
ABB Robotics

Application manual
PC SDK

Trace back information:
Workspace R12-1 version a4
Checked in 2012-03-15
Skribenta version 875

Application manual
PC SDK

RobotWare 5.14

Document ID: 3HAC036957-001
Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

The information in this manual is subject to change without notice and should not
be construed as a commitment by ABB. ABB assumes no responsibility for any errors
that may appear in this manual.
Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damages to
persons or property, fitness for a specific purpose or the like.
In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.
This manual and parts thereof must not be reproduced or copied without ABB's
written permission.
Additional copies of this manual may be obtained from ABB.
The original language for this publication is English. Any other languages that are
supplied have been translated from English.

© Copyright 2010-2012 ABB. All rights reserved.
ABB AB

Robotics Products
SE-721 68 Västerås

Sweden

Table of contents
7Overview ...
9Product documentation, M2004 ...
11Safety ..

131 Introduction
131.1 About creating controller applications ...
151.2 Documentation and help ...
171.3 Terminology ...

192 Installation and development environment
192.1 Installation overview ..
222.2 How to obtain and install a license key for RAB 5.09 or earlier
232.3 How to set up your PC to communicate with robot ..
252.4 Development environment ..
272.5 Two development models - virtual and real ..
292.6 Conversion of VS 2005 projects to Visual Studio 2008 ..

313 Run-time environment
313.1 Overview ...
323.2 Running PC SDK Applications ...
323.2.1 Overview ...
333.2.2 Mastership ...
353.2.3 PC application configuration ..
383.2.4 Communication between PC and controller ..
393.2.5 Licence verification - applies only to versions earlier than PC SDK 5.10
403.3 Release upgrades and compatibility ...

434 Developing Controller applications
434.1 Introduction ..
444.2 Analysis and design ...
474.3 Controller events and threads ..
504.4 User Authorization System ..
524.5 Exception handling ..
544.6 How to use the online help ..

555 Using the PC SDK
555.1 Controller API ...
575.2 Create a simple PC SDK application ...
645.3 Discovery domain ...
665.4 Accessing the controller ...
725.5 Rapid domain ...
725.5.1 Working with RAPID data ..
805.5.2 Handling arrays ..
825.5.3 ReadItem and WriteItem methods ..
835.5.4 UserDefined data ..
895.5.5 RAPID symbol search ..
945.5.6 Working with RAPID modules and programs ..
975.5.7 Enable operator response to RAPID UI-instructions from a PC
1025.6 IO system domain ...
1085.7 Event log domain ..
1105.8 Motion domain ..
1125.9 File system domain ...
1155.10 Messaging domain ..

3HAC036957-001 Revision: A 5
© Copyright 2010-2012 ABB. All rights reserved.

Table of contents

1256 PC - Debugging and troubleshooting
1256.1 Debugging ..
1296.2 Troubleshooting ...

1317 Deployment of a PC SDK application
1317.1 Overview ...

133Index

6 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

Table of contents

Overview
About this manual

ABB's PC Software Development Kit (PC SDK) is a software tool, which enables
programmers to develop customized operator interfaces for the IRC5 robot
controller.
The purpose of this manual is to help software developers get started with PC SDK
application development.

Note

Earlier till version 5.12 PC SDK was a part of RAB (Robot Application Builder).

Usage
PC SDK application manual covers application development using PC SDK. Code
samples are written in C# and Visual Basic. Please note that there exists a separate
manual (Application Manual - FlexPendant SDK) for FlexPendant application
development.

Who should read this manual?
This manual is mainly intended for software developers, who use PC SDK to create
robot applications adapted to end-user needs, and RobotStudio add-ins that
communicates with virtual or real controller. It is also useful for anyone who needs
an overview of doing controller applications.

Prerequisites
The reader should

• be familiar with IRC5, the FlexPendant, and RobotStudio.
• be used to Microsoft Visual Studio and Windows programming.
• be familiar with one of the .NET programming languages C# or Visual

Basic.NET.
• be used to object oriented programming.

Organization of chapters
The manual is organized as follows:

ContentsChapter

Introduction. Terminology. Safety.1

Installation and setup. Development environment . Virtual robot technology.2

Software architecture. Run-time environment for PC applications. How clients
access controller resources and communicate with the robot controller. Applic-
ation configuration. Upgrades and compatibility.

3

Developing PC SDK applications. Analysis and design. Important programming
issues: controller events and threads, UAS, exception handling. Online help.

4

Using the PC SDK. How to add controller functionality using the Controller API.
Programming issues and code samples in VB and C#.

5

Continues on next page
3HAC036957-001 Revision: A 7

© Copyright 2010-2012 ABB. All rights reserved.

Overview

ContentsChapter

Testing, debugging and troubleshooting PC SDK applications. Using printouts,
error codes in exceptions and so on. Checklist for contacting a service organ-
ization.

6

References

Document IDReference

3HAC 16590-1Operating manual - IRC5 with FlexPendant

3HAC032104-001Operating manual - RobotStudio

3HAC027097-001Operating manual - Getting started, IRC5 and RobotStudio

3HAC16581-1Technical reference manual - RAPID Instructions, Functions and
Data types

3HAC17076-1Technical reference manual - System parameters

3HAC036958-001Application manual - FlexPendant SDK

3HAC020435-001Application manual - Robot communication and I/O Control.

Revisions

DescriptionRevision

First edition-
From 5.13 onwards this manual replaces: Application manual - Robot Applic-
ation Builder (3HAC028083-001)
For information on FlexPendant SDK refer Application manual - FlexPendant
SDK

Released with RobotWare 5.14.02A
Minor corrections.

8 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

Overview

Continued

Product documentation, M2004
Categories for manipulator documentation

The manipulator documentation is divided into a number of categories. This listing
is based on the type of information in the documents, regardless of whether the
products are standard or optional.
All documents listed can be ordered from ABB on a DVD. The documents listed
are valid for M2004 manipulator systems.

Product manuals
Manipulators, controllers, DressPack/SpotPack, and most other hardware will be
delivered with a Product manual that generally contains:

• Safety information.
• Installation and commissioning (descriptions of mechanical installation or

electrical connections).
• Maintenance (descriptions of all required preventivemaintenance procedures

including intervals and expected life time of parts).
• Repair (descriptions of all recommended repair procedures including spare

parts).
• Calibration.
• Decommissioning.
• Reference information (safety standards, unit conversions, screw joints, lists

of tools).
• Spare parts list with exploded views (or references to separate spare parts

lists).
• Circuit diagrams (or references to circuit diagrams).

Technical reference manuals
The technical referencemanuals describe the manipulator software in general and
contain relevant reference information.

• RAPID Overview: An overview of the RAPID programming language.
• RAPID Instructions, Functions and Data types: Description and syntax for

all RAPID instructions, functions, and data types.
• RAPID Kernel: A formal description of the RAPID programming language.
• System parameters: Description of system parameters and configuration

workflows.

Application manuals
Specific applications (for example software or hardware options) are described in
Application manuals. An application manual can describe one or several
applications.
An application manual generally contains information about:

• The purpose of the application (what it does and when it is useful).

Continues on next page
3HAC036957-001 Revision: A 9

© Copyright 2010-2012 ABB. All rights reserved.

Product documentation, M2004

• What is included (for example cables, I/O boards, RAPID instructions, system
parameters, DVD with PC software).

• How to install included or required hardware.
• How to use the application.
• Examples of how to use the application.

