled. If Force
Remote Login is not enable remote access will use same level of protection of local access.

Force Remote Login is useful in particular when a default user is configured in runtime to automatically login
without having to enter a login and password at startup, but a remote access protection is required.

Figure 209

Force Remote Login, when enabled, blocks all access from the web to the workspace folder in runtime. The
only files/folders still accessible when this flag is enabled are by default:

• PUBLIC folder and Index.html, that contain web console and public resources
• ActiveX files (hmiclientax.html, hmiax.cab)

Please check Security -> UserGroups -> Authorization Settings -> HTTP tab for more details related to
HTTP access limits or chapter HTTP Authorizations.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 190

23 Audit Trails

PB610 Panel Builder 600 supports Audit Trail functionality which provides basic process tracking and user
identification linked to events with a time and date stamp. The logged users and events allow for a review
and/or report of your production processes.
The Audit Trail function provides flexible, tailor-made and easy-to-review event logs.

The Audit Trail (or audit log) is a chronological sequence of audit records, each containing information on the
actions executed and the user that did them.
The Audit Trail can be enabled with or without user management. So it can access and supervise all actions
from all users, and a normal user could not stop or change this.

23.1 Enable or Disable the Audit Trail

In the Project View pane, right click on the Audit Trail and click either enable or disable the Audit Trail
recording on Runtime. The padlock symbol in the tree informs you that, in the project, the Audit Trail is
enabled or disabled. When the Audit Trail is enabled, the padlock symbol is shown locked, otherwise, it stays
open.

Figure 210

23.2 Configure Audit Events

You can have more than one set of Audit Records. To add to the Audit files, you need to configure the
Events buffer.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 191

Double click the Events buffer from the project workspace. Next, add the events buffer and set the file size,
and then select the log type “Audit".
Here there is an option for selecting the storage where the dumped Audit files have to be stored.

Figure 211

The system provides a save to file on the disk every 5 minutes.

23.3 Configure Tags in the Audit Trail

For most cases, all the tags specified in the project do not necessarily need to be monitored. You can
customize the tags to be monitored by the Audit Trail.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 192

Figure 212

In the Audit Trail editor, all the Tags are available for selection. You can select only the Tags to be monitored
by the Audit Trail. For each selected Tag, the Audit Trail will record the write operation to that Tag, together
with the time stamp and user that executed the write operation.

23.4 Configure Alarms in the Audit Trail

You can specify the alarms to be monitored by the Audit Trail. Double click Audit Trail from the project
workspace and click on the Alarms tab. Select the alarms you want to be logged in the Audit Trail. The Audit
Trail for alarms will also record and acknowledge the operation done by the logged-in user.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 193

Figure 213

23.5 Configure Login or Logout Details in Audit Trail.

The Audit Trail can record information about user login and user logout events. These settings are available
in the Misc tab of the Audit Trail.

Figure 214

23.6 Viewing Audit Trails in Runtime

The Audit Trail data cannot be displayed in Runtime. It is only available in the exported data file.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 194

23.7 Exporting Audit Trail as CSV File

You can convert the audit data to a “.csv" file.
For a detailed description, look at the explanation provided for the DumpArchive macro action.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 195

24 Reports

A report is a collection of information that will be printed when triggered by an event.
The PB610 Panel Builder 600 programming software provides an editor to configure reports, their content,
the printer and the trigger conditions.
The report comes as a special collection of pages with header, footer and body, including options for cover
page. When configuring reports, PB610 Panel Builder 600 provides access to a dedicated widget gallery
featuring only the widgets available for reports.
When the programmed event is triggered, the report printout is started and the entire printing activity is
carried out in the background.

NOTE Printing of reports is not supported in remote (using for example HMI Client or ActiveX).

24.1 Adding a report

In the Project Workspace, double click on Reports to open the Editor. Then add the report by clicking the “+"
button.

Two types of reports are available:

• Text Report
• Graphic Report

Text Reports are used to configure line-by-line printing of alarms. Text Reports are designed to work with
line printers. Text is sent directly to printer’s port without using any special driver. Not all printers support this
operation mode. This printing mode only works in WinCE platforms and requires to use a physical port.

Graphic Reports contain graphical elements and may include complex widgets such as screenshots, or
alarms. A specific printer driver for each printer is required for printing graphic reports; the list of supported
drivers is in following chapters.

24.2 Text Report

To add a Text Report for line-by-line alarm printing click on the Text Report button in Reports toolbar.

The format of the report can be freely defined using the report editor; the paper size can be defined in
number of characters, while the available fields are listed in the box on the right side.

To include a field in the line to be printed, just drag and drop it from the list to the page layout.
The field can be resized using the mouse; the tooltip shows the dimension in “chars”.

In case the text cannot fit in the dedicated space, than the auto wrap is applied.

Printer options can be used to control flush of pages in printer. Depending on the printer, text can be printed
immediately or after a timeout (from few seconds to minutes). However, it is always possible to force flush
when one of following conditions happens: after n events, after n lines or after n seconds. A temporary buffer

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 196

is used by runtime software. Flush conditions are in OR, so, as soon as a condition is met, the page will be
flushed out of printer.

NOTE Not all printers support Text Report operation mode.

NOTE Text Reports only work in WinCE platforms and require to specify a physical port (PDF format is not

supported by Text Report.)

NOTE In line printing, text is printed immediately line-by-line or after a timeout. This timeout may depend

on printer model (could also take minutes for some models not designed for line printing).

24.3 Graphic Report

To add a Graphic Report, click on the Graphic Report button in Reports toolbar.

The following figure shows report configuration editor.

Figure 215

This part of the editor is used to set the number of pages and their order.
Use the icon with the “+” symbol to add a new page to the report layout.
When the mouse goes over a page already configured, two icons appear to allow reordering or deleting
pages.

Double click on a page to edit the page report content using the page editor.
Each page is divided in three sections: the header, the footer and the page body.
In the page editor the area under editing is shown in white, the others are grayed out.
To edit a different section, just double click over the grayed out area.

24.3.1 Page body

The page body is the central part of the page.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 197

The widget gallery accessible from the right side sliding tab is context-sensitive and includes only the
widgets available for the area under editing.

24.3.2 Header and Footer

Header and footer are respectively the top and bottom parts of the page.
The widget gallery accessible from the right side sliding tab is context-sensitive and includes only the
widgets available for the area under editing.

24.3.3 The Context Widget Gallery

The widget gallery which can be normally recalled from the right side sliding pane is always adapting itself to
the context.

The available widgets are:

Page Number Widget
Automatic page numbering

Screenshot Widget
Used to take a print screen of the current page HMI is showing. When you drag & drop the widget on the
page it will get automatically get the page dimensions of the HMI.

NOTE The system will print the full area of the screen. So, all dialogs opened will be printed as part of this

area.

Alarm widget
Used to print the entire contents of the event buffer (the Default buffer is Alarm Buffer1)

The “Text” category collects the typical widgets used to compose reports with labels and numeric fields.

24.3.4 Printer Configuration

A default printer can be configured from Printer Setting menu for all graphic reports. Each report can be
configured to use it or to use a different type of printer.

For PDF printer (supported only by Graphic Reports), you can to define the folder where files are saved by
using Printed Files Location.

24.3.5 Supported Printers

The table shows the list of print languages supported by Windows CE driver printCE.dll (driver in use in
Windows CE platform):

HP PCL 3, HP PCL
5e, HP PCL3GUI

printers compatible with HP PCL3/PCL5e/PCL3GUI, including models
many DeskJet, LaserJet, DesignJet

Epson ESC/P2 printers compatible with ESC/P2, LQ

Epson Stylus
Color

printers compatible with Epson Stylus Color

Epson LX (9-pin) 9-pin printers compatible with Epson LX, FX, PocketJet

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 198

Cannon iP100,
iP90, BubbleJet

printers compatible with BubbleJet, iP90, iP100

PocketJet II, 200, 3 printers compatible with Pocket Jet

MTE Mobile Pro
Spectrum

printers compatible with MTE Mobile Pro Spectrum

Adobe PDF File Adobe PDF file

SPT-8 printers compatible with SPT-8

M1POS printers compatible with M1POS

MP300 printers compatible with MP300

Zebra printers compatible with Zebra CPCL language.

Intermec PB42,
PB50, PB51, PB2,
PB3

printers compatible with Intermect PB42/50/51/2/3 with ESC/P language

Datamax Apex printers compatible with Datamax Apex

Supported ports:

• LPT1 (USB printers)

• File (PDF)

NOTE In Win32 platform, the only supported printers are PDF and Default. Default is used to indicate

default OS printer configured in target. Any printer (not only USB printers) can be used in Win32 platform.

24.3.6 Printer tested

Follow the list of printers tested with printCE drivers in WCE targets.

Driver Printer Model Graphic Line

Epson ESC/P 2 Epson AcuLaser M2310 Yes Simulate

Epson LX (9-pin) Epson LX-300+II No Yes

HP PCL 3 HP LaserJet P2015dm
HP LaserJet 4700dtn

Yes
Yes

Simulate
Yes

HP PCL 3 GUI HP Deskjet 1010
HP Deskjet D5560
HP LaserJet 4700dtn

Yes
Yes
No

No
No
Yes

HP PCL 5e HP LaserJet P2015dm
HP LaserJet 4700dtn

Yes Simulate

INTERMEC Intermec PB50 with ESC/P
language with 4 inch roll paper.

Yes Yes

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 199

Note:
HMI crash when trying to print on
Intermec PB50 printer in standby
mode after a first successful print.

PDF Yes No

24.4 Print Events

The configured reports can be triggered by specific events.
For Alarms, the configuration of the events can be done directly in the alarm editor from the Events dialog by
clicking on the Print tab as shown in figure.

Figure 216

Only one report can be set as Active alarm report in a project. An alarm report can be a Text Report or a
Graphic Report.

A Graphic report printing can be started also using the dedicated action call PrintGraphicReport.

The Silent option (true by default in action settings) allows, when set to false, a dialog to pop-up at runtime
asking the user to adjust printer settings as shown in figure.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 200

Figure 217

24.5 Minimum requirements

Report printing requires operating system (BSP) V1.54 or above for Windows CE devices.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 201

25 Screen saver

Screen saver can be used to show a slideshow when the HMI is not in use. Screen saver start when one of
following events does not happen for a certain time range (Timeout):

• Touch of display

• Mouse move

• External keyboard key pressed

Screen saver configuration is available in PB610 Panel Builder 600 in Config -> Screen Saver section.

Figure 218

To configure screen saver as slideshow, proceed as follow:

1. Right click on Screen Saver from the project tree and click Enable
2. Select Timeout value (number of seconds before screensaver start when there’s no user

interaction)
3. Select Slide Interval (the number of seconds before switch slide)
4. Select Storage Device used for reading images used by slide show (Internal Storage, USB or SD).

For internal storage (Local), it is possible to select and import images that later will be downloaded into the
device at project download. Images are downloaded into the folder workspace\projectname\screensaver.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 202

When an external storage is used, images are located in the folder screensaver available in USB or SD
devices.

The supported image formats are: JPEG/PNG.

When the screensaver starts/stops, it is possible to execute some actions (macros or JavaScript functions)
In Tab onStart actions can be configured to execute when the screensaver start, in Tab onStop actions will
execute when the screensaver stops.

The Screen saver is supported by WCE & Win32 runtime. Is possible to use screensaver also in HMI Client
& ActiveX clients.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 203

26 Backup/Restore

Backup/Restore of the HMI Runtime and project is available.
Backup operation is working as follow:

1. Automatically unload current project to unlock opened files in use
2. Archive in a .zip file (standard or encrypted) the content of qthmi folder that contain runtime, projects,

dynamic files like recipes / alarms / trends etc.
3. Reload project

Backup can be executed from the context menu in runtime -> Backup.

Figure 219

When Backup is called from the context menu, a dialog appears to guide the user in backup operation
selecting the path where to save the .zip file with backup.

Figure 220

Backup files can be saved in all available storages like USB, SD card, network folders etc.

NOTE Backup is available in WCE only platform. It is not supported in Win32 / HMI Client.

NOTE Backup ignores external files stored on USB and SD cards. So, if dynamic data like recipes, trends,

events are archived there the backup will ignore it.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 204

Backup package can be restored from a formatted HMI panel using Transfer from disk option in the BSP
Loader menu. Just select backup file and the system will automatically check the package to confirm its
compatibility with the current platform and install it.

Figure 221

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 205

27 Keypads

Keypads are used for data entry operations. Several keypads are provided in the Studio by default, including
Numeric, Alphabet, Alphabet Small and Up-Down, as shown in the following pictures:

Figure 222

Figure 223

Figure 224

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 206

27.1 Creating and Using Custom Keypads

Keypads can be created from scratch using the following procedure. Note that you can also change the
existing keypads.