Operating manuals
The operating manuals describe hands-on handling of the products. The manuals
are aimed at those having first-hand operational contact with the product, that is
production cell operators, programmers, and trouble shooters.
The group of manuals includes (among others):

• Emergency safety information
• General safety information
• Getting started, IRC5 and RobotStudio
• Introduction to RAPID
• IRC5 with FlexPendant
• RobotStudio
• Trouble shooting, for the controller and manipulator.

10 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

Product documentation, M2004

Continued

Safety
Safety of personnel

A robot is heavy and extremely powerful regardless of its speed. A pause or long
stop in movement can be followed by a fast hazardousmovement. Even if a pattern
of movement is predicted, a change in operation can be triggered by an external
signal resulting in an unexpected movement.
Therefore, it is important that all safety regulations are followed when entering
safeguarded space.

Safety regulations
Before beginning work with the robot, make sure you are familiar with the safety
regulations described in themanualOperatingmanual - General safety information.

3HAC036957-001 Revision: A 11
© Copyright 2010-2012 ABB. All rights reserved.

Safety

This page is intentionally left blank

1 Introduction
1.1 About creating controller applications

Flexible user interfaces
Robots are usually delivered with a general operator interface. However, different
processes require different operator handling and customers need flexible solutions
where the user interface is adapted to user specific needs.
PC SDK allows system integrators, third parties or end-users to add their own
customized operator interfaces for the IRC5 controller. Such custom applications
can be realized as independent PC applications, which communicate with the robot
controller over a network. You can also use PC SDK to communicate with a virtual
or real controller from a RobotStudio add-in.
For FlexPendant based applications please refer the FlexPendant SDK application
Manual.

Note

Controller applications are not platform independent. Youmust choose to develop
the application for either the PC platform or the FlexPendant (refer FlexPendant
SDK application Manual).

Local vs Remote client
The difference between the two platforms is that a PC application is a remote client,
whereas a FlexPendant application is a local client.
Remote clients do not have all the privileges of a local client. For example, both
PC and FlexPendant applications can reset the program pointer and start RAPID
execution, for example, but for a PC SDK application to do this there are certain
restrictions. Mastership of the Rapid domain must be requested explicitly by the
application programmer and the IRC5 controller has to be in automatic operating
mode.
An advantage of a remote client, on the other hand, is the possibility to monitor
and access several robot controllers from one location. As for large applications
the PC platform is also less limited than the FlexPendant as regards memory
resources and process power.

Note

A minimum response time for a real controller should be expected to be in the
order of 10-100 milliseconds, meaning that hard real time demands cannot be
met on any platform. For more information, seeCommunication between PC and
controller on page 38.

Continues on next page
3HAC036957-001 Revision: A 13

© Copyright 2010-2012 ABB. All rights reserved.

1 Introduction
1.1 About creating controller applications

Ease-of-use on the factory floor
A well-designed user interface presents relevant information and functionality at
the right time. In this respect, customized user interfaces are clearly very desirable
to the end-user. As tailored solutions are easier to operate, they also optimize
user’s investment in automation.
PC SDK enables customized user interfaces for IRC5. It is important to keep in
mind, however, that PC SDK itself does not guarantee increased customer value.
To achieve this, PC SDK applications should be developed with care and with a
heavy emphasis placed on ease-of-use. Understanding end-users’ needs is in fact
crucial to realizing the benefits of customized interfaces.

.NET and Visual Studio
PC SDK uses Microsoft .NET and Microsoft Visual Studio. It is thus assumed that
you know how to program Windows platforms using Visual Studio. Among
programmers .NET distinguishes itself by the programmingmodel provided by the
Microsoft .NET Framework.
One feature is the programming language independence, leaving the choice to the
developer to use any language provided by the integrated development environment
Visual Studio. In PC applications any of the .NET languages should work, but ABB
support is only offered for Visual Basic and C#.
For a Windows programmer familiar with Visual Studio and .NET, developing a
customized operator view is rather straight-forward.
Considerable efforts have been made to allow controller application developers to
start working without having to overcome a steep learning curve. To further speed
up the development process, the virtual IRC5 of RobotStudio can be used to test
and debug controller applications.

Note

Some knowledge in Windows programming, object orientation and a .NET
programming language is necessary to use PC SDK

Robustness and performance
Developing an application using PC SDK involves isues related to performance
and reliability that one needs to know about before getting started.
It is strongly advisable to read this manual to learn about specific PC SDK issues
while moving to PC SDK development.

Note

Please read this manual and the release notes before starting to code.

14 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

1 Introduction
1.1 About creating controller applications

Continued

1.2 Documentation and help

Introduction
PC SDK includes an extensive on-line help module, which comes with the
installation of the SDK. After having installed RobotStudio, by clicking Windows’
Start menu, then pointing at Programs > ABB Industrial IT > Robotics IT >
RobotStudio 5.xx > SDK you will find:

• Application manual PC SDK
• Reference Manual PC SDK

Application manual
This Application manual PC SDK, is the recommended way to get started if you
are new to PC SDK development. It explains how PC SDK works. It has code
examples in C# and VB.NET and provides hands-on exercises.
The application Manual is provided in two formats, HTML Help and PDF. HTML is
the recommended format for the PC screen and PDF is the best choice if you want
printouts.

Note

The Application Manuals PDF can be found in the installation directory, at
C:\Program Files\ABB Industrial IT\Robotics IT\SDK\.

SDK Reference Help
The PC SDK Reference Help files should be used while programming.
It makes up the complete reference to the class libraries in PC SDK. Method
signatures are provided in C# and Visual Basic.
Please note that they are not integrated with the Visual Studio Help function.
Clicking F1 when pointing at code, for example, will open the Visual Studio
Programmer’s Reference or the .NET Framework Class Library for the specific
language and topic. Many times this is what you want, but if your problem is PC
SDK related you need to open the appropriate SDK Reference Help to find a
solution.

Note

You are recommended to keep the help files open while programming, as you
will frequently need them for PC SDK related issues.

RobotStudio Community
ABB Robotics launched a community named RobotStudio Community, for its PC
Software users. The Developer Tools in Developer Section of RobotStudio
Community has information and some videos about programming with the PC
SDK. AtContent Sharing there is a complete FlexPendant SDK application available
for download. It is recommended for average users and for beginners.

Continues on next page
3HAC036957-001 Revision: A 15

© Copyright 2010-2012 ABB. All rights reserved.

1 Introduction
1.2 Documentation and help

ABB encourage open conversations and believe everyone has something to
contribute. The User Forum of RobotStudio Community has a section dedicated
to Robot Application development. Here beginners as well as experts discuss code
and solutions online. If you are facing a coding problem the User Forum should
be your first choice, as there is a good chance that someone will give you the help
you need to proceed.
RobotStudio Community also provides the means to share code and videos. Your
contribution will be appreciated.Working together is many times the key to success.

Tip

Try it out at www.abb.com/robotics > RobotStudio Community.

MSDN
MSDN (Microsoft Developer Network) at www.msdn.com is a one of many sources
of information for general programming issues related to .NET and Visual Studio.

16 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

1 Introduction
1.2 Documentation and help

Continued

1.3 Terminology

About terms and acronyms
Some terms used in this manual are product specific and crucial for understanding.
Moreover, acronyms, words formed from initial letters, are sometimes used instead
of long terms. To avoid confusion, important terminology is clarified below.

Definitions

DefinitionTerm

.NET programming languages.C# and Visual Basic.NET

The core runtime engine in the .NET Framework for execution of
managed code. Provides services such as cross-language integ-
ration, code access security, object lifetime management, and
debugging and profiling support.