From the Project View pane right-click on the Keypads folder. A context menu will be displayed, as shown in
the figure below:

Figure 225

Clicking on the Insert Keypad will generate a pop-up with the New Keypad dialog, as shown below.

Figure 226

The user can select any of the available keypads that are provided in the project template (the list shown on
the left side) to create a custom keypad. If you need to create a keypad from scratch, then select the “Blank"
option. This will insert a Blank Keypad, as shown below:

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 207

Figure 227.

You can use the widgets available from the Keypad Widgets gallery (as shown in the picture below) to
create the custom keypad.

Figure 228

A sample custom-created keypad is shown below. Newly created keypads will be saved in the project folder.

Figure 229

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 208

Once the custom keypad has been created, it may be used for any specific field where the Keyboard Type
property has been properly set, by selecting the corresponding keypad from the property Keypad Type in
the property pane as shown below.

Figure 230

The Up-Down keypad is mainly used for moving cursors in Widgets that are requiring this function. An
example is the “Control List" as shown in the following picture.

Figure 231

27.2 Deleting or Renaming Custom Keypads

In the Project View pane right-click on the keypad you need to delete or rename. A context menu will be
displayed as shown in the figure below.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 209

Figure 232

The user can choose the options:

• Remove KeyPad Page to remove the keypad from the project
• Rename Keypad Page to rename the keypad.

NOTE By default, any numeric widget (read/write numeric field) will be assigned the numeric keypad. If you

decide to modify the default numeric keypad that will be used throughout the project, the following procedure
is recommended, so you won’t need to assign that new keypad to all numeric entry widgets. First, create a
new keypad, using the numeric keypad as the keypad type and save it with a different name. This will be a
backup of the numeric keypad. Then open and modify the default numeric keypad, and save it with its
original name. The now modified numeric keypad will be assigned by default to all numeric fields in the
project.

27.3 Keypad Type

The Keypad Type is one of the parameters available in properties window of keypads. Use this parameter to
define what type of data entry is needed. Follow the list of options available:

Auto This is the default.

Decimal
Only numeric keys are accepted. Entering 10, the keypad return back
value 10 that will be display as 10 if the attached field is numeric or
ASCII, as A if the attached filed is hexadecimal.

Hexadecimal
Only hexadecimal keys are accepted. Entering 10, the keypad return
back value 16 that will be display as 16 if the attached field is numeric or
ASCII, as 10 if the attached field is hexadecimal.

Ascii
All keys are enabled. Entering 1A keypad return back value 1A that will
be display as 1 if the attached field is numeric, as 1A if the attached field
is ASCII or as 1A if the attached field is hexadecimal.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 210

Figure 233

27.4 Keypad Position

Runtime Positioning property of keypads can be used in PB610 Panel Builder 600 to define where keypads
will appear in the screen. The following options are available:

- Automatic: runtime will show keypads in the best position based on widget position where data
entry is required.

- Absolute: user can define screen x,y position of keypad (in pixel).
- Left-top | Left-center | Left-bottom | Center-top | Center-center | Center-bottom | Right-top |

Right-center | Right-bottom: predefined screen positions.

As default keypads can be moved using dragging. Use Lock keypad position to disable it if required.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 211

28 External keyboards

Runtime has been designed to work with external keyboards connected via USB.

Keyboards can be used for:

• Data Entry (default)
• Actions map on specific keys

You can map for example the “right arrow” key event "OnClick" to the LoadPage action.

You can configure your keyboard at project level so that the setting you create will be inherited by all the
pages. In each page you can then choose which key setting will be inherited from the project and which one
you will customize for the specific page.

The Keyboard Editor can be opened using the tab Keyboard at the bottom of the project or page workspace.

Figure 234

Each row in the Keyboard Editor corresponds to a Key. For each key, the following information is available:

Item Description

Label The name of the key

Code The code of the key

Enable The individual enable status of the key

Inherits project actions
Defines whether the key is inheriting the action programmed at the
project level

The table shows the possible configurations:

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 212

Enable
Inherits project
actions

Editor appearance Runtime behavior

Checked Unchecked
Action lists show the page
actions (or nothing if the list
is empty)

Only the page actions (if
any) will be executed.

Checked Checked
Action lists show the project
actions only and cannot be
edited

Only the configured project
actions (if any) will be
executed.

Unchecked Checked

Inherits project actions
checkbox and all action lists
are disabled. Action lists
show the project actions
only.

No page or project action
will be executed.

Unchecked Unchecked

Inherits project actions
checkbox and all action lists
are disabled. Action lists
show the project actions
only.

No page or project action
will be executed.

28.1 Search and Filter

After selecting Filter by to key name, you can start typing the name of the Key in the box at the left of the
toolbar and the Keyboard Editor will list only the keys whose Label contains the text you have entered.

Figure 235

Alternatively, if Filter by has been set to key code only the Keys contains the text in their Code column will
appear in the list.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 213

Figure 236

28.2 Shows

You can easily select what keys will be listed in the Keyboard Editor window.

Code Description

All Keys The editor will show all keys available in the keyboard layout

Modified Keys
The editor will show only keys that have been configured with some
actions at the page level

Modified Keys in project
The editor will show only keys that have been configured with actions at
the project level

28.3 Clear Actions

The Clear Actions button is available to delete actions configured for one or more keys in the Keyboard
Editor. To Clear Actions, select one or more keys and then press the Clear Actions button.
You will clear all actions configured for the selected keys either in the page or in the project. Actions will be
removed depending on what you are currently configuring, either the project actions in the project view or the
page actions in the page view. A confirmation dialog will appear to request confirmation of the requested
command.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 214

Figure 237

28.4 Keyboard Layout

The Keyboard Layout combo box allows the user to select the layout of the keyboard.
Generic Keyboard corresponds to a generic International Keyboard layout.

28.5 Enable Keyboard

You can enable/disable keyboard actions both at the project level and at the page level. A dedicated
property is available in the project property sheet and in the page property sheet.

Figure 238

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 215

The Keyboard can also be disabled at runtime by using a dedicated macro command KeyboardMacros.

28.6 Configure Macro Actions for Keys

To configure actions for keys in the Keyboard Editor just click on + on the key you want to program and you
will obtains the expanded view for key configuration.

Press the or buttons to add macro commands or Javascript functions to the key event you want to
configure.

Figure 239

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 216

29 Tag Cross Reference

The Tag Cross Reference displays listsa list of Tag Names used in currenta project. based on their location
and use..
Using the Tag Cross Reference in PB610 Panel Builder 600 it is possible to:

- Verify where each tag is used (alarms, pages, recipes, schedulers, trends etc)
- Identify invalid tag references (references to tags not existing / not defined in the tag editor)
- Identify tags not used in the project

NOTE The Tag Cross Reference does not search for tags and related references used in Javascript code.

29.1 Accessing Tag Cross Reference

The Tag Cross Reference can be accessed by selecting Tag Cross Reference from the left side toolbar of
PB610 Panel Builder 600. Once selected, a Tag Cross Reference window will open as shown below.

Figure 240

29.2 Using Tag Cross Reference

The Tag Cross Reference window provides the following:
- Group by: allows to choose if group tags informationsare grouped by Location (alarms, pages,

trends etc) or by Tag name
- Show: selects content to shown. Options available are All Reference (all tags), Invalid Tag

Reference (usually tags missing in tag editor) and Unused Tags (list of tags defined in Tag Editor
but not used in the project).

- Filter by/Search filter: allows applying a search filter to the selected content. Filter can be applied
to Location (ex. of locations are “Alarms”, “Pages”, “Recipe”), Tag (tag name) or Property (ex.
“value”, “fill”, “visibility”).

All data is results are organized in a tree that users can browse to search where the tags are used in the
project. Double click on resources inthe item inside the tree to open/select the resource in the project.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 217

29.3 Tag Cross Reference: data update

The Tag Cross Reference collects and organizes information in the background when the project is opened.

Usually dataBy default, the information inside the Tag Cross Reference pane areis not updated every time
something changed in the project. Using the reload button (available in Tag Cross Reference bottom toolbar)
the user can force an update/refresh of the data. The same reload button appears with a “!” when a refresh is
needed.

Figure 241

Users can choose to enable Auto Update by checking Tag Cross Reference -> Auto Update from the top
toolbar of PB610 Panel Builder 600 into View -> Properties dialog.

Figure 242

29.4 Export data in csv

Tag Cross Reference allows exporting all information collected in a csv format. The format of the csv file
depends on Group bythe current selection in the Tag Cross Reference and can be one of the following:

- by Location: RESOURCE, RESOURCE DESC, WIDGET-ID, ATTRIBUTE, TAG
- by Tag: TAG, RESOURCE, RESOURCE DESC, WIDGET-ID, ATTRIBUTE

NOTE Separators used in export operation depends on regional settings of PC.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 218

30 Indexed Addressing

Indexed addressing provides a simple way to select a set of tags to use depending on the value of another
tag.

Indexed addressing comes very handy in re-using the same graphics to visualize a set of data coming from
different homogenous sources, just by letting the user pick the machine to monitor from a list.

Graphic re-usage is also very important in achieving better overall performances.

30.1 Creating an Indexed Addressing Set

The following example introduces the common usage scenario of Indexed Addressing.

The sample system consists of a building with 4 rooms, and each room is equipped with Temperature,
Pressure, and Humidity sensors. All data can be laid out in a table form:

Room Number Temperature Pressure Humidity

1 Room1-Temperature Room1-Pressure Room1-Humidity

2 Room2-Temperature Room2-Pressure Room2-Humidity

3 Room3-Temperature Room3-Pressure Room3-Humidity

4 Room4-Temperature Room4-Pressure Room4-Humidity

Taking advantage of the Indexed Addressing feature, you can use the same table form to easily arrange
your data in the HMI.

All the three different sensors can now be visualized in a single page like the following, in which Room
number is used as a selector (combo box) to pick up the right set of tags.

Figure 243

In order to create the Indexed Tag Set of the previous example in PB610 Panel Builder 600.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 219

1) Define protocols and tags in Tag Editor. For each room and each sensor to visualize an appropriate tag is
required.

Figure 244

2) Create a tag RoomNumber to use as Index Tag, for selecting rooms. In this example could be of type
UnsignedInt using Variable protocol.
3) From ProjectView, double click on Config -> Tags -> Indexed Tag Set to open Indexed addressing
configuration page.
4) Click on “+ Add” button to create a new Indexed Tag Set.
5) Assign Indexed Tag Set name “Room”
6) Select tag to use as selector for rooms “RoomNumber”
7) Create 4 Index Instance (rooms), one for each room.
8) Create 3 Alias (variables) as table columns and rename it to “Temperature, Pressure & Humidity” using
double click on table columns
9) Double click on cells of table to select tags as shown below (or click F2 on cells for entering in edit mode)

Figure 245

NOTE Index Tag datatype can be a number, a string or any type of simple data types.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 220

30.1.1 Autofill tag names

The process of manually filling all required table entries can require a lot of effort and can be affected by
typing errors.

To speed it up, an autofill feature is available in the toolbar .
AutoFill only requires setting Index instances and Alias names, that are consistent with tag names. In our
example, the index column must be filled with room numbers 1...4 and columns names Temperature,
Pressure and Humidity.

AutoFill uses regular expression for populating the table with tags trying to match $(Instance) (room number)
and $(Alias) (sensor) inside tag names. For example Room$(Instance)-$(Alias) will match all tag names:
Room1-Temperature, Room1-Pressure, Room1-Humidity, Room2-Temperature, etc.

Regular expressions can be edited manually when needed, and, more conveniently, you can use the wizard
button to let the system guess a good filter expression for your application.

Fill button will fill in missing entries in the tag table using the set filter (if any). For example when new
instances or new aliases are added you can use this option to just fill in the new missing entries.
Replace button can be used to replace all table entries with the ones provided by the AutoFill table.
Reset button reset Tag filter to empty (no auto fill).

Filters are saved as project preferences and can be separately set for the entire table or for a column. Once
set for a column, the table filter is discarded in favour of the column one. So you can selectively change the
filter for handling a particular alias only.

30.2 Using Indexed Addressing mode in pages

Once defined an Indexed Tag Set, let see how to design the HMI page introduced in the previous example.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 221

Figure 246

To create this Indexed Tag Set page proceed as follow:

1) Create a page and add a Combo box widget, 3 labels and 3 numeric fields.
2) As Index of Combo box will be used the tag RoomNumber (Index Tag), so the selector of the room.
3) As List of Combo box will be used following.

Index String List

0 Room Number

1 Room 1

2 Room 2

3 Room 3

4 Room 4

4) Attach to each numeric field Value the corresponding Alias variable (Room -> Temperature, Room ->
Humidity, Room -> Pressure).