Common Language
Runtime

The public class libraries of PC SDK, which offer robot controller
functionality. Also referred to as CAPI.

Controller Application
Programming Interface

The FlexPendant is a “smart device” in the .NET vocabulary, that
is, a complete computer in itself with its own processor, operating
system and so on.

Device

ABB’s hand held device, used with IRC5 robot controller. It is
developed with Microsoft’s technology for embedded systems,
Windows CE and .NET Compact Framework.

FlexPendant

ABB’s robot controller.IRC5

When compiling managed code, the compiler translates the
source code intoMicrosoft Intermediate Language (MSIL), which
is a CPU-independent set of instructions. Before code can be
executed, MSILmust be converted to CPU-specific code, usually
by a just-in-time (JIT) compiler.

JIT compiler

Code that is executed and managed by the Microsoft .NET
Framework’s common language runtime. All code produced by
Visual Studio executes as managed code.

managed code

The integrated development environment that developers work
inside when using the .NET Framework.

Microsoft Visual Studio

An integral Windows component supporting the building and
running of applications.

Microsoft .NET Frame-
work

A communication end-point unique to a machine communicating
on an Internet Protocol-based network.

Network socket

A programmer who uses PCSDK to develop custom applications.PC SDK programmer

A custom application developed with PC SDK.PC SDK application

ABB software tool, which enabled the development of custom
operator interfaces for IRC5. Often referred to as RAB. The RAB
is split to FlexPendant SDK and PC SDK. Robot Application
Builder (RAB) was a software tool, which enabled programmers
to develop customized FlexPendant or PC interfaces for the IRC5
robot controller.

Robot Application Build-
er

The communication layer used by Controller API to communicate
over the network with an IRC5 controller.

Robot Communication
Runtime

Continues on next page
3HAC036957-001 Revision: A 17

© Copyright 2010-2012 ABB. All rights reserved.

1 Introduction
1.3 Terminology

DefinitionTerm

Code that is executed directly by the operating system, outside
the .NET Framework. Unmanaged code must provide its own
memorymanagement, type checking, and security support, unlike
managed code, which receives these services from the common
language runtime. All code executing in the robot controller, as
well as part of the code executing in the FlexPendant is unman-
aged.

unmanaged code

Virtual robot technology makes it possible to run a virtual IRC5
controller, virtual mechanical units and a virtual FlexPendant on
the desktop. Included as freeware in ABB’s RobotStudio.

Virtual IRC5

The embedded operating system running on the FlexPendant
device.

Windows CE

DefinitionAcronym

Controller Application Programming InterfaceCAPI

Common Language RuntimeCLR

Graphical User InterfaceGUI

Microsoft Developer Network, source of information for .NET
developers at www.msdn.com.

MSDN

Personal Computer Software Development KitPC SDK

Software Development KitSDK

Transmission Control Protocol (TCP) and Internet Protocol (IP)TCP/IP

Visual BasicVB

Visual StudioVS

18 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

1 Introduction
1.3 Terminology

Continued

2 Installation and development environment
2.1 Installation overview

About this section
This section describes how to install PC SDK. When the installation is complete,
you can program, compile and test PC applications for the IRC5 controller.

Supported platforms
The following software requirements have to be met:

• Operating system: Microsoft Windows XP + SP2, Windows Vista+ SP2 or
Windows 7

• Microsoft Visual Studio 2005 Express or better, or, Microsoft Visual Studio
2008 Express or better.

• .NET Framework 2.0 SP2
The following hardware requirement have to be met:

• 50 MB free disk-space on the installation disk

Note

The RobotWare system of a real IRC5 controller to connect to the PC SDK
application must have the option PC Interface.

Note

PC SDK is developed and tested for the English version of Visual Studio. If you
are running Visual Studio in another language you are recommended to switch
to the English version.

Requirements for installing and using PC SDK
PCSDK is installed while you install RobotStudio. For more information on installing
RobotStudio see Installing and Licensing RobotStudio in Operating manual -
RobotStudio. To use PC SDK, the following requirements have to be met. Also
make sure that you have administrator permissions on the computer that you are
using.

you must...Before...

learn how to run the virtual IRC5 in RobotStudio.debugging using a virtual IRC5

check that the robot system has the controller option
PC Interface (for PC applications).

executing the application targeting
a real IRC5 system

Set up a connection between your PC and the robot
controller. For more information, see How to set up
your PC to communicate with robot on page 23 for
details about how this is done.

Note

The Visual Studio installation installs .NET Framework 2.0.

Continues on next page
3HAC036957-001 Revision: A 19

© Copyright 2010-2012 ABB. All rights reserved.

2 Installation and development environment
2.1 Installation overview

About the PC SDK installation
Starting wtih RobotStudio 5.13, both PC SDK and FlexPendant SDK is included in
the RobotStudio installation. .NET assemblies are installed in the Global Assembly
Cache (GAC). RobotStudio installs PC SDK 5.14, side by side with previously
installed versions of PC SDK. Previously PC SDK was a part of Robot Application
Builder (RAB) which also included FlexPendant SDK. RAB 5.12 was the last release
of Robot Application Builder.

RAB 5.11 to 5.12
Installs PC SDK and FlexPendant SDK side by side with any previously installed
versions. This makes it easier to work with several versions of the PC SDK on a
single computer.

RAB 5.10
RAB 5.10 upgraded any previously installed PC SDK to 5.10 and installed
FlexPendant SDK 5.08, 5.09 and 5.10 side-by-side. The reason for the side-by-side
installation of several FlexPendant SDK versions was to make it easier for
FlexPendant SDK users to work on FlexPendant SDK applications targeting different
RobotWare versions. Earlier RAB releases can be downloaded from
http://www.abb.com/robotics > RobotStudioCommunity >Developer Tools > PC
SDK Overview.

What is installed?
The following are installed on your PC:

• SDK assemblies and resources
• Application manual PC SDK
• Reference Manual PC SDK

Working with several versions
A PC SDK application normally targets a specific RobotWare release. Assuming
you are developing a PC SDK application for a new customer who uses RobotWare
5.12 and simultaneously you are maintaining an existing PC SDK application for
a customer with robot system using RobotWare 5.09, then you will need to work
with two different PC SDK releases on your PC. For details about releases and
compatibility, see Release upgrades and compatibility on page 40.

PC applications
If you install PC SDK 5.14 and previous versions of PC SDK which came along
with FlexPendant SDK as Robot Application Builder, the previous versions will
exist on the PC. You need to choose which PC SDK version to use when adding
PC SDK references to the application project in Visual Studio (browse to the
installation directory that matches the version when adding the PC SDK references
to the project). You should also set the Reference Property Specific Version to true
to ensure that the correct version of the PC SDK dlls in the Global Assembly Cache
(GAC) is used in run-time.

Continues on next page
20 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

2 Installation and development environment
2.1 Installation overview

Continued

RobotStudio Add-In
A RobotStudio Add-In that uses PC SDK cannot decide which version of the PC
SDK assemblies to use during runtime. The reason being an Add-In itself is an
assembly that is loaded into the RobotStudio application domain. As RobotStudio
also uses PC SDK internally, the PC SDK assemblies are already loaded, and the
Add-Ins are forced to use the same version, which is the same version as
RobotStudio. For example, an Add-In that is loaded into RobotStudio 5.13 will be
forced to use the PC SDK 5.14 assemblies.