Figure 247

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 222

31 Special Widgets

31.1 Date Time Widget

The Date Time widget is a widget that can be used to view and edit the current time and date at Runtime.
The widget can be found in the Widget Gallery.

In the Property pane of the widget you can set the format of the date and time as “Date only”, “Time only”,
“Date and Time”. Different formats for representing date and time are available as shown in the figure below.

Figure 260

The Time Spec option allows selecting which time the widget has to show during Runtime; three options are
available for this property:

• Server

• Local
• Global

To understand the difference between the options available for the “Time Spec” property, you need to recall
the basic concepts behind the HMI system architecture. Please read the chapter “Runtime Modes” to
become familiar with the HMI software architecture first.

If you select “Server” as Time Spec, the widget will show the time information as handled by the server side
of the HMI system.
If you select Global as Time spec, it will show the Global Time (GMT).
If you select Local as Time Spec, it will show the Local Time in the Widget (the time of the target where the
project is running).

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 223

Figure 261

31.2 RSS Feed Widget

The RSS (Really Simple Syndication) Feed widget allows you to display on the screen your favorite RSS
feeds directly from the Internet.
The widget is available in the Widget Gallery. When placed on the page the widget looks as shown in the
figure below

Figure 262

The RSS Feed widget main properties are:

RSS Source
Allows you to specify the feed URL

UpdateRate
Allows you to specify the refresh time.

Properties are shown in the figure below.

NOTE Feeds sources are fixed and cannot be changed at runtime.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 224

Figure 263

NOTE The RSS Feed widget is specifically designed to work on units where the Internet Explorer browser

(Pocket Internet Explorer) is part of the operating system.

31.3 Control List Widget

Control List widget is a convenient way to represent the status associated with a particular process, but also
a way to control that process from the same widget.
The Control List widget is available in the Widget Gallery.

There are two types of control lists. One is a control list group, in which the up and down buttons are present
on the control list itself. The state can be selected with the up and down buttons. The other type of control list
has no pre-configured buttons in the group. In that case, the state can be selected by pressing on the
screen.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 225

Figure 264

31.3.1 State

States are added by selecting Add/Remove List Items from the List Data option in the property pane. Any
value can be assigned to a State; activating the State will result in a write operation to the Tag, which has
been linked to the Value property of the Control List Widget.

Figure 265

Figure 266

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 226

Figure 267

31.3.2 Selection

Selection shows which status is currently selected, and will appear as a highlight cursor moving up and down
(according to the use of the defined keys). The Selection property can be attached, as well, to a Tag.
The small triangle on the left side of the list tells you what the current status is.

There are two write modes for the control list: Write on Select and Write on Enter.

31.3.3 Write on Select

On Write on Select, the value will automatically be written when one of the states is selected

31.3.4 Write on Enter

On Write on Enter you need first to select the state, and then press the enter key to write the status value to
the Tag.

31.3.5 Read Only

The Read only property of the widget can be attached to a tag and will control whether the control list will be
just an indicator, or a combination of both. For example, with a machine in Manual mode, the Control list will
let the operator select which state should be active and while in Auto mode, the list is an indication of the
active step.

31.4 Variables Widget

The Variables widget is available in the Advanced category under the Data Sources sub-category as shown
in the following figure.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 227

Figure 268

The purpose of the Variables widget is to have some internal variables that can be used for operations such
as data transfer or use in JavaScript programs. The variables are local to the page where the widget has
been inserted.
To insert the widget in a page, just drag and drop it to any position on the page. This will display a place
holder to indicate that the widget is present, but it will not be visible at runtime. You can create some
variables and assign values as shown in the following figure.

Figure 269

The configured Variables can be referenced from the Attach tag dialog once you click on the Widget source
as shown in the following figure.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 228

Figure 270

In case global variables are needed, they can be configured from the project widget, adding the desired
variables to the global Variable Widget as shown in the following figure

Figure 271

31.4.1 Using Variables in JavaScript

The Variables can be also referenced in JavaScript programs with the following syntax:

For Local Variables
var varWgt = page.getWidget("_VariablesWgt");
var compVar = varWgt.getProperty("VariableName");

For Global Variables
var varWgt = project.getWidget("_VariablesWgt");
var compVar = varWgt.getProperty("VariableName");

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 229

31.5 IPCamera Widget

An IPCamera widget is available in Widget Gallery. Using this widget is possible to show images captured
from an IPCamera or show a video stream.

Figure 276

Follow the list of main parameters available for IPCamera widget:

Camera URL URL of the IPCamera when used in JPEG format.

Refresh Rate Number of JPEG images for second allowed. The max frame rate is
1fps.

User Name Useful when IPCamera device is protected by a username &
password.

Password Useful when IPCamera device is protected by a username &
password.

MJPEG Camera URL IPCamera widget can be used also with streaming HTTP MJPEG. In
this case parameters “Camera URL” and “Refresh Rate” are ignored.
“MJPEG Camera URL” is the URL of MJPEG streaming.
Ex. http://192.168.0.1/video.cgi

The only supported protocol is HTTP. For showing single frames the only supported format is JPEG while for
streaming the only supported format is Motion JPEG.

Performance of streaming is not fixed and depends on many factors like: Frame size, Frame compression
level, CPU of HMI Panel, Quality of IPCamera. Based on these factors the widget can reach upto 25 fps.

Multiple widgets are supported, however in this case performance could reduce framerate of each single
widget.

The supported authentication methods are:

- Basic
- NTLM version 1
- Digest-MD5

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 230

No settings are required to select the method as it comes as an automatic selection from the camera web
server to which the widget connects.

31.5.1 IPCamera tested

Follow the list of IPCamera tested at today.

IPCamera Protocol URL

D-Link DCS-932L MJPEG http://{ip_address}/video.cgi

Panasonic WV-Series Network
Camera

MJPEG http://{ip_address}/cgi-bin/mjpeg

D-Link DCS-5605 PTZ MJPEG http://{ip_address}/video/mjpg.cgi

D-Link DCS-900W IP Camera MJPEG

http://{ip_address}/video.cgi

Hamlet HNIPCAM IP Camera MJPEG
HTTP

http://{ip_address}/video.cgi
http://{ip_address}/image.jpg

DAHUA DH-IPC-HD2100P-080B
1.3mp Outdoor Vandalproof

HTTP

http://{ip_address}:9988/onvif/media_service/sn
apshot

Apexis APM-J901-Z-WS PTZ IP
Camera

MJPEG
HTTP

http://{ip_address}/videostream.cgi
http://{ip_address}/snapshot.cgi

MOXA VPort 254 (Rugged 4-
channel MJPEG/MPEG4 industrial
video encoder)

MJPEG
HTTP

http://{ip_address}/moxa-cgi/mjpeg.cgi
http://{ip_address}/moxa-
cgi/getSnapShot.cgi?chindex=1

NVS30 network video server MJPEG
HTTP

http://{ip_address}:8070/video.mjpeg
http://{ip_address}/jpg/image.jpg

Foscam FI8916W MJPEG
HTTP

http://{ip_address}/videostream.cgi
http://{ip_address}/snapshot.cgi

31.6 PTZ Controls

A pan–tilt–zoom camera (PTZ camera) is a camera that is capable of remote directional and zoom control.
PTZ is an abbreviation for pan, tilt and zoom and reflects the movement options of the camera.

Widget PTZ Controls use action MoveIPCamera to send HTTP/cgi commands to the PTZ IPCamera.
Following parameters ara available:

Camera URL URL of IPCamera. Ex. http://192.168.10.123

User Name Useful when IPCamera device is protected by a username & password.

Password Useful when IPCamera device is protected by a username & password.

Command Command to send to PTZ controller.
Ex. decoder_control.cgi?command=0

The supported authentication methods are:

- Basic

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 231

- NTLM version 1
- Digest-MD5

No settings are required to select the method as it comes as an automatic selection from the camera web
server to which the widget connects.

31.7 Multistate Image Widget

Multistate Image is a widget designed to show an image from a collection based on the value of a tag used
as Index. This widget may be used also for simple animations.

Figure 277

Follow the list of parameters of MultistateImage widget:

Value Index of Image to show in Widget. By attaching this property to a tag it is

possible to use this tag as Index, as a selector. Ex. value=0 means show
Image with Index 0 in “Images” collection.

Images Images collection. Add/Remove Images is used to add/remove images
that later can be shown using related Index.

Animate When Animation is true, a slideshow is shown and images change
every 1000 ms (default Time interval).

31.8 Multistate Image Multilayer

The Multistate Image Multilayer widget extends the features available in Multistate Image widget. Multiple
layer support allows user to define more features for animations and select the best at runtime based on
different situations.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 232

Figure 278

To use the widget proceed as follows:

1) Drag and Drop widget from widgets gallery into the page. Widget is available in category Basic -> Images.
2) Click on Layers to open configuration dialog
3) Define all layers needed. To add a new layer, use the + icon on the right of existing layers.

Figure 279

4) Double click on each layer to configure images that compose the layer.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 233

Figure 280

5) Browse images from the project, gallery or any folder in the computer; drag and drop images into the
frame to add it to current layer. To add a new frame, use icon on the right of existing frames.

Figure 281

6) Customize widget using properties

Default layer Default active layer shown at runtime when page is shown. Active layer

can be changed at runtime, attaching it to a tag.

Name Name of selected layer / current layer.

Default frame Default frame shown when current layer is active. Active frame can be
changed at runtime, attaching it to a tag.

Color / Fill Fill color to use for images of current layer. Fill color can be changed at
runtime, attaching it to a tag.

Animate Enable/Disable animation of frames. When enabled, images of active
layer change like in a slideshow. Animations can be start/stop at runtime
attaching it to a tag.

Time Interval Time interval of slideshow (ms). Used just when animation is enabled.

Preview Preview is working like a simulator for animations. Can be used to verify
animation in designing phase of widget without execute entire project.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 234

31.9 Combo Box Widget

The Combo Box widget is available in the widget gallery and is already used by many widgets as a selector
widget or as a way to filter rows shown in a table (like alarms or trends) based on values selected in the
combo box.

Figure 282

Follow the list of parameters of Combo widget:

Index Each item listed in a combo has an index 0...n. This field returns the

index (integer) of selected item in combo.

List / String List Strings to show as items into combobox widget. This field is
multilanguage.

Data / Data List Optional parameter available in advanced mode that allows returning in
the field Data of the widget, the related value reported in the Data List
(as string). Usually Index is enough for 90% of applications, however
sometime it is useful to return a custom value based on an item selected
in the combo box.

Figure 283

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 235

It is useful in many applications to attach fields like Index or Data to tags to know the values related to the
selected item in the combo box. When attached to Index, the tag will contain the index (integer) of the
selected item (0...n), when attached to Data, it will contain the data value (string) specified in the Data List.

31.10 Consumption Meter Widget

Consumption meter widget is available in the widgets gallery. This widget has been designed specifically to
monitor a resource which is continuously increasing. The system reads the value of the resource and
calculate the increment in a predefined range of time, the increment is then represented in a trend-like
window, using bar-graphs. A typical application for this widget is the calculation of the power consumption of
a system.

Representation is done using a bar graph where it is also possible (when range is weekly) to assign different
colors based on the time frame.

Figure 284

Below you can find a description of the main properties of this widget:

Value this is the resource monitored by the system

Graph Duration /
Graph Duration
Units

these properties determines the time period that will be represented in

the trend window

Bar Duration/Bar
Duration Units

these properties determines the time period represented by each bar

composing the graph

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 236

Time Periods this property allows to highlight, with a minimum resolution of 1 hour,

the increment of the monitored resource in a determined time period by

using a specific color. Each bar composing the graph will then be

represented using different colors, each showing the increment of the

monitored resource in the corresponding time period.

Example: design a monitor for the consumption of energy with a weekly scale and a daily unit. Follow these
steps to configure the widget:

1. Add protocol
2. Add Tag and link it to the physical variable to monitor (total energy consumed – ex. KW/h), we can

call this Tag KWh. This tag contains an incremental number that summarize how many KW/h has
been consumed from when energy started.

3. Add a Trend and link it to the KWh Tag to monitor
4. Add Consumption meter widget into a Page
5. Attach Value property of Consumption Meter to the KWh Tag.
6. Set Graph Duration/Units to 1 Week (range of time considered by Widget). This allow us to have a

weekly graph of consumed energy.
7. Set Bar Duration/Units to 1 day (range of time where calculate consume of energy)
8. In Properties -> Consumption Meter, you can change the number of labels to show in the bar

graph (ex. X Labels = 7 if we need a weekly graph).
9. Open Time Periods to access a configuration dialog that allow the setting of different colors for

different values of the Tag KWh monitored in each bar.
10. Add as many color bands as you need, in this example we’ve added 3 color bands.
11. Assign to each hour in the weekly table the related band. In this example a red band (E1) was used

to indicate the range of time in the day/week where the cost of energy is the highest.
12. For each band, if needed, a scale factor can be assigned.