Installation procedure
The installation procedure is very simple. By default PC SDK is installed when you
install RobotStudio. For more information, see Installing RobotStudio, inOperating
Manual - Getting started, IRC5 and RobotStudio.An installation wizard will guide
you through the installation. If you would like to install RobotStudio without installing
PC SDK, or remove PC SDK from RobotStudio select Custom in the RobotStudio
installation wizard and select or unselect the feature PC SDK

Note

You are also strongly advised to study the Release Notes that you will find on
the RobotWare DVD and on the RobotStudio Community web site, as these hold
themost up-to-date information, including new features and any known limitations
of the release.

Note

Please note that there is no license key.

3HAC036957-001 Revision: A 21
© Copyright 2010-2012 ABB. All rights reserved.

2 Installation and development environment
2.1 Installation overview

Continued

2.2 How to obtain and install a license key for RAB 5.09 or earlier

Overview
In RAB 5.10 the license check was removed from the software, which allows anyone
to use Robot Application Builder for free. This means you no longer need to bother
about getting a license, or including a licx file in your PC application.

Note

For RAB version 5.09 or earlier, licensing is the second part of the installation
procedure. In case you need to develop a RAB application for RobotWare 5.09
or earlier you need to turn to support to get a free license key.

Install licence key
Follow these steps when you have received the e-mail with the license key file:

ActionStep

Detach the license key file from the e-mail and save it to a folder on your PC.1

Double-click the license key file. This opens the License Install Wizard.2

Follow the instructions in the wizard.3

Note

To execute controller applications towards a real robot controller you must
connect your PC to the robot controller, either through the network or directly to
the service port on the controller. For detailed information, see How to set up
your PC to communicate with robot on page 23.

22 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

2 Installation and development environment
2.2 How to obtain and install a license key for RAB 5.09 or earlier

2.3 How to set up your PC to communicate with robot

Overview
This section describes how to connect your PC to the robot controller.
You can either connect the PC to the controller through an Ethernet network or
directly to the controller service port. When using the controller service port, you
can either obtain an IP address for the PC automatically, or you can specify a fixed
IP address.
When the PC and the controller are connected correctly, the controller is
automatically detected by RobotStudio.

Note

A PC SDK application requires RobotStudio or ABB Robot Communications
Runtime to connect to a controller in run-time. The latter is included in the
RobotStudio installation.

Why is a connection needed?
Connecting the PC to the controller is necessary for all online tasks performed in
RobotStudio. For example, downloading a robot system or files to the controller,
editing configuration files, programming and so on.
It is necessary for executing PC applications targeting a real robot controller.
It also enables you to communicate with the controller by means of a console
window on the PC and get valuable information about controller status, FlexPendant
memory consumption and so on.

Ethernet network connection
If the controller is connected to an Ethernet network, you can connect the PC to
that network as well. The settings to use on the PC depends on the network
configuration. To find out how to set up your PC, contact the network administrator.

Service port connection with automatic IP address
An alternative to network connection is using the controller service port. It has a
DHCP server that automatically gives your PC an IP address if it is configured for
this. For more information about configuring the PC to obtain an IP address
automatically, seeWindows Help on Configure TCP/IP settings.

Note

Obtaining an IP address automatically might fail if the PC already has an IP
address from another controller or Ethernet device. To make sure that you get
a correct IP address if the PC has already been connected to an Ethernet device,
do one of the following:
• Restart the PC before connecting to the controller.
• Run the command “ipconfig /renew” from the command prompt after

connecting the PC to the controller

Continues on next page
3HAC036957-001 Revision: A 23

© Copyright 2010-2012 ABB. All rights reserved.

2 Installation and development environment
2.3 How to set up your PC to communicate with robot

Service port connection with fixed IP address
Instead of obtaining an IP address automatically, you can specify a fixed IP address
on the PC you connect to the controller.
Use the following settings for connecting with a fixed IP address:

ValueProperty

192.168.125.2IP address

255.255.255.0Subnet mask

192.168.125.1Default Gateway

Related information

SeeFor information about

Windows Help - Configure TCP/IP settings.How to set up PC network connections

Connecting a PC to the Service Port in the
RobotStudio help.

How to connect the PC to the Controller ser-
vice port

24 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

2 Installation and development environment
2.3 How to set up your PC to communicate with robot

Continued

2.4 Development environment

Overview
This section presents an overview of the development environment used to create
PC SDK applications. The application has to be programmed and debugged using
Microsoft Visual Studio.

Microsoft .NET and Microsoft Visual Studio
Microsoft Visual Studio is supported by the .NET Framework. A core component
of the .NET Framework is the common language runtime (CLR). It manages code
execution, threads and memory, while also enforcing type safety.
Another major component is the Base Class Library, which is a comprehensive,
object-oriented collection of reusable types. To become a skilled .NET programmer
it is essential to learn the functionality offered by the Base Class Library.
It is not in the scope of this manual to teach how to use Visual Studio. For this
purpose msdn (Microsoft Developer Network) at http://msdn.microsoft.com is a
useful source of information.

Note

From PC SDK 5.11 Visual Studio 2008 is also supported. For information about
upgrading an existing PC SDK project to Visual Studio 2008, see Conversion of
VS 2005 projects to Visual Studio 2008 on page 29.

Choosing a programming language
Together with Visual Basic, C# is the most widely used .NET language.
C# is an object-oriented language derived from C, with some features from C++,
Java and Visual Basic. It was designed for .NET and offers the power and richness
of C++ along with the productivity of Visual Basic. Both PC and FlexPendant SDK
are implemented using C#.
For PC SDK applications any of the .NET languages can be used. ABB support,
however, is offered only in C# and Visual Basic.NET. Likewise, in this manual there
are code samples in C# and Visual Basic.NET, but none in J# or Visual C++.
At run-time it does not matter which language you have used, as compiled .NET
code is language independent. The source code compiles from a high-level
language into Intermediate Language (IL), which is then executed, at runtime, by
the Common Language Runtime. This makes it possible to use different
programming languages, even within the same application. For more information
on .NET terms, see Definitions on page 17.

Note

It is presumed that you are already a .NET programmer. If not, you need to start
by learning the programming language to be used. There are numerous books
teaching C# and Visual Basic.

Continues on next page
3HAC036957-001 Revision: A 25

© Copyright 2010-2012 ABB. All rights reserved.

2 Installation and development environment
2.4 Development environment

Integration with Visual Studio
PC application uses the standard design support. As you will see, using PC SDK
is quite intuitive for a developer used to Visual Studio programming.

Note

The help module is not integrated with the Visual Studio Help function. Clicking
F1 when pointing at code, for example, will open the Visual Studio Programmer’s
Reference or the .NET Framework Class Library for the specific language and
topic. If your problem is PC SDK related this will not help you.

Tip

Depending on what kind of application you are working at, locate the Reference
Manual PC SDK. Click Start menu, point to Programs, ABB Industrial IT,
Robotics IT, RobotStudio 5.xx/SDK. Keep the reference file open while
programming, as you will be needing it all the time.

26 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

2 Installation and development environment
2.4 Development environment

Continued

2.5 Two development models - virtual and real

About this section
When trying out a custom application, you can either use a virtual robot controller
or a real robot system. This section provides information on how to use both the
development models.

Virtual robot technology
The virtual IRC5 of ABB’s RobotStudio allows the IRC5 controller software to
execute on a PC, and supports application developers with a purely virtual
environment to be used for development, test and debug.
When you start the virtual IRC5 in RobotStudio, a virtual robot cabinet along with
a virtual FlexPendant appears on the PC screen.
As a real robot controller is normally not readily at hand for application development,
virtual technology is very valuable.