The result is a consumption meter as a bargraph that shows daily consumption of energy (KW/h in this
example) where the colors indicate the different energy cost that has been consumed. The height of each
bar represents the amount of energy in the range of time considered (1 day in this example).

Figure 285

In TimePeriods dialog, to assign the color to the cells of the table, you can select the cells and click on the
related band/color. Another way is to enter the index value of the band (1, 2, 3) into the cell to color it.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 237

Figure 286

The Macro ConsumptionMeterPageScroll can be used to scroll the bar graph back and forth. The macro
RefreshTrend is necessary to refresh the bar graph because it is not automatically refreshed. All other
Macro of Trends are not supported today by the consumptionMeter.

links

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 238

32 Custom Widgets

PB610 Panel Builder 600 has a large widget library which includes predefined dynamic widgets (such as
buttons, lights, gauges, switches, Trends, Recipes, and dialog items), as well as static images (such as
shapes, pipes, tanks, motors, etc.). With the widget library, you can simply drag and drop an object onto the
page, and then size, move, rotate or transform it any way you want. All widgets in the gallery are vector
based, so they look good at any size.

Custom widgets are widgets created by the user and based on the existing widgets from the gallery. This
chapter describes how to create a custom widget and assign properties to it.

The advantage of the custom widget is that it can be built out of several elements, but with the flexibility to
select only the necessary properties to be published and made available in the “custom widget" Property
pane.

32.1 Creating a Custom Widget

The following steps describe how to create a custom widget:

1: Select all the Widgets you want as part of the custom Widget and group them.

2: Right click on the group, and select "Convert To Widget" from the context menu.

A Convert to Widget dialog box is shown below.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 239

Figure 288

You can select existing custom widget types (such as Knobs, Button with Light, etc.), or you can select
"Custom" to create a new custom widget type.

32.2 Adding the Properties

After creating the custom widget, the next step is to add the properties that will be published in the custom
widget property pane. The “Property Select" dialog shows all the applicable properties for the grouped
widget; this is basically a list of all the properties of the individual widgets grouped together. You can select
the properties that you want to expose for that custom widget by clicking the corresponding check box.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 240

Figure 289

Enter the name of the custom widget. This is the name that will appear in the Property view.
The next step is to select the properties that will be displayed in the Property view. Click on the ‘+’ button
above the ‘Properties’ list box, and a Property Select dialog will be displayed.

NOTE The ConvertToWidget dialog shows “standard" custom widget types. These types are defined in the

gallery. The dialog, however, does not show types that are specifically created for a project.

Display Name
Name that will be shown in the Property view. You can change it to set the information for each custom
widget property.

Attribute Name
The name exposed by PB610 Panel Builder 600, to JavaScript functions and Attach Tag dialog. The default
property name has the form 'WidgetType.name'; 'WidgetType' is the type of widget; and 'name' is the
attribute name. If you have more than one widget of the same type, the widget type name will be
WidgetType01, WidgetType02, etc.

Display Category
The category or group of the property in the Property view. All properties in the same category are shown
together in the Property view. This allows you to organize the properties in the view. The Display Category
allows you to view by category group, by clicking on either the Collapse or Expand button. For example, you
can declare position properties, like the X coordinate, height, width properties in a single display category
called Position.

Description
Allows you to define the description and comments within the property; the information will be displayed in
the property pane.

Advanced
The properties are shown in either the “Normal" or “Advanced" mode. The “Advanced" check box allows you
to specify whether each property should appear in the advanced, or in the simple property pane view mode.

Support Tags
The “Supports Tags" checkbox must be marked if the property supports the “Attach to" attribute.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 241

Tags
The “Tags" list box indicates the internal Tag name for the Widget. This internal Tag name is typically the
same as the attribute name; however, this is not always the case. You can assign a different attribute name
for your custom Widget. The Tag list is also used to combine Tags.

If you want to combine two or more properties into one, select the primary property in the Property List and
click on the ‘+’ button above the Tags list box. The Property Select dialog will be displayed, and you can
select the properties that should be combined. Note that this dialog box only shows the properties that
should be combined (not all properties are shown in the Properties list). For example, to combine the 'min'
property of the scale Widget and Bar graph Widget, click on the NeedleWgt min property and click on the
BargraphWgt min property from the Property Select dialog. Click the OK button. Both attributes will be shown
in the Tags list box, as shown in the figure below.

Figure 290

You can arrange the order of the properties by clicking on the up or down button in the Property List. To
remove a property, select the property name and click on the delete button.
When a property is selected in the Property List, the property information is shown in the dialog box.

NOTE Custom widgets usually are composed by many sub widgets. For example a button is a complex

widget composed by two Image widgets, a button widget and label. This is clearly visibile in the ObjectView
when the widget is selected. To select a sub widget like the label in a button, use ObjectView or Shift +
leftClick of mouse. In this way sub widget can be changed without ungroup all widget.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 242

32.3 Editing Custom Properties

If you want to change the properties of a Custom Widget after it has been created, you can simply right click
on the Widget in the Page editor and select the "Custom Properties" menu item from the context menu. The
Custom Properties dialog will be displayed and you can change the properties.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 243

33 Send an E-mail Message

SendMail action can be used to send emails. You can include tags in the e-mail body and attachments.

The SendMail action has been design for working with alarms and schedulers but can be executed as
conseguence of many other events.

NOTE The system does not yet support SSL/TSL.

Figure 291

33.1 Configure E-mail Server

To configure the email server, you need to provide the following information into field EmailConfig of
SendMail action:

SMTP SMTP server address

Server Name optional – it can be used for information purposes

Server Port Port to use to connect to SMTP server. Default is 25.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 244

Require Auth Flag it if SMTP server requires authentication

User Name Username to use for sending mail using SMTP server

Password Password to use for sending mails using SMTP server

Figure 292

NOTE You can add more E-mail servers by clicking the “+" button on the left hand side.

33.2 Configure E-mails

In the emailInfo, configure emails using following parameters:

Name optional – it can be used for information purposes

Description optional – it can be used for information purposes

From Sender email address (ex. John@domain.com).

To Recipient e-mail addresses. If you want to send the email to more than
one recipient, separate the e-mail addresses with a semi-colon “;"

Subject Subject of email

Attachment Path of the file to send in attach to the email. The system support one
single attachment for each email sent.

NOTE SMTP servers usually limit the max size allowed for an E-Mail

attachment.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 245

Body Main content of the email. System support Live Tags.

You can add more emails templates by clicking the “+" button on the left hand side.

Figure 293

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 246

34 JavaScript

The purpose of this chapter is to describe the JavaScript interface implemented in PB610 Panel Builder 600.
PB610 Panel Builder 600 JavaScript is based on the ECMAScript programming language
http://www.ecmascript.org , as defined in standard ECMA-262. Microsoft Chakra and Firefox SpiderMonkey
JavaScript engines support the ECMAScript standard. If you are familiar with JavaScript, you can use the
same type of commands in PB610 Panel Builder 600 as you do in a web browser. If you are not familiar with
the ECMAScript language, there are several existing tutorials and books that cover this subject, such as:

https://developer.mozilla.org/en/JavaScript

This purpose of this document is not to explain JavaScript language, but rather to describe how JavaScript is
used in the PB610 Panel Builder 600 applications.

34.1 Execution

A JavaScript function is executed when an event occurs. For example, a user can define a script for the
OnMousePress event and the JavaScript script will be executed when the button is pressed on the panel.

It is important to note that JavaScript functions are not executed in the same manner as certain other
controller programming scripts, such as Ladder Logic. JavaScript functions are not executed at a given scan
rate the whole time, but they are only executed when the given event occurs. This approach minimizes the
overhead required to execute logic on the panel.

PB610 Panel Builder 600 provides a JavaScript engine running at the client side. Each project page can
contain scripts with scope local to the page where they are programmed. The project can also contain global
scripts that can be executed by scheduler events or alarm events, but it is important to understand that the
scripts are still executed at the client side. In other words, having more than one client connected to the
panel (for instance, an external PC running the HMI Client) means each client will run the same script,
providing output results that depend on the input. Inputs provided to the different clients may be different.
This can be clarified, for instance, considering a situation in which the script acts based on a slider position,
which can be different for the different clients.

34.2 Events

You can add the JavaScript in the following events:

• Widget Events

• Page Events
• System Events

For events of type OnMousePress, OnMouseRelease, OnMouseClick and OnWheel, JS eventinfo parameter
contains the following additional properties:

eventInfo.posX local mouse/touch X coordinate w.r.t. widget coordinates

eventInfo.posY local mouse/touch Y coordinate w.r.t. widget coordinates

eventInfo.pagePosX page X mouse/touch coordinate

eventInfo.pagePosY page Y mouse/touch coordinate

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 247

eventInfo.wheelDelta mouse wheel delta. It is an integer value with sign. Sign represents the
rotation direction. The actual value is the rotation amount in eighths of
a degree. The smallest value depends on the mouse resolution.
Typically this is 120 (corresponding to 15 degrees).

34.2.1 Widget Events

34.2.1.1 onMouseClick

void onMouseClick (me, eventInfo)

This event is available only for buttons and it occurs when the button is pressed and released quickly.

Parameters
me The object that triggers the event.

eventInfo Details of the event triggered.

function buttonStd1_onMouseClick(me, eventInfo) {
 //do something…
}

34.2.1.2 onMouseHold

void onMouseHold (me, eventInfo)

This event is available only for buttons and it occurs when the button is pressed and released after n
seconds where n=Hold Time seconds specify in widget properties.

Parameters
me The object that triggers the event.

eventInfo Details of the event triggered.

function buttonStd1_onMouseHold(me, eventInfo) {
 //do something…
}

34.2.1.3 onMousePress

void onMousePress(me, eventInfo)

This event is available only for buttons and it occurs when the button is pressed.

Parameters
me The object that triggers the event.

eventInfo Details of the event triggered.

function buttonStd1_onMousePress(me, eventInfo) {
 //do something…
}

34.2.1.4 onMouseRelease

void onMouseRelease (me, eventInfo)

This event is available only for buttons and it occurs when the button is released.

Parameters

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 248

me The object that triggers the event.

eventInfo Details of the event triggered.

function buttonStd1_onMouseRelease(me, eventInfo) {
 //do something…
}

34.2.1.5 onDataUpdate

boolean onDataUpdate (me, eventInfo)

This occurs when the data attached to the Widget changes.

Parameters
me The object that triggers the event.

eventInfo An object with these fields (you can refer fields using “.” - dot notation):

oldValue: The old value that is the widget value before the change.

newValue: The new value that is the value which will be updated to the widget.

attrName: The attribute on which the event is generated

index: An integer attribute index if any, default = 0

mode: W when user is writing to the widget, R otherwise.

This event is triggered by the system before the value is passed to the Widget; this means the code
programmed here can modify or alter the value before it is actually passed to the Widget.
The code can terminate with a return true or return false.
After terminating the code with return false, the control is returned to the calling Widget that may launch
other actions.
After terminating the code with true, the control is NOT returned to the Widget and this makes sure that no
additional actions are executed following the calling event.

function buttonStd1_onDataUpdate(me, eventInfo) {
if (eventInfo.oldValue < 0) {
 //do something…
}
 return false;
}

34.2.2 Page Events

34.2.2.1 onActivate

void onActivate(me, eventInfo)

This event occurs each time the page is shown.

Parameters
me The object that triggers the event.

eventInfo It is reserved for future enhancements.

This JavaScript will execute when the page is Active. It means that, when the page is loaded, the script will
execute.

function Page1_onActivate(me, eventInfo) {
 //do something…
}

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 249

34.2.2.2 onDeactivate

void onDeactivate(me, eventInfo)

This occurs when leaving the page.

Parameters
me The object that triggers the event.

eventInfo It is reserved for future enhancements.

function Page1_onDeactivate(me, eventInfo) {
 //do something…
}

34.2.2.3 onWheel

void onMouseWheelClock(me, eventInfo)

This occurs when a wheel device is moving (ex. Mouse wheel).

Parameters
me The object that triggers the event.

eventInfo Details of the event triggered.

function Page1_onMouseWheelClock(me, eventInfo) {
 //do something…
}

34.2.3 System Events

There are three types of system events:
• related to the scheduler

• related to the alarms
• related to Wheel device

Be sure to use unequivocal function names in JavaScript between code at page & project level
(scheduler/alarms).
When a conflict happens at runtime (two functions with the same name in current page and at project level),
the system execute JavaScript callback at page level (not a project level).

When a JavaScript callback is not found in current page, the system search for it at project level
automatically.

34.2.3.1 Scheduler Event

The event occurs when triggered by the proper action available in the scheduler system as shown in the
figure below.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 250

Figure 294

34.2.3.2 Alarm Event

The event occurs when triggered by a specific alarm condition and programmed in the proper action as
shown in the figure below.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 251

Figure 295

Once the system events are configured, the custom code for them can be edited from the global JavaScript
editor interface, which is available from the Project view (double click on the project name icon) as shown in
the figure below.

Figure 296

34.2.3.3 onWheel

void onMouseWheelClock(me, eventInfo)

This occurs when a wheel device is moving (ex. Mouse wheel).

Parameters
me The object that triggers the event.

eventInfo Details of the event triggered.

function Project1_onMouseWheelClock(me, eventInfo) {
 //do something…

34.3 Objects

PB610 Panel Builder 600 uses JavaScript objects to access the elements of the page. Each object is
composed of properties and methods that are used to define the operation and appearance of the page
element. The following objects are used to interact with elements of the HMI page:

Widget
The Widget class is the base class for all elements on the page
including the page element

Page
This object references the current HMI page. The page is the top-level
object of the screen

Group
A group is a basic logical element that is associated with a set of logical
tags. It provides an interface to enable the uniform operation on a set of
logically connected tags

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 252

Project

This object defines the project widget. The project widget is used to
retrieve data about the project such as tags, alarms, recipes, schedules,
tags and so on. There is only one widget for the project and it can be
referenced through the project variable

State

Class for holding state of a variable acquired from the controlled
environment. Beside value itself, it contains the timestamp indicating
when the value is collected together with flags marking quality of the
value.

34.3.1 Widget

The Widget class is the base class for all elements on the page including the page element.

Widget is not a specific element but a JavaScript class.

IMPORTANT When you change the properties of widgets with JavaScript you have to set the widget
Static Optimization to Dynamic, otherwise changes to properties will be ignored. You can find the option
Static Optimization in the Advance Properties. Whenever a call to getWidget fails, remote debugger
report following error:
“Trying to access static optimized widget "label1". Disable widget static optimization to access widget from
script.”.
This error is visible also using following:

var wgt;
try {
wgt = page.getWidget('label1');
} catch(err) {
alert("" + err);
}

The following properties are common among all widgets:

objectName
string objectName

It gets the name of the Widget. The name is a unique id for the Widget.

function btnStd04_onMouseRelease(me) {
 var wgt = page.getWidget("rect1");
 var name = wgt.objectName;
}

x

number x

It gets or sets the Widget ‘x’ position in pixels.

function btnStd1_onMouseRelease(me) {
 var wgt = page.getWidget("rect1");

wgt.x = 10;
}

y

number y

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 253

It gets or sets the Widget ‘y’ position in pixels.

function btnStd1_onMouseRelease(me) {
 var wgt = page.getWidget("rect1");
 wgt.y = 10;
}

width

number width

It gets or sets the Widget width in pixels.

function btnStd1_onMouseRelease(me) {
 var wgt = page.getWidget("rect1");
 wgt.width = 10;
}

height

number height

It gets or sets the Widget height in pixels.

function btnStd1_onMouseRelease(me) {
 var wgt = page.getWidget("rect1");
 wgt.height = 10;
}

visible

boolean visible

It gets or sets the Widget visible state.

function btnStd4_onMouseRelease(me) {
 var wgt = page.getWidget("rect1");
 wgt.visible = false;
}

function btnStd5_onMouseRelease(me) {
 var wgt = page.getWidget("rect1");
 wgt.visible = true;
}

value

number value

It gets or sets the Widget value.

function btnStd6_onMouseRelease(me) {
 var wgt = page.getWidget("field1");
 wgt.value = 100;
}

opacity

number opacity (range from 0 to 1)

It gets or sets the Widget opacity. Values are decimals from 0 to 1, where 1 is 100% opaque.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 254

function btnStd8_onMouseRelease(me) {
 var wgt = page.getWidget("rect1");
 wgt.opacity = 0.5;
}

rotation

number rotation (in degrees)

It gets or sets the rotation angle for the Widget. The rotation is done by degree and makes a clockwise
rotation, starting at the East position.

function btnStd9_onMouseRelease(me) {
 var wgt = page.getWidget("rect1");
 wgt.rotation = 45;
}

userValue

string userValue

It gets or sets a user-defined value for the Widget. This field can be used by JavaScript functions to store
additional data with the Widget.

function btnStd9_onMouseRelease(me) {
 var wgt = page.getWidget("rect1");
 wgt.userValue = "Here I can store custom data";
}

Every widget has some specific properties that you can access using dot notation. For an up-to-date and
detailed list of properties you can use the Qt Script Debugger inspecting the widget methods and properties.

The following methods are common among all widgets:

getProperty

object getProperty(propertyName, [index])

Returns a property

Parameters

propertyName A string containing the name of property to get.

index The index of the element to get from the array. Default is 0.

Almost all properties that are shown in the PB610 Panel Builder 600 Property view can be retrieved from the
getProperty method. The index value is optional and only used for Widgets that support arrays.

function buttonStd1_onMouseRelease(me, eventInfo) {
 var shape = page.getWidget("rect2");
 var y_position = shape.getProperty("y");
}

function buttonStd2_onMouseRelease(me, eventInfo) {
 var image = page.getWidget("multistate1");
 var image3 = image.getProperty("imageList", 2);
 //…
}

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 255

setProperty

boolean setProperty(propertyName, value, [index])

Sets a property for the Widget

Parameters

propertyName A string containing the name of property to set.

value A string containing the value to set the property.

index The index of the element to set in the array. Default is 0.

Almost all properties that are shown in the PB610 Panel Builder 600 Property view can be set by this
method. The index value is optional and only used for Widgets that support arrays (for example a

MultiState Image widget). The setProperty method returns a boolean value true or false to indicate if
the property was set or not.

function buttonStd1_onMouseRelease(me, eventInfo) {
 var setting_result = shape.setProperty("y", 128);
 if (setting_result)
 alert("Shape returned to start position");
}

function buttonStd2_onMouseRelease(me, eventInfo) {
 var image = page.getWidget("multistate1");
 var result = image.setProperty("imageList", "Fract004.png", 2);
 //…
}

34.3.2 Page

This object references the current HMI page. The page is the top-level object of the screen.

Follow the list of Page Object Properties:

backgroundColor

string backgroundColor (in format rgb(xxx, xxx, xxx) where xxx range from 0 to
255)

The page background color

function btnStd11_onMouseRelease(me) {
 page.backgroundColor = "rgb(128,0,0)";
}

width

number width

The Page width in pixels

function btnStd05_onMouseRelease(me) {
 var middle_x = page.width / 2;
}

height

number height

The Page height in pixels

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 256

function btnStd05_onMouseRelease(me) {
 var middle_y = page.height / 2;
}

userValue

string userValue

It gets or sets a user-defined value for the Widget. This field can be used by JavaScript functions to store
additional data with the page.

function btnStd9_onMouseRelease(me) {
 page.userValue = "Here I can store custom data";
}

Follow the list of Page Object methods:

getWidget

object getWidget(wgtName)

It returns the Widget with the given name.

Parameters

wgtName A string containing the name of widget

Return value

An object representing the widget. If the widget does not exist, null is returned.

function btnStd1_onMouseRelease(me) {
 var my_button = page.getWidget("btnStd1");
}

setTimeout

number setTimeout(functionName, delay)

It starts a timer to execute a given function after a given delay once.

Parameters

functionName A string containing the name of function to call.

delay The delay in milliseconds.

Return value
It returns a number corresponding to the timerID.

var duration = 3000;
var myTimer = page.setTimeout("innerChangeWidth()", duration);

clearTimeout

void clearTimeout(timerID)

It stops and clear the timeout timer with the given timer.

Parameters

timerID The timer to be cleared and stopped.

var duration = 3000;
var myTimer = page.setTimeout("innerChangeWidth()", duration);

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 257

// do something
page.clearTimeout(myTimer);

setInterval

number setInterval(functionName, interval)

It starts a timer that executes the given function at the given interval.

Parameters

functionName A string containing the name of function to call.

interval The interval in milliseconds.

Return value
It returns a number corresponding to the timerID

var interval = 3000;
var myTimer = page.setInterval("innerChangeWidth()", interval);

clearInterval

void clearInterval(timerID)

It stops and clears the interval timer with the given timer.

Parameters

timerID The timer to be cleared and stopped.

var interval = 3000;
var myTimer = page.setInterval("innerChangeWidth()", interval);
// do something
page.clearInterval(myTimer);

clearAllTimeouts

void clearAllTimeouts()

It clears all the timers started.

page.clearAllTimeouts();

34.3.3 Group

A group is a basic logical element that is associated with a set of logical tags. It provides an interface to
enable the uniform operation on a set of logically connected tags.

Follow the list of Methods supported by Group Object:

getTag

object getTag(TagName)

Gets the tag specified by TagName from the group object.

Parameters
TagName A string representing the tag name.

Return value

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 258

An object that is the value of the tag or if tag value is an array it returns the complete array. If you need to
retrieve an element of the array, check the method getTag available in object Project. undefined is
returned if tag is invalid.

var group = new Group();
project.getGroup("GroupName", group);
var value = group.getTag("Tag1");

getCount

number getCount()

Returns total number of tags in this group.

Return value
The number of tags.

var group = new Group();
project.getGroup("GroupName", group);
var value = group.getCount();

getTags

object getTags()

Returns the list of all tags in group.

Return value
An array of all tags in the group.

var group = new Group();
project.getGroup("enginesettings", group);
var tagList = group.getTags();
for(var i = 0; i < tagList.length; i++){
 var tagName = tagList[i];
 //do something…
}

34.3.4 Project

This object defines the project widget. The project widget is used to retrieve data about the project such
as tags, alarms, recipes, schedules, tags and so on. There is only one widget for the project and it can be
referenced through the project variable.

Follow the list of properties of Project Object:

startPage

string startPage

The page shown when the application is started

var startPage = project.startPage;
project.startPage = "Page2.jmx";

Follow the list of methods of Project Object:

nextPage

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 259

void nextPage()

The script executes the next page macro.

project.nextPage();

prevPage

void prevPage()

The script executes the Previous page macro.

project.prevPage();

homepage

void homePage()

The script executes the Home page macro.

project.homePage();

loadPage

void loadPage(pageName)

The script executes to load the set page defined in the script.

project.loadPage("Page5.jmx");

showDialog

void showDialog(pageName)

The script executes to show the dialog page.

project.showDialog("Dialog.jmx");

closeDialog

void closeDialog()

The script executes to close the currently-opened dialog page.

project.closeDialog();

showMessage

void showMessage(message)

The script executes to display the message popup.

project.showMessage("Hi This is test message");

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 260

getGroup

number getGroup(groupName, groupInstance, [callback])

Fast read method; this gets the values of all tags in a group.

Parameters

groupName A string containing the name of the group.

groupInstance The group element to be filled.

callback A string containing the name of the function to be called when the group is ready.

Return value
A number value that is the status: 1 for success, 0 for fail.

var group = new Group();
var status = project.getGroup ("enginesettings", group);
if (status == 1) {
 var value = group.getTag("Tag1");
 if (value!=undefined) {
 // do something with the value
 }
}

var g = new Group();
var status = project.getGroup ("enginesettings", g, "fnGroupReady");
function fnGroupReady(groupName, group) {
 var val = group.getTag("Tag1");
 if (val!=undefined) {
 // do something with the value
 }
}

getTag

object getTag(tagName, state, index, forceRefresh)

void getTag(tagName, state, index, callback, forceRefresh)

It returns the tag value or the complete array if index value is -1 of the given tagName.

Parameters

tagName A string of the tag name.

state The state element to be filled.

index An index if the tag is array type. -1 returns the complete array. Default is 0.

callback Function name if an asynchronous read is required. Default = “".

forceRefresh Optional parameter (false as default) that force runtime to read tag value directly from
device (and not from cache).

Return value
Tags value is returned. If tag is array type and index = -1 then the complete array is returned.

Remarks
For non-array tags provide index as 0.

Follow some additional details related to the use of getTag function with forceRefresh parameter. If:
- the tag to read with getTag is not in page (so not subscribed by the runtime) >> the tag is read from device
irrespective of forceRefresh flag.
- the tag to read with getTag is present in page (so tag subscribed) & forceRefresh == True >> the tag is
read from device
- the tag to read with getTag is present in page (so tag subscribed) & forceRefresh == False >> the tag is
read from the tags cache at UI side.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 261

forceRefresh parameter is working in both sync and async (with callback) mode.