Requirements for virtual environment
The following software components must be installed to develop, test and debug
using the virtual environment:

• ABB RobotStudio (Complete or Custom - with RobotStudio and PC SDK
selected)

• Microsoft Visual Studio 2005 Express or better, or, Microsoft Visual Studio
2008 Express or better.

The RobotWare option PC Interface is not needed in the virtual environment.

Note

For more information, see Installing and Licensing RobotStudio in Operating
Manual - RobotStudio

Requirements for real environment
The following software components must be installed to develop, test and debug
using a real robot controller:

• ABB RobotStudio (Complete or Custom - with RobotStudio and PC SDK
selected)

• Microsoft Visual Studio 2005 Express or better, or, Microsoft Visual Studio
2008 Express or better.

• Controller option PC Interface
• Network connection between PC and robot controller

For information about how to set up the network, see How to set up your PC to
communicate with robot on page 23.

Virtual test and debug
A PC application will run as an independent executable (exe). Using the virtual
environment, it targets the virtual IRC5 instead of a real robot controller.

Continues on next page
3HAC036957-001 Revision: A 27

© Copyright 2010-2012 ABB. All rights reserved.

2 Installation and development environment
2.5 Two development models - virtual and real

Debugging is easy using the virtual IRC5 and Visual Studio. You attach the
application process to Visual Studio, set a break point in the code, and step through
it as it executes.

Real tests necessary
The virtual environment is a very convenient choice, especially for testing and
debugging.
This means that potential problems may be hard to detect until you test the
application using a real robot system.

Porting the application from virtual to real IRC5
As for a PC SDK application, you will hardly notice any difference when using it
with a real IRC5 controller. The only real difference is that the communication
between the application and the controller will now be done over a network, which
may have an impact on performance.

Deployment to customer
During development, deployment to the controller is done manually. When the
development phase is over and the application needs to be deployed to the
customer, this should be done differently.
For information about how this should be done, see Deployment of a PC SDK
application.

28 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

2 Installation and development environment
2.5 Two development models - virtual and real

Continued

2.6 Conversion of VS 2005 projects to Visual Studio 2008

Overview
Converting an existing PC SDK Visual Studio 2005 project to Visual Studio 2008
is simple. When you open a VS 2005 project in VS 2008, the Visual Studio
Conversion Wizard appears automatically. The procedure which converts the
project to VS 2008 is easy to follow. It consists of a few dialog box providing
information about what will happen.

3HAC036957-001 Revision: A 29
© Copyright 2010-2012 ABB. All rights reserved.

2 Installation and development environment
2.6 Conversion of VS 2005 projects to Visual Studio 2008

This page is intentionally left blank

3 Run-time environment
3.1 Overview

About this chapter
This chapter provides an overview of the run-time environment of custom
applications, including illustrations of the software architecture of the PC SDK.
This explains how communication is carried out between the client and the robot
controllers, as well as how clients access controller resources.

Software architecture
The following illustration shows the Software archtitecture of PC SDK. It shows
the PC platform. Two PC SDK applications developed on top of the PC SDK. The
PC SDK CAPI is the public API offering controller functionality. A PC SDK
application can control many robot controllers on the network. All communication
with these is done via the internal Robot Communication Runtime.

PC platform

Windows

.NET 2.0

Adaptors, C++

PC SDK, C#, CAPI

COM-based internal API

towards robot controller

PC SDK app2 C#

PC SDK app1 VB

Virtual controller

Controller A

Controller B

TCP/IP

PC_architect

Controller API
The PC SDK offer controller functionality through the public application interface
called Controller API. The interface can be seen as a specification of the controller
services available.

3HAC036957-001 Revision: A 31
© Copyright 2010-2012 ABB. All rights reserved.

3 Run-time environment
3.1 Overview

3.2 Running PC SDK Applications

3.2.1 Overview

Introduction
A PC SDK application runs as a .NET executable, started either by double clicking
the exe-file or by browsing to the program using the Windows Start menu.

32 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

3 Run-time environment
3.2.1 Overview

3.2.2 Mastership

Controlling controller resources
Controller resources must be controlled by a single client at a time. Several people
can be logged on to the controller, but only one person at a time can run commands
or change RAPID data. This is for security reasons as well as for protecting data
from being accidentally overwritten.
When logged on to a controller you can have either read-only access or write
access. Read only is the default access right. To get write access the client needs
to request mastership of the controller resource it wants to manipulate.

Note

In addition to the access right system, there is the User Authorization System,
which restricts what each user is allowed to do with the robot. For more
information, see User Authorization System on page 50.

Manual and automatic mode
When the controller is in manual mode, the FlexPendant has priority to write access.
Mastership will not be given to a remote client unless an operator explicitly allows
this through the FlexPendant. At any time, the operator can click Revoke on the
FlexPendant to get the write access back.
In automatic mode, the client who first requests write access will get it. If a remote
client has taken mastership of a domain other remote clients will not be allowed
write access, but will get an exception if they try. For the operator, there is no way
to revoke mastership to the FlexPendant, but to switch the operating mode of the
controller to manual.
As for a remote client, such as a PC SDK application, however, mastership handling
has to be carefully implemented by the application programmer.

Controller mastership domains
The following Controller domains require mastership:

• Rapid
• Configuration

For code examples, see Start program execution on page62 in the PC SDK section.

Note

Operations that require mastership are more resource demanding. Mastership
should therefore be released as soon as an operation is completed.

Remote privilege in manual mode
Most of the time, it is unconvenient to have a PCSDK application perform operations
that require mastership when the controller is in manual mode. Starting program
execution, for example, is not even possible.

Continues on next page
3HAC036957-001 Revision: A 33

© Copyright 2010-2012 ABB. All rights reserved.

3 Run-time environment
3.2.2 Mastership

In manual mode when a remote client, for example RobotStudio or a PC SDK
application, requests mastership a dialog box will appear on the FlexPendant. It
enables the operator to grant mastership to the requesting client.
If mastership is granted, the remote application has the privilege to access robot
controller resources. Meanwhile, the FlexPendant is locked and cannot be used
until the remote application releases mastership or mastership is lost for any of
the reasons mentioned in Losing mastership on page 34.

Losing mastership
Remote clients loses the mastership without warning for the following reasons:

• change from automatic to manual mode
• controller restart
• lost communication
• in manual mode forced revocation of mastership by another client with higher

priority - for example the FlexPendant
If mastership is lost, it has to be taken back explicitly by the client. The controller
does not store the information.

Note

The FlexPendantmay also losemastership without anywarning. Thismay happen
in automatic mode, when a RobotStudio user or a PC SDK application asks for
write access to the controller, for example. The status bar of the FlexPendant
will then indicate “Remote Access in Auto”.

34 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

3 Run-time environment
3.2.2 Mastership

Continued

3.2.3 PC application configuration

Application configuration file
All .NETWinform applications are designed to read configuration from anApp.config
file in the application directory. It is not mandatory to use such a file in a PC SDK
application, but it is sometimes a handy way to add application flexibility.
For your convenience an App.config file that you can use is included in the PC
SDK installation. The default values, which the PC SDK uses if there is no
configuration file to read, are entered in the file. To modify application behavior
you thus need to change the values of the attributes of this file.

Note

Even if you use the App.config file to specify which controllers to work with you
must still use the netscan functionality to establish a connection from your PC
application. For more information, see Discovery domain on page 64.

Adding App.config to the project
Start by copying the App.config file at C:\Program Files\ABB Industrial IT\Robotics
IT\SDK\PC SDK 5.xx to the directory of your .csproj file. Then add the file to the
project by right-clicking the project icon, pointing to Add and selecting Existing
Item.