NOTE The value read from getTag when forceRefresh parameter is not set could be obsolete.

var state = new State();
var value = project.getTag("Tag1", state, 0);
//
//for non array type
//tags index is not considered, so can be left as 0
//
if (value!=undefined) {
 //...do something with s
}

var state = new State();
project.getTag("Tag1", state, -1, "fnTagReady");

function fnTagReady(tagName, tagState) {
 if (tagName=="Tag1") {
 var myValue = tagState.getValue();
 }
}

setTag

number setTag(tagName, tagValue, [index], [forceWrite])

Sets the given Tag in the project. Name and value are in a string.

Parameters

tagName A string of the tag name.

tagValue An object containing the value to write.

index An index if tag is array type. Set -1 to pass complete array. Default is 0.

forceWrite A boolean value for enabling force write of tags, the function will wait for the value to be
written before it returns back. Default is false.

Return value
Interger value for denoting success and failure of action when forceWrite is true. A 0 means success and -1

means failure. If forceWrite is false, returned value will be undefined.

var val = [1,2,3,4,5];
var status = project.setTag("Tag1", val, -1, true);
if (status == 0) {
 // Success
} else {
 // Failure
}

var val = "value";
project.setTag("Tag1", val);

getRecipeItem

object getRecipeItem (recipeName, recipeSet, recipeElement)

Gets the value of the given recipe set element.

Parameters

recipeName A string representing the recipe name.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 262

recipeSet A string representing the recipe set, can be either the recipe set name or 0 based
set index.
recipeElement A string representing the recipe Element, can be either the element name or 0
based element index.

Return value

An object with the value of the recipe. undefined is returned if invalid. If of type array, an array object type
is returned.

var value = project.getRecipeItem("recipeName", "Set", "Element");

setRecipeItem

number setRecipeItem (recipeName, recipeSet, recipeElement, value)

Gets the value of the given recipe set element.

Parameters

recipeName A string representing the recipe name.

recipeSet A string representing the recipe set, can be either the recipe set name or 0 based
set index.
recipeElement A string representing the recipe Element, can be either the element name or 0
based element index.
value An object containing the value to store in the recipe. It can be an array type too.

Return value
Interger value for denoting success and failure of action. A ‘0’ means success and ‘-1’ means failure.

var val = [2,3,4];
project.setRecipeItem("recipeName", "Set", "Element", val);
if (status == 0) {
 // Success
} else {
 // Failure
}

downloadRecipe

void downloadRecipe (recipeName, recipeSet)

Downloads the recipe set to corresponding tag.

Parameters

recipeName A string representing the recipe name.

recipeSet A string representing the recipe set, can be either the recipe set name or 0 based
set index.

project.downloadRecipe("recipeName", "Set");

uploadRecipe

void uploadRecipe (recipeName, recipeSet)

Uploads the value of tags into the provided recipe set.

Parameters

recipeName A string representing the recipe name.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 263

recipeSet A string representing the recipe set, can be either the recipe set name or 0 based
set index.

project.uploadRecipe("recipeName", "Set");

launchApp

void launchApp(appName, appPath, arguments, singleInstance)

Execute an external application.

Parameters

appName A string contains the application name

appPath A string contains the application path, it must be an absolute path.

Arguments A string contains the arguments to send to application executed.

singleInstance true=single instance allowed, false allow multiple instance

project.launchApp("PDF.exe","\\Flash\\QTHMI\\PDF","\\USBMemory\\file.pdf","true"
);

printGfxReport

void printGfxReport(reportName, silentMode)

Prints the graphic report specified by reportName.

Parameters

reportName A string containing the report name

silentMode true = silent mode (avoids to show printer settings dialog)

project.printGfxReport("Report Graphics 1", true);

printText

void printText(text, silentMode)

Print a fixed text.

Parameters

text A string to print

silentMode true = silent mode (avoids to show printer settings dialog)

project.printText("Hello I Am Text Printing",true);

emptyPrintQueue

void emptyPrintQueue()

Empties the print queue. Current job will not be aborted.

project.emptyPrintQueue();

pausePrinting

void pausePrinting();

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 264

Suspends printing operations. Will not suspend the print of a page already sent to the printer.

project.pausePrinting();

resumePrinting

void resumePrinting();

Resumes previously suspended printing.

project.resumePrinting();

abortPrinting

void abortPrinting();

Aborts current print operation and proceed with the next one in queue. This command will not abort the print
of a page already sent to the printer.

project.abortPrinting();

printStatus

project.printStatus;

Returns a string representing current printing status:
• error: an error occurred during printing
• printing: ongoing printing
• idle: system is ready to accept new jobs

• paused: printing has be suspended

var status = project.printStatus;
project.setTag("PrintStatus",status);

printGfxJobQueueSize

project.printGfxJobQueueSize;

Returns the number of graphic reports in queue for printing.

var gfxqueuesize = project.printGfxJobQueueSize;
project.setTag("printGfxJobQueueSize",gfxqueuesize);

printTextJobQueueSize

project.printTextJobQueueSize;

Returns the number of text reports in queue for printing.

var textjobqueuesize = project.printTextJobQueueSize;
project.setTag("printTextJobQueueSize",textjobqueuesize);

printCurrentJob

project.printCurrentJob;

Returns a string representing current job being printed

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 265

var currentjob = project.printCurrentJob;
project.setTag("printCurrentJob",currentjob);

printActualRAMUsage

project.printActualRAMUsage;

Returns an estimate of RAM usage for printing queues

var myVar = project.printActualRAMUsage;
alert(" actual ram usage is "+ myVar);

printRAMQuota

project.printRAMQuota;

Returns the maximum allowed RAM usage for printing queues

var ramquota = project.printRAMQuota;
project.setTag("printRAMQuota",ramquota);

printActualDiskUsage

project.printActualDiskUsage;

Returns the spool folder disk usage (for PDF printouts)

var myVar1 = project.printActualDiskUsage;
alert(" actual disk usage is "+ myVar1);

printDiskQuota

project.printDiskQuota;

Returns the maximum allowed size of spool folder (for PDF printouts)

var diskquota = project.printDiskQuota;
project.setTag("printDiskQuota",diskquota);

printSpoolFolder

project.printSpoolFolder;

Returns current spool folder path (for PDF printouts)

var spoolfolder = project.printSpoolFolder;
project.setTag("printSpoolFolder",spoolfolder);

printPercentage

project.printPercentage;

Returns current job completion percentage (meaningful only for multipage graphic reports)

var percentage = project.printPercentage;
project.setTag("printPercentage",percentage);

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 266

34.3.5 State

Class for holding state of a variable acquired from the controlled environment. Beside value itself, it contains
the timestamp indicating when the value is collected together with flags marking quality of the value.

Follow the list of methods for State object:

getQualityBits

number getQualityBits()

Returns an integer - a combination of bits indicating tag value quality.

Return value
A number containing the quality bits.

var state = new State();
var value = project.getTag("Tag1", state, 0);
var qbits = state.getQualityBits();

getTimestamp

number getTimestamp()

Returns time the value was sampled.

Return value
A number containing the timestamp (for example 1315570524492).

Remarks
Date is a native JavaScript data type.

var state = new State();
var value = project.getTag("Tag1", state, 0);
var ts = state.getTimestamp();

isQualityGood

boolean isQualityGood()

It returns whether value contained within this State object is reliable.

Return value

A Boolean true if quality is good, false otherwise.

var state = new State();
var value = project.getTag("Tag1", state, 0);
if (state.isQualityGood()) {
 // do something…
}

34.4 Keywords

Global objects are predefined and always available objects that can be referenced by the names listed
below.

page

object page

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 267

It references the page object for the current page.

function btnStd04_onMouseRelease(me) {
 var wgt = page.getWidget("rect1");
 var name = wgt.objectName;
}

project

object project

It references the project Widget.

var group = new Group();
project.getGroup("GroupName", group);
var value = group.getCount("Tag1");

34.5 Global Functions

print

void print(message)

It prints a message to the HMI Logger window.

Parameters

message A string containing the message to display.

print("Test message");

alert

void alert(message)

It displays a popup dialog with the given message. The user must press the OK button in the dialog to
continue with the execution of the script.

Parameters

message A string containing the message to display.

NOTE The alert function is often used for debugging JavaScript routines.

alert("Test message");

34.6 Limitations

Widgets cannot be instantiated from JavaScript. The Widgets can only be accessed and changed. If you
need additional Widgets on the page, you can add hidden Widgets on the page, and show or position them
from JavaScript.

34.7 Debugging of JavaScript

PB610 Panel Builder 600 and Runtime include a JavaScript debugger to allow user to debug problems.

There’re two types of debuggers:

• Runtime debugger: a debugger running directly into target device (HMI panel)

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 268

• Remote debugger: a debugger running on a remote PC connected to target device via Ethernet
(usually PC with PB610 Panel Builder 600)

To enable the debugging mode, in the Advanced Properties of a Page set JavaScript Debug to True as
shown in the below figure.

Figure 297

For schedulers and alarms debugging, enable JavaScript Debug in Project properties.

In Runtime, when the events are called, the script debugger will show the debug information (as shown in
the figure below). In the box Locals you can inspect all available variables and elements.

Figure 298

For a complete reference guide about Qt Script Debugger you can open the following link in your browser:

NOTE For UN20 target (WCE MIPS hmi panels), local debugger has been disabled. However, remote

debugger is available to debug JS from a PC connected to HMI panel via ethernet.

NOTE Remote debugger not supported in HMI Client and ActiveX.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 269

http://qt-project.org/doc/qt-4.8/qtscriptdebugger-manual.html

34.7.1 Remote JavaScript Debugger

Remote JS debugger can be opened directly from PB610 Panel Builder 600 Run -> Start JS Remote
Debugger or from icon in toolbar.

To start remote debugging, proceed as follow:

1. Download project with Allow JavaScript Remote enabled in project properties and JavaScript
Debug enable in all pages where debugging is required.

2. Once started, runtime shows waiting for remote debugger as shown below:

Figure 299

3. In JS Debugger window, select IP of the target and click Attach to connect debugger to the target.

Remote JS debugger require port 5100/TCP in the runtime side.

NOTE For UN20 target (WCE MIPS hmi panels), local debugger has been disabled. However, remote

debugger is available to debug JS from a PC connected to HMI panel via Ethernet.

NOTE Remote debugger not supported in HMI Client and ActiveX.

Figure 300

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 270

35 System Settings Tool

The System Settings tool comes with an interface based on a rotating menu, with navigation buttons at the
top and bottom to scroll between the available options. The tool is shown in the figure below.

On the left side, several components and functions are highlighted and, for each of them, the right side
("Info" pane) shows the information about the current version (when applicable). In the picture below, the
version of the Main OS component is shown.

Figure 311

System Settings tool has two operating modes:
• User Mode

• System Mode.

The difference between them is the number of available options.

35.1 User Mode

User mode is a simple interface where users can get access to the basic settings of the HMI panel.

The System Settings tool is accessible at Runtime from the context menu by selecting the item Show
system settings. When activated in this way, the System Settings tool always starts in User Mode.

The context menu can be activated by pressing and holding down a screen area without buttons or other
touch sensitive elements, until the menu is displayed.

Main Items available in User Mode are:

Calibrate Touch To calibrate the touch screen if needed

Display settings Backlight and Brightness control

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 271

Time Internal RTC settings

BSP Settings Operating system version, Unit operating timers: power up and activated
backlight timers, Buzzer control, Battery LED control

Network IP address settings

Plug-in List Provides a list of the plug-in modules installed and recognized by the
system; this option may not be supported by all platforms and all
versions.

35.2 System Mode

System Mode is the interface of the System Settings tool with all the options enabled.

The HMI products support a special procedure for accessing the System Settings tool; the special procedure
is required to start the System Settings in System Mode, or when the standard access procedure is not
accessible for some reason.

When activated by this special procedure, the System Settings tool always starts in System Mode.

The special access to the System Settings tool can be activated with a tap-tap sequence over the touch
screen during the power-up phase. Tap-tap consists of a high frequency sequence of touch activations, done
by the simple means of finger tapping the touch screen, performed during the power up and started
immediately after the device has been powered.

In addition to the options available in User Mode, the following important features are available:

Format Flash To format the internal panel flash disk. All projects and the runtime will

be erased, returning the panel to a factory new condition

Restore Factory
Settings

Restore Factory Settings is used as alternative to Format Flash (that’s a
slow operation) to restore device factory settings. Options available are:

Uninstall HMI: removes the HMI Runtime (entire qthmi folder) from the
unit (if present); at the next start the panel will behave as a brand new
unit. This command does not reset settings like IP, brightness or RTC

Clear System Settings: allows you to reset the system parameters
(registry settings). Files deleted are:
\\Flash\\Documents and Settings\\system.hv
\\Flash\\Documents and Settings\\default\\user.hv
\\Flash\\Documents and Settings\\default.mky
\\Flash\\Documents and Settings\\default.vol
Also System Mode password is reset.