Note

The Copy Local property of the PC SDK references used by your application
must be set to true to make use of the App.config file. (In the Solution Explorer
in Visual Studio, right-click the reference and select Properties.)

Section tag
The <section> tag in the <configSection> part of theApp.config should specify
that there is a capi section in the file. It should also specify which type is to be used
as the configuration container object as well as the assembly that this type belongs
to:

<section name="capi"
type="ABB.Robotics.Controllers.ConfigurationHandler,
ABB.Robotics.Controllers"/>

Capi section
The PC SDK application specific configuration data should be added to the <capi>
section.

<capi>

...

</capi>

Continues on next page
3HAC036957-001 Revision: A 35

© Copyright 2010-2012 ABB. All rights reserved.

3 Run-time environment
3.2.3 PC application configuration

The following tags are implemented in the PC SDK:

<defaultSystem>
If there is a controller (robot system) in the network that you connect to often, you
may want to use the <defaultSystem> tag. It has an id attribute containing a
string embraced by curly brackets. It is the system’s globally unique identifier
(GUID), which can be find in the system.guid file in the INTERNAL folder of the
robot system.

<defaultSystem id="{469F56DF-938E-4B06-B036-AABBB3E61F83}" />

Using this mechanism enables you to use the default constructor to create a
Controller object for the specified controller:

VB:

Dim aController As Controller = New Controller()

C#:

Controller aController = new Controller();

<remoteControllers>
It is possible to add controllers outside the local network when scanning for
available controllers. One way of doing that is to add the IP address of these
controllers in the <remoteControllers> tag:

<remoteControllers><controller id="192.168.0.9" />

<controller id="192.168.0.19" />

</remoteControllers>

<discovery.networkscanner>
You can configure how long (in ms) a scan operation will last, and increase the
value if netscanning fails. The default value is 200, but if you have a slow PC longer
time might be needed.

<discovery.networkscanner delay="400" />

<defaultUser>
The <defaultUser> tag holds information about user name, password and an
optional application name for the default user. It is used by the UserInfo class to
log on to a controller. If an application name is not supplied, the process name is
used.

<defaultUser name="user name" password="password"
application="application"/>

<rmmp>
When mastership is requested in manual mode by a remote client such as
RobotStudio or a PC SDK application, a dialog is launched on the FlexPendant
asking the operator to confirm that mastership should be passed from the
FlexPendant to a remote client. As long as there is no confirmation on the
FlexPendant the PC SDK application is not given mastership. The time-out
parameter is the time in seconds that the PC SDK application will wait for someone
to confirm remote access in the FlexPendant dialog. The cycle parameter is the
time in ms between poll calls from the PC SDK to check whether mastership has
been granted.

<rmmp cycle="550" timeout="65" />

Continues on next page
36 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

3 Run-time environment
3.2.3 PC application configuration

Continued

<controllerCall>
You can add a time-out in ms and a multiplicand for slow calls to the controller.
The time-out parameter is the maximum time a call through the Controller API will
be permitted. If no answer is returned within the time specified, an exception is
thrown. A slow call is a call that takes longer than usual, usually operations which
require a UAS grant:

<controllerCall timeout="27000" slow="2.1" />

<eventStrategy>
The default way to handle events from the controller is to use asynchronous
delegates (AsyncDelegate), applying the Invokemethod to synchronize events
and GUI.
By using an <eventStrategy> tag, you can choose to use a windows postback
delegate instead. To make this work you must also implement a subscription to
the event from a windows form, or else the event handler will not receive the event:

<eventStrategy name="WindowDelegate" />

Note

Using this strategy for event handling may affect the performance of your
application.

3HAC036957-001 Revision: A 37
© Copyright 2010-2012 ABB. All rights reserved.

3 Run-time environment
3.2.3 PC application configuration

Continued

3.2.4 Communication between PC and controller

COM technology
The PC SDK uses an internal Controller API based on COM technology to
communicate with the controller. This API uses sockets and the local TCP/IP stack
(see Definitions on page 17) towards both real and virtual controllers.

Note

You should be aware that the .NET garbage collector does not collect COM
objects, but these need to be disposed of explicitly by the application programmer.
For more information, see Accessing the controller on page 66.

Resource identification
All controller resources, both real and virtual, are described using object based
hierarchy. Each resource is uniquely identified, including information about which
controller owns the resource by use of the unique system id or IP address of the
controller.
The controller is the top object of the hierarchy:

"/<Controller>/<Domain>/<SubDomain1>/<SubDomain2>/and so on"

Tip

Error messages including such a path indicate where to look for the problem.

Hard real-time demands
The PC CAPI cannot meet hard real-time demands for the following reasons:

• Part of the API executes on a non-real-time operating system.
• Communication is performed with TCP/IP over a network
• The controller sometimes has tasks to perform that have a higher right of

priority.

Note

A minimum response time for real controllers should be expected to be in the
order of 10-100 milliseconds.

38 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

3 Run-time environment
3.2.4 Communication between PC and controller

3.2.5 Licence verification - applies only to versions earlier than PC SDK 5.10

Overview
Deployed PC applications does the license verification during execution, checking
that all application assemblies have been built on a PCwith a valid PC SDK license
key. If the key is missing some functions in the PC SDK will raise an exception
during execution.

Note

The license verification was removed in the 5.10 release. So the licx file detailed
in the next section is no longer needed.

Licenses.licx
The license key should be placed in a “Licenses.licx” file, which should be added
to your project as an embedded resource. For your convenience, such a file is
included in the PC SDK installation at C:\Program Files\ABB Industrial IT\Robotics
IT\SDK\PC SDK 5.xx. The key for the PC SDK in VS 2005 is:
ABB.Robotics.Controllers.Licenses.PCSdk,

ABB.Robotics.Controllers

Note

The preceding path applies to RAB 5.09 and earlier versions. It does not apply
for the new installations.

Tip

The License Compiler (Lc.exe) is a .Net Framework tool. It generates a .license
file from a .licx file. Search in MSDN (licx , lc.exe) if you want more detailed
information.

3HAC036957-001 Revision: A 39
© Copyright 2010-2012 ABB. All rights reserved.

3 Run-time environment
3.2.5 Licence verification - applies only to versions earlier than PC SDK 5.10

3.3 Release upgrades and compatibility

About this section
This section addresses compatibility issues with different version of Robotware.

Note

PC SDK 5.11 to 5.13 supports Visual Studio 2008 and PC SDK 5.14 supports
Visual Studio 2010.

Matching PC SDK and RobotWare release
You should be aware that the PC SDK are developed and tested for a specific
RobotWare release. The general rule is therefore that you develop an application
for a certain release.
Compatibility between revisions is however guaranteed (for example RobotWare
5.11.01 will be compatible with PC SDK 5.11).

RobotWare upgrades
At some time during the lifetime of your application, a robot system that your
application targets may be upgraded with a later RobotWare version.
The PC SDK it is normally compatible with a newer RobotWare release. The PC
that hosts the PC SDK application at the customer, however, still needs an upgrade
of the Robot Communication Runtime, so that it matches the new robotware release.
For more information, see ABB Industrial Robot Communication Runtime.msi on
page132. If you decide to upgrade the PCSDK application, youmust also remember
to upgrade the runtime environment of the customer’s PC. For more information,
see Deployment of a PC SDK application on page 131.

Note

You find all the details about compatibility between different PC SDK versions
in the Release Notes.

Tip

When compiling your project, notice any warnings of obsolete methods, as these
will probably be removed in the next PC SDK release.

Continues on next page
40 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

3 Run-time environment
3.3 Release upgrades and compatibility

Prepared for change
To summarise it is important to keep source code safe and available for
maintenance.

Tip

Ildasm is a Microsoft tool, which comes with the installation of Visual Studio, that
you may find useful. It enables you to open the manifest of a specified assembly
and quickly find out about dependencies for example.
Find out more about it at
http://msdn2.microsoft.com/en-us/library/aa309387(VS.71).aspx

3HAC036957-001 Revision: A 41
© Copyright 2010-2012 ABB. All rights reserved.

3 Run-time environment
3.3 Release upgrades and compatibility

Continued

This page is intentionally left blank

4 Developing Controller applications
4.1 Introduction

About this chapter
This chapter deals with analysis, design, and implementation of PC SDK
applications.
It provides the following specific programming issues that are important for PC
SDK users:

• thread conflicts and how to avoid them
• controller events and event handling
• errors and exception handling
• the User Authorization System

The chapter does not include hands-on information on how to set up your first
project or detailed information on how to use the PC SDK class libraries, as these
topics are covered in dedicated chapters.

Basic approach
In most aspects, using the PC SDK for application development presents no major
difference compared to ordinary .NET development. The .NET class libraries are
used for everything that is not robot specific. In addition, you use the public
Controller API of the SDKs.

ActionStep

Before you start1
Learn the basics about PC SDK programming by reading all relevant sections of
this manual. Feel reassured that this is a timesaving activity and do not rush into
coding.

During development2
Frequently test application functionality.

3HAC036957-001 Revision: A 43
© Copyright 2010-2012 ABB. All rights reserved.

4 Developing Controller applications
4.1 Introduction

4.2 Analysis and design

About this section
The purpose of PC SDK is to provide operator interfaces that fulfill specific customer
needs. This section focusses on the development phases preceding the actual
coding: analysis and design.

Object oriented software development
.NET is entirely object-oriented. Platform services are divided into different
namespaces such as System.Collections, System.Data, System.IO,
System.Security and so on. Each namespace contains a set of related classes
that allow access to platform services. PC SDK, too, is completely object oriented.
Its class libraries are organized in different namespaces such as
ABB.Robotics.Controllers.RapidDomain,ABB.Robotics.Controllers.MotionDomain

and so on
You need to have some experience in object orientation is necessary to start
developing custom applications. It is presumed that you feel comfortable with
concepts such as objects, classes, methods, inheritance, encapsulation and so
on.

Object oriented Analysis and Design
Object Oriented Analysis and Design, OOAD, is a popular topic in computer science
literature, where the importance of doing a thorough analysis and design before
starting coding is commonly accepted. A well designed OO application has a true
representation in the real world. Classes have well defined areas of responsibility
and collaborate in an efficient way to achieve what is required.

Analysis based on communication and use cases
Themain idea of PC SDK is, as has already been pointed out, that custom operator
interfaces can be developed close to end-users, taking their specific needs in
consideration. It therefore goes without saying that analysis is crucial.
The result of the object-oriented analysis is a description of what we want to build,
often expressed as a conceptual model. Any other documentation that is needed
to describe what we want to build, for example pictures of the User Interface, is
also part of analysis.
The most important aspect for PC SDK development is communication with
end-users. Activities which support a shared view of what should be developed
are strongly recommended. Such activities may include:

• creating and discussing use cases together
• coding or drawing prototypes and get end-user feedback

Continues on next page
44 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

4 Developing Controller applications
4.2 Analysis and design

In short, involving end-users from the early stages and keeping them involved
throughout the development project is the best strategy.

Note

Customer satisfaction is what has driven the development of PC SDK. Do make
sure that you have really understood what the end-users of your application
need.

Design is about managing complexity
The result of the object-oriented design details how the system can be built, using
objects. Abstraction is used to break complex problems into manageable chunks.
It makes it possible to comprehend the problem as a whole or to study parts of it
at lower levels of abstraction.
It takes years to become a skilled object oriented designer. Design theory must
be transformed into practical experience and iterated over and over again.
The goal is to produce high quality code, which is cost-efficient and easy to
maintain. This is achieved, for example, when adding new functionality will involve
minimal changes to existing code and most changes will be handled as new
methods and new classes.

Do you need to do design?
There is a huge difference in complexity when creating software such as .NET
framework, for example, and a custom operator view for IRC5. Obviously, themore
complex a system the more careful design is needed. Accordingly, the larger and
more complex a custom application needs to be, the more likely you are to spend
time on design.
This table presents some considerations before deciding how well you need to
design your application before starting coding:

AdviceConsideration

If it is going to be a very simple application with just one view
and a few buttons there is no need even to split the code
between different classes and files.

How much code is it going
to be?

If there will be a substantial amount of code and there might
be further extensions later on, spending time on design be-
comes more relevant.

If yes, spending time on design becomes more relevant.Will different developers
work on different
classes/components? Will
you maintain the code
yourself, or may it be done
by others?

If yes, coding efficiently is important. This will much more
easily be achieved if you spend some time on design.

Is the real time aspect of
the application important?

Continues on next page
3HAC036957-001 Revision: A 45

© Copyright 2010-2012 ABB. All rights reserved.

4 Developing Controller applications
4.2 Analysis and design

Continued

As complex or as easy as you wish
A simple custom application can be created in a day or two using PC SDK. A large
custom application with a number of different views, offering advanced robot system
functionality, however, may take months to develop and will require considerable
programming skill.The recommendation is to start developing a simple application,
which you execute on the target platform, before moving on to advanced PC SDK
programming.

46 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

4 Developing Controller applications
4.2 Analysis and design

Continued

4.3 Controller events and threads

Overview
A controller event is a message from the controller that something has happened.
Events can be caught and acted upon by PC SDK applications.
Controller events use their own threads. This means that user interface threads
and controller event threads can get into conflict. This section gives information
on how to prevent this.

Controller events
PC SDK applications can subscribe to a number of controller events. These are
all described in the Reference Manual PC SDK.
The following table shows some events that exists in the PC SDK.

occurs when...The event...

the controller state has changed.StateChanged

the controller operating mode has changed.OperatingModeChanged

the controller execution status has changed.ExecutionStatusChanged

the value or the state of the I/O signal has changed.Changed

the EventLog has a new messageMessageWritten

the value of a RAPID data has changed.ValueChanged

Note

There is no guarantee you will get an initial event when setting up/activating a
controller event. You need to read the initial state from the controller.

GUI and controller event threads in conflict
You should be aware that controller events use their own threads on the PC
platform. If a GUI thread and a controller event thread get into conflict, deadlocks
or overwritten data may occur. This may happen when a controller event is
succeeded by an update of the user interface, which is indeed a very common
scenario.
You then need to take action in your code to control that the user interface update
is executed by the GUI thread and not by the controller event thread. This is done
by enforcing a thread switch using the Invoke or BeginInvoke method. For
more information with code examples, see Invoke method on page 48.

Continues on next page
3HAC036957-001 Revision: A 47

© Copyright 2010-2012 ABB. All rights reserved.

4 Developing Controller applications
4.3 Controller events and threads

On the other hand, if the controller event should NOT cause any update of the user
interface, you should not take any special action. Using Invoke / BeginInvoke
is performance demanding and should not be used more than necessary.

Note

Thread conflicts often cause hangings. The PC application UI then stops
responding and the application has to be restarted.
Examine what exception has been thrown when you encounter such a situation.
The exception System.InvalidOperationException (PC platform) indicate
thread conflicts. See the next section for information on how to use Invoke to
solve the problem.