Clear internal Ctrl App: clear current folders used by CODESYS V2.3
and CODESYS V3 internal controllers for applications

• \Flash\QtHmi\RTS\APP*.*
• \Flash\QtHmi\RTS\VISU*.*

• \Flash\QtHmi\codesys*
• \Flash\$SysData$\codesys*

Clear sysdata settings: clear \Flash\$SysData$ folder (used by tech.
supp only for problems related to display settings)

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 272

NOTE Not all targets and BSPs contain all these options.

Resize Image Area Resizes the Flash portion reserved to store the splash screen image that
is displayed at power up. Default settings are normally ok for all units.

Download
Configuration OS

checks the actual version and upgrades the back-up operating system

(see relevant chapter, for additional details)

Download Main OS checks actual version and upgrades the main operating system (see
relevant chapter for additional details)

Download Splash
Image

Loads a new file for the splash screen image displayed by the unit at
power up; the image must be supplied in a specific format. We suggest
that you update the splash screen image directly from the PB610 Panel
Builder 600 programming software.

Download
Bootloader

Checks the actual version of the system boot loader and upgrades the
system boot loader.

Download Main
FPGA

Checks the actual version and upgrades the main FPGA file; this
command may not be available in all platforms and versions.

Download Safe
FPGA

Checks the actual version and upgrades the back-up (safe) copy of the

FPGA file; this command may not be available in all platforms and

versions.

Download System
Supervisor

Checks the actual version and upgrades the system supervisor firmware
(used for the RTC and power supply handling).

IMPORTANT Operation with the System Settings Tool is critical and, when not performed correctly, may

cause product damages requiring service of the product. Ask Technical Support for further details.

When executed in “System Mode” the System settings also provide the “BSP Settings”. Only when recalled
from the System Mode, the BSP settings show an additional tab called “Password” as shown in the figure
below.

Figure 312

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 273

This function allows you to protect access to the System Settings in System mode with a password, so all
the advanced and critical functions are not easily accessible to anyone.
To activate the protection, simply mark the check box “Password Protected” and specify the desired
password as shown in the figure. The password must be at least 5 characters long.
If you are changing a password previously defined or disabling the protection, you are asked to provide the
old password first.

NOTE Please keep a note of the configured password in a safe place. There is no way to reset the

password protection and, in case it is lost, the unit must be returned to the factory for proper reconditioning.

When the System Settings menu is protected by a password, for each critical function you try to execute that
may compromise the proper system operation, the HMI will prompt you to enter the password. If correct, the
operation will proceed; if wrong, the operation will be aborted.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 274

36 Updating System Components in HMI Panels

Most of the system software components can be easily upgraded by the end users; this ensures a high
degree of flexibility in providing updates and fixes to existing and running systems.

This upgrade can be done using USB flash drives, loaded with the new software modules, and by running
the procedure, described in detail in this chapter.

Each unit comes from the manufacturing with a "product code" label, which includes all the information
related to the factory settings (in terms of hardware, software and firmware components).

Product labeling is the first reference for checking the factory settings and version of the components
installed at time of manufacturing.

The update tool on the HMI panel also provides the user with detailed information on the components
actually running in the system.

NOTE Files required for upgrades depend on the product code. Using the wrong files for upgrade may

result in system malfunctions, and may even render the system unusable.

NOTE Files for upgrades are distributed on demand as a technical support activity.

IMPORTANT The downgrade of components is a very dangerous operation that could block machine and
make it not more usable for HW/FW compatibility problems. Downgrade operations are not allowed and
reserved to tech. support only.

36.1 List of Upgradable Components

The HMI panels support the upgrade of the following components:

System Supervisor Firmware of the system supervisor controller

(sample file name: packaged_GekkoZigBee_v4.13.bin)

IMPORTANT The System Supervisor Component can be upgraded

only if the actual version on the panel is V4.13 or above. Version V4.08,
V4.09, V4.10 and V4.11 MUST NOT be updated, they do not support
automatic update from System Settings

Main FPGA FPGA firmware
(sample file name: h146xaf02r06.bin)

Safe FPGA back-up copy of the Main FPGA that ensures unit booting in case of
main FPGA corruption (may be after failed update)
 (Sample file name: h146xaf02r06.bin)

NOTE When updating FPGA firmware on the panel, the same file must

be used for Main and Safe FPGA components
Bootloader Loader to handle panel start-up

(sample file name: redboot_UN20HS010025.bin)

Main OS Main Operating System
(sample file name: mainos_UN20HS0160M0237.bin)

Configuration OS Back-up operating system that ensures units are recovering in case of
main operating system corruption (may be after a failed update)
(sample file name: configos_UN20HS0160C0237.bin)

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 275

36.2 Update of System Components from PB610 Panel Builder 600

PB610 Panel Builder 600 provides a dialog to update system components by downloading them to the target
device using the Ethernet communication interface.

The dialog is available in Run -> Manage Target -> Board.

Figure 317

The first step is to use the Target discovery function to locate the panel IP from the local network. Click on
the little arrow symbol and identify the HMI panel from the list of units recognized in the network. In case the
panel is not listed, you can try a second time or type the IP directly in the box. Then click out of the box to
accept the inserted IP. See the figure below.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 276

Figure 318

NOTE Discovery service is a broadcast service. When a remote connection is done via VPN or from

external networks discovery is not working, so, type directly IP address of target to connect to it.

When the device is recognized the Info box shows the target details as shown as an example in the figure
below.

Figure 319

In the component list locate the one you need to update, check the box and browse for the file from the
"Source file" box as shown in the figure below.

Figure 320

Then click download and check the progress from the Status box below.

NOTE In the component selection you can mark more than one check box and provide the related file to be

downloaded. The system will then execute the transfer of the all the elements, one after the other, and at the
end you will need to cycle the power of the system.

Manage target also allows you to replace the default splash screen image shown by the devices during the
power up phase. Image for the splash screen must be provided in bitmap format saved in RGB 565 format.

NOTE Splash screen images must NOT be bigger than 500 KB and they must have a black background to

ensure the best optical results.

36.3 Update of the System Components via USB Flash Drive

System components can be updated via USB flash drives. For each component a specific file is provided.
Checksum file with an .md5 extension is required to be present in the same location as the system file to be
upgraded.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 277

To update a system component proceed as follow:

1. Copy all the files you need to upgrade to a USB Memory and plug this into the USB port of the panel.

2. Start the System Settings tool with the special procedure for getting this in System Mode, and then locate
the desired item in the rotating menu.

3. Click directly on the item (the blue button with white label) and browse to locate the proper file stored on
the pen drive (USBMemory). The figure below shows an example of the Main OS components.

Figure 321

4. Select the "Download" command to transfer files to the panel. Select the "Upload" command to get files
from the panel.

5. Follow the instructions on the screen to proceed with the update.

A progress bar on the screen will inform you about the status of the operation. Please make sure to NOT
turn off power to the panel while a system component is being upgraded. Some of the components will
require some time for the upgrade to complete.

NOTE Upgrade procedure may change depending on the hardware revision or operating system version

from which you start; please contact technical support offices for any detail about the exact sequence.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 278

37 Access Protection to HMI Devices

The following operations can be protected with a password set at device side:

• Runtime management: Install runtime and update runtime

• Board management: replace main BSP components such as MainOS, ConfigOS, Bootloader, etc
• Download and upload of project files

A default value for this password is used by the HMI Runtime and by PB610 Panel Builder 600 to access to
device.

There are three ways to change device password in the HMI Runtime:

1) Using the tab Remote in the BSP Settings (in system mode) dialog box in System menu includes (starting
from BSP versions V1.64 UN30/31 and V2.73 UN20).

Figure 322

2) Using the tab Password in Settings from the runtime Context Menu.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 279

Figure 323

PB610 Panel Builder 600 shows a dialog asking for the password to match the password defined in the HMI
device. The new password will be stored into the computer OS registry to be used for further connections.

3) Using Set Target Password in update package. Password is updated by the runtime just after the update
process is completed. If the update failed (for example because Old password does not match the hmi
password) a popup informs the user about it.

You can enter the same password in PB610 Panel Builder 600 using Manage Target -> Board ->
Connection setting to allow in PB610 Panel Builder 600 to access runtime.

Default port used for this remote service is 2100.

NOTE A format of hmi panel reset password device side.

NOTE For Win32 runtime, password is saved into

Users\[username]\AppData\Roaming\ABB\buildNumber\server\config\RemoteUpdateConfig.xml.

NOTE Leave “Old password” empty as default if target password is not set.

37.1 Ports & Firewalling

The table below shows all ports required by components of PB610 Panel Builder 600:

Port Usage
Remote
Access

Board
Management

Runtime/Project
Management

Codesys
iPLC

80/tcp HTTP port Yes Yes

21/tcp FTP cmd port Yes

2100/tcp Board port Yes

16384-17407/tcp
FTP data port
(passive mode)

 Yes Yes

990/udp
UDP broadcast
(Device discovery)

 Optional Optional

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 280

991/udp
UDP broadcast
(Device discovery)

 Optional Optional

998/udp
UDP broadcast
(Device discovery)

 Optional Optional

999/udp
UDP broadcast
(Device discovery)

 Optional Optional

5900/tcp VNC Server VNC only

5100/tcp
JS Remote
Debugger

 Optional

1200/tcp Codesys 2.3 iPLC Yes

Remote Access
Required If you need to connect to runtime using one of following:

- HMI Client
- ActiveX
- Web access

Runtime/Project Management ports
Required If you need to connect to runtime using in PB610 Panel Builder 600 for Runtime and Project
operations like Update Runtime, Install Runtime, Download Project.

Board Management ports
Required if you need to connect to device with PB610 Panel Builder 600 for Board operations like Update
BSP, download Splash Image etc.

NOTE When broadcast service is not available (ex. in VPN networks), user have to type exact IP Address

directly to reach device from PB610 Panel Builder 600.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 281

38 Factory Restore

If you’re having problems with HMI device, you can try to restore factory default settings from System Mode.

To restore factory settings proceed as follow:

1) Enter in System Mode

2) Use one of the following operations available in rotating menu:
- Format Flash cleanup entire Flash disk and registry configuration.
- Restore Factory Settings allow user to select components to cleanup.

Both operations do not manage firmware factory restore (MainOS, ConfigOS, Bootloader, FPGA images,
etc).

For more information related to Format Flash and Restore Factory Settings please ref. to System Mode

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 282

39 Tips and tricks to improve performance

PB610 Panel Builder 600 allow max flexibility for a projects designer. User can change svgs and replace
images with customized versions. However, following some simple rules is possible to have faster projects in
terms of boot time, page change and animations.

39.1 Static Optimization

Static optimization is a technique used in PB610 Panel Builder 600 to improve the runtime performance.

Using lot of graphics images and photos in a project might degrade performances. The idea of the static
optimization is to merge many different images to a single background image in order to save rendering and
loading times (only one raster image needs to be loaded and rendered instead of loading and rendering
many single raster and/or vector images).

When you create a project in PB610 Panel Builder 600, the pages might contain some widgets like texts,
images, background images, background colors etc. Those widgets can be classified as

• Static: whose values or properties will not change at runtime (images and shapes, for instances)

• Dynamic: whose values or properties will change at runtime (for instance numeric fields and
multistate images).

NOTE Based on security settings, static parts of widgets could be not merged to background. This happens

when a widget is configured as “hide” in security settings.

IMPORTANT When you change the properties of widgets with JavaScript you have to set the widget

Static Optimization to Dynamic, otherwise changes to properties will be ignored.

When downloading or validating a project, PB610 Panel Builder 600 identifies those static components and
render them as background images to PNG-format files. These background images are saved as a part of
the project under the folder called “/opt”.

We can have:

• full page background images, containing all widgets that can be merged to page background

• group background images, containing all static widgets belonging to a group that can be merged
together to form a group background (for instance the Gauge group is normally composed by a
background a scale a label and a needle, where background scale and label can all be merged to a
single background image)

The Static Optimization page attribute enables and disables static optimization of the whole page. If it is set
to FALSE the optimization is disabled at all.

A finer control can be achieved using the static optimization attributes of each single widget:

• Normal: PB610 Panel Builder 600 automatically detects if the widget can be merged with the
background. This is true if the widget is not a dynamic widget and does not overlap (i.e. it is stacked
above) a dynamic widget.

• Static: The image is forced to be merged to background. This flag can be used when the static
widget overlaps a dynamic transparent widget. In this case the automatic optimization will fail
because it does not make any assumption on invisible areas (might be rendered at runtime).

• Dynamic: the widget is not optimized at all. For example we need to use this flag when a static
widget needs to be changed by Javascript.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 283

Figure 324

39.1.1 Best practices for max performance

1. Don’t use static optimization at all if you have pages with almost only dynamic objects. In fact static
optimization will save a lot of almost identical full size images for each page wasting a lot of memory
that can be otherwise used to speed up project with other techniques (like for instance, page
caching).

2. If possible avoid overlapping static widgets over a dynamic widget. This is the most important rule to
follow. The overlapping area is computed considering the bounding rectangles of the widgets, that is
the rectangles delimited by editing handles.

3. Bounding rectangles can include transparent areas. Try to minimize transparent areas (for example
splitting the image in multiple images) since they can be a waste of resources even when optimized.

4. Optimize image size. The image will be rendered at a maximum size which is the size of the image
widget containing the image. For best performances the widget needs to be the same size of the
image.

5. If possible avoid using scale to fit which forces a rescaling at runtime for dynamic images and “hides”
the actual image size during editing. In fact it is common to use very large images that are rescaled
at runtime to fit their actual image widget size)

6. If overlapping cannot be avoided make sure to set the static widgets to back (order -> move to back).
ie behind the dynamic widget (changing the z-order of static widgets to be under the dynamic
widgets)

7. Use “size to fit” command to make the widget to the real size of his contents.
8. Choose the image file format based on the real target you have. PB610 Panel Builder 600 is

supporting several raster formats like BMP, PNG, JPEG, TIFF and the vector format SVG:

 PROs CONs

RASTER - Fast rendering
- Well standardized

- Big file size
- Fixed resolution

VECTOR
(SVG)

- Small file size
- Rescale without quality loss
- Can handle dynamic properties

- Complex SVG images with many graphic items
and layers can be slow to render.

- Scour software is free tool can be used to
remove foreign code from file
(http://www.codedread.com/scour/).

- Creating an optimized SVG is not simple.
- Only Tiny 1.2

(http://www.w3.org/TR/SVGTiny12/) supported.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 284

9. Try to avoid using too many widgets in a page. Often widgets are placed outside of the visible area

or their transparency is controlled by a tag. Since widgets are loaded even if they are not visible
having too many widgets in a page can slow down significantly the page change time.

10. If possible, split a page with too many widgets in multiple pages with less widget.
11. For popping up new graphic elements in a page, prefer dialog pages with controlled positioning to

transparent widgets
12. Have a check in opt folder to see if static optimization is working as expected: the widgets z-order

might need to be changed to fix it
13. Numeric fields are often used to run JavaScript code on OnDataUpdate event even if the widget

doesn’t need to be visible on the page. In this case place the widget outside the page visible area
instead of making it invisible, altering font color or visibility property. In fact in the latter case it is
likely to end up with many left over wedges.

14. Use HotSpot button if you need a touch area to react to user inputs
15. If you reuse a widget from the gallery or you create your own, remember to set the right optimization

properties (either static/dynamic/auto) or check if that kind of widget has the desired optimization
properties. For example button widgets are dynamic widgets. For instance, if you use a button
widget just for its frame it won’t be optimized since the button widget is dynamic. If you just need the
frame please use the UP Image SVG from the widget gallery.

16. With many pages having many dynamic widgets and using a common template the suggested
configuration is to set:

a. template static optimization flag set to true
b. page static optimization flat set to false (background is already provided by the template)

So, the background image can be reused among many different pages saving a lot of RAM that can
be used for page caching.

17. Avoid using dynamic widgets like buttons only for the page background to make graphical effect
without any real use of the buttons, instead use widget images (which can be obtained from the
gallery) to apply the same graphical effect. This will reduce the load time of the page if we design it
in an optimal way.

Follow an example of good and bad usage of Static optimization.

Figure 325

39.1.2 FAQ – Static optimization

Q: In a page where there are a few identical widgets, in the OPT folder I see a png for each one of
them. If they are really identical, why should the software duplicate them instead of having just 1
PNG?

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 285

A: The software does not know if static images are actually the same since each widget could have different
settings/properties altering the actual rendering at runtime

Q: Why are the static images stored in a separate folder called Opt instead of storing them directly in
the project folder?

A: This solution avoids name collisions and allows skipping the upload of optimization images

Q: Why are the static images stored as a *.png file instead of common *.jpg file?

A: PNG format uses a lossless compression for images and support transparencies. JPEG files would render
fuzzier compared to the PNG files with a different result in Studio (not using optimization) and runtime.

Q: What will happen when no optimization is done in the software?

A: Every single widget is rendered at runtime. In particular SVG images may require a lot of time to render in
an embedded platform.

39.1.3 Templates

Currently, template pages can have large amount of static content. Still static optimization may not be
applied to a template page, as it is decided based on the page where the template is used.
If a huge background image is repeated in every page via a template page, we tend to increase the footprint
of the panel as the same static image is created for each of the page using the template page.

39.2 Page caching

Once accessed all pages are kept in a RAM cache up to the maximum allowed cache size depending on the
actual platform’s available RAM. This allows a much faster access since cached pages, once reloaded, only
need to re-paint their content without reloading all page resources (images for instances).

39.3 Image DB

Image DB is a technique used to track usage of image files and amortize the cost of image loading by
caching most frequently used images (for instance: Push Button images, Gauge needles, Slider thumbs
etc.). So the same image used in many different places is loaded just once.

The image DB will preload the top most used images at start-up until memory limits are hit. This would
further improve the individual page loading times.

The file imagecachelist.xml is created in project/opt folder, containing relevant information for ImageDB:

• Fill color. (in case of SVG)
• Size of the svg image

• Number of times an image is used in the project
• Number of different sizes for the same image

39.3.1 Best Practice to use the Image DB

1) Use uniform size of buttons, gauges and other widgets wherever possible.
2) Use same color themes as much as possible among widgets of same kind.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 286

39.4 Precache

Precache attribute of pages can be used by users to notify runtime to preload some pages in RAM at boot
time for quicker access. Precache is useful for complex pages having many dynamic widgets.
In short, when precache is enabled on a page, access to the page is faster. As side effect precache slow
down boottime because system will be not ready at boot until all pages with precache flag enabled has been
cached in RAM.

39.4.1 Best Practice to use the Precache

1. Enable precache just for few pages having many dynamic widgets or pages frequently used by
users.

2. Do not enable precache for all the pages because memory is not enough and risk is to have no
benefit at all.

3. Disable static optimization for pages where precache is enabled can help to reduce memory used.

39.4.2 Frequently asked questions – Precache

How many pages should I enable for precache? Is there any limits?

Based on size & complexity of a page, the space required for precaching a single page can be in range
1/2Mb .. 3Mb (as mean).

Runtime proceed as follow when project is loaded:

1) Preload images of pages up to 76MB free (imageDBLowMem)
2) Preload pages with precahe=true up to 64MB free (pageCacheLowMemMax). In this phase images

of these pages are loaded in RAM (into the Image DB).

When project is ready:

1) Any new page visited is saved in cache (RAM) with related images up to 40MB free
(pageCacheLowMemMin)

2) When a page change happens and space in RAM is critical (<40MB), the runtime starts to cleanup
cache (RAM) removing pages & related images up to 64MB free. In order, the runtime removes from
cache:

a. last visited pages and bigger and unused images (>320x240)
b. if more memory is needed runtime can unload also pages in precache and all images loaded

in Image DB.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 287

40 FAQ

40.1 How to change fill color property according to Tag values

PB610 Panel Builder 600 allows to change the color property of a widget dynamically, basing on Tag values
in two ways:

1) Using ColorPaletteCustom Xform
2) Connecting Color property to a String type Tag

40.1.1 Using ColorPaletteCustom Xform

1) Create a Tag (internal Tag or PLC Tag) that you want to refer to for the management of the color.
Basing on the decimal value of this tag, the color will change accordingly. The tag can be of any data
type.

2) Attach this Tag to the Fill Color property of an object (ex. a button).
3) Into the same dialog select now "XForms" tab and add a transformation by clicking on the [+] button.

Select the "ColorPaletteCustom" transformation, then click near the "Palette" property:
4) Define now your custom palette by adding the colors that will be used for the object accordingly to

the Tag value.
The Index column reports the decimal value while the Color column shows the corresponding color.

Figure 326

40.1.2 Connecting Color property to a String type Tag

1) Create a Tag (internal Tag or PLC Tag) that you want to refer to for the management of the color.
Basing on the string content of this tag, the color will change accordingly.
The tag must be of String type and the Arraysize property of the tag (the string length) must be big
enough to contain the string formatted as explained in the next steps.

2) Attach this Tag to the Fill Color property of an object (ex. button).

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 288

3) Now you can define the color writing inside the String Tag the RGB color code of the required color,
you can use these formats:

#XXYYZZ
Where XX, YY and ZZ are the RGB components of the needed color expressed in Hexadecimal
format, the range for these values is 00-FF

rgb(XXX,YYY,ZZZ)
Where XXX, YYY and ZZZ are the RGB components of the needed colors expressed in Decimal
format, the range for these values is 0-255

Note: This feature can be applied to all the objects available into the Widget gallery that have a color
property. The runtime change of the color is possible thanks to the properties of the SVGs that are
composing the object, for this reason the color change can be applied on the objects that uses
imported graphical files only if the graphical file is an SVG file created following the apposite
guidelines, this feature can not be applied for example on jpeg or bmp files.

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 289

41 Functional Specifications and Compatibility

The scope of this chapter is to provide a clear overview of the supported functions and related limitations for
both programming software and HMI Runtime system. What is listed below in this document is a safe
limitation, above which proper operation and state-of-the-art performance of the system is not guaranteed.

41.1 Table of Functions and Limits

Function \ Feature Max allowed

Number of pages 1000 (up to 10k x 10k as resolution based on

HMI model)
Number of basic Widgets 2000 x page
Number of Tags 10000
Number of dialog pages 50 (max 5 can be opened in the same time)
Number of objects of any type in one page 2000
Number of Recipes 32
Number of parameter sets for a Recipe 1000
Number of elements per Recipe 1000
Number of user groups 50
Number of users 50
Number of concurrent remote clients 3 (ex. 1x + 1xHMI Client + 1x ActiveX)
Number of schedulers 30
Number of alarms 500/2000 (depends on HMI model)
Number of templates pages 50
Number of actions programmable per button state 32
Number of Trend Buffers 30
Number of curves per Trend Widget 5
Number of curves per page 10
Number of samples per Trend Buffer 200000
Number of Trend Buffer Samples for a Project 1200000
Number of messages in a message field 1024
Number of languages 12
Number of events per buffer 2048
Number of event buffers 4
JavaScript file size per page 16KB
Size of project on disk 30MB

41.2 Compatibility

Starting from the first official release of PB610 Panel Builder 600 V1.00 (00) we have applied the following
policy for compatibility:

PB610 Panel Builder 600 version MUST always be aligned with PB610 Panel Builder 600 Runtime on the
panel; the user has the responsibility to update Runtime components on the Target device together with any
Studio update; a Runtime update can be done directly from Studio using the "Update Target" command
available in the "Run\Manage Target" dialog.

Any version of Studio newer than V1.00 (00) is able to open and properly handle projects created on an
older version, but no older than V1.00 (00).

© Copyright 2011-2015 ABB. All rights reserved. Documentation Revision V1.91 - Date of issue: 2015-03-10 290

Projects created with older versions of Studio, but not older than V1.00 (00), opened with later versions and
deployed to compatible Runtime, are ensured to maintain the performance and functionality just as before.

Compatibility between newer versions of Runtime and those projects created and deployed with older
versions of Studio is not ensured.

Do not edit projects with a version of PB610 Panel Builder 600 older than the one used to create them. It can
result in a damage of the project and to runtime instability.

Contact us

3
A
D
R
0
5
9
0
0
1
M
0
2
0
6ABB Automation Products GmbH

Wallstadter Str. 59

68526 Ladenburg, Germany

Phone: +49 62 21 701 1444

Fax: +49 62 21 701 1382

E-Mail: plc.sales@de.abb.com

www.abb.com/plc

Note:

We reserve the right to make technical changes or

modify the contents of this document without prior

notice. With regard to purchase orders, the agreed

particulars shall prevail. ABB does not accept any

responsibility whatsoever for potential errors or possible

lack of information in this document.

We reserve all rights in this document and in the

subject matter and illustrations contained therein. Any

reproduction, disclosure to third parties or utilization of

its contents � in whole or in parts � is forbidden without

prior written consent of ABB AG.

Copyright© 2011-2015 ABB.

All rights reserved.