Invoke method
All PC application windows views must inherit Control / TpsControl, which
implement Invoke and BeginInvoke. These methods execute the specified
delegate/event handler on the thread that owns the control's underlying window
handle, thus enforcing a switch from a worker thread to the GUI thread. This is
precisely what is needed when a controller event needs to be communicated to
the end user of the system.
Invoke should be called inside the event handler taking care of the controller
event. Notice that you have to create a new object array for the sender and argument
objects:
VB:

Me.Invoke(New EventHandler(UpdateUI), New [Object]() {Me, e})

C#:
this.Invoke(new EventHandler(UpdateUI), new Object[] { this, e });

Also notice that if you use EventHandler in the Invoke method and not the
specific delegate class, for exampleDataValueChangedEventHandler, you need
to typecast the argument in the delegate which updates the user interface. How
this is done is shown by the example below:
VB:

Private Sub UpdateUI(ByVal sender As Object, ByVal e As EventArgs)

Dim args As StateChangedEventArgs args = DirectCast(e,
StateChangedEventArgs) Me.label1.Text =
args.NewState.ToString()

End Sub

C#:
private void UpdateUI(object sender, EventArgs e) {

StateChangedEventArgs args;args =
(StateChangedEventArgs)e;this.label1.Text =
args.NewState.ToString();

}

Continues on next page
48 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

4 Developing Controller applications
4.3 Controller events and threads

Continued

Note

The difference between Invoke and BeginInvoke is that the former makes a
synchronous call and will hang until the GUI operation is completed, whereas
BeginInvoke executes the specified event handler asynchronously. Which
method you want to use depends on the logics of your program. The
recommendation is to choose BeginInvoke whenever possible.

Note

If your code tries to access a GUI control from a background thread the .NET
common language runtime will throw a System.NotSupportedException
(FlexPendant platform) or a System.InvalidOperationException (PC
platform).

3HAC036957-001 Revision: A 49
© Copyright 2010-2012 ABB. All rights reserved.

4 Developing Controller applications
4.3 Controller events and threads

Continued

4.4 User Authorization System

Overview
In the robot controller there is a system controlling user access: the User
Authorization System (UAS). If this feature is used each user needs a user name
and a password to log on to a robot controller via RobotStudio. If the controller
connection for any reason is lost, you need to log on again.
The controller holds information on which operations different users are allowed
to perform. The UAS configuration is done in RobotStudio.

Tip

To learn more about UAS use the help function in RobotStudio.

Accessing UAS from custom applications
Accessing UAS is done by using the property AuthorizationSystem on the
controller object:
VB:

Dim uas As UserAuthorizationSystem =
aController.AuthenticationSystem

C#:
UserAuthorizationSystem uas = aController.AuthenticationSystem;

Grants and Groups
UAS rights are called Grants. The specific user belongs to one of several defined
Groups, where each group has a number of specified grants.
To ensure that you have the necessary grant to perform an operation, you use the
CheckDemandGrantmethod on the AuthorizationSystem object. The grant to
check is passed as an argument:
VB:

If uas.CheckDemandGrant(Grant.LoadRapidProgram) Then

aTask.LoadModuleFromFile(localFile, RapidLoadMode.Replace)

End If

C#:
if (uas.CheckDemandGrant(Grant.LoadRapidProgram))

{aTask.LoadModuleFromFile(localFile, RapidLoadMode.Replace);}

Note

The PC SDK application cannot override the UAS configuration. This means that
the system will in the end prevent you from performing an action that is not
allowed.

Continues on next page
50 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

4 Developing Controller applications
4.4 User Authorization System

MessageBox feedback
If a UAS grant is missing, you should be informed about it. This can be done in a
message as shown in this example:

msg = "You are not allowed to perform this operation, talk to your
system administrator if you need access."

title = "User Authorization System"

MessageBox.Show(msg, title, MessageBoxButtons.OK,
MessageBoxIcon.Exclamation);

GetCurrentGrants and DemandGrant
Another possibility is to retrieve all grants for the current user calling
GetCurrentGrants, then iterate over the grants collection and search the
necessary grants.
Yet another solution is to call DemandGrantwith one of the static Grantmembers
as in argument.
If you do not have the specified grant, the PC SDK throws a
GrantDemandRejectedException.

Tip

Learn more about UAS and Grant members in the Reference Manual PC SDK.

3HAC036957-001 Revision: A 51
© Copyright 2010-2012 ABB. All rights reserved.

4 Developing Controller applications
4.4 User Authorization System

Continued

4.5 Exception handling

Overview
The .NET programming languages provide built-in support for exception handling,
which allows the program to detect and recover from errors during execution.
In managed code, execution cannot continue in the same thread after an unhandled
exception. The thread terminates, and if it is the program thread, the program itself
terminates. To avoid this, accurate exception handling should be used.
Exceptions thrown from the controller are handled by the PC SDK
ExceptionManager, which converts the internal HRESULT to a .NET exception
with a reasonable exception description, before it is thrown to the custom application
layer. The application handling of these exceptions should apply to general .NET
rules.
Exceptions are expensive in a performance perspective and should be avoided if
there are other alternatives. If possible use a try-finally block to clean up
system and unmanaged resource allocations.

Try-catch-finally
Exceptions are handled in try - catch (-finally) blocks, which execute outside
the normal flow of control.
The try block wraps one or several statements to be executed. If an exception
occurs within this block, execution jumps to the catch block, which handles the
exception.
The finally block is executed when the Try block is exited, no matter if an
exception has occurred and been handled. It is used to clean up system or controller
resources.
If you do not knowwhat exceptions to expect or how to handle them, you can catch
them and do nothing. This, however, may result in difficult error tracing, as
exceptions include information on what caused the problem. Therefore, try at least
to display the exception message, either by using a message box or the types
Debug or Trace.

Typecasting
When typecasting Signal or RapidData values, for example, there is a potential
risk of typecast exceptions. To avoid this you can check the object using the is
operator for both value and reference types:
VB:

If TypeOf aRapidData.Value Is Num Then

Dim aNum As Num = DirectCast(aRapidData.Value, Num)

......

End If

C#:
if (aRapidData.Value is Num)

{

Num aNum = (Num)aRapidData.Value;...... }

Continues on next page
52 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

4 Developing Controller applications
4.5 Exception handling

In C# it is also possible to use the as operator for reference types. A null value is
returned if the type is not the expected one:
C#:

DigitalSignal di = this.aController.IOSystem.GetSignal(“UserSig”)
as DigitalSignal;

if (di == null)

{

MessageBox.Show(this, null, “Wrong type”);

}

.NET Best Practices
.The .NET Framework Developer's Guide presents the following best practices for
exception handling:

• Know when to set up a try/catch block. For example, it may be a better idea
to programmatically check for a condition that is likely to occur without using
exception handling. For errors which occur routinely this is recommended,
as exceptions take longer to handle.

• Use exception handling to catch unexpected errors. If the event is truly
exceptional and is an error (such as an unexpected end-of-file), exception
handling is the better choice as less code is executed in the normal
case.Always order exceptions in catch blocks from the most specific to the
least specific. This technique handles the specific exception before it is
passed to a more general catch block.

3HAC036957-001 Revision: A 53
© Copyright 2010-2012 ABB. All rights reserved.

4 Developing Controller applications
4.5 Exception handling

Continued

4.6 How to use the online help

Overview
The online help is available along with the installation of PC SDK and is accessible
from Windows Start menu.
You are recommended to read this Application manual carefully as you develop
your first PC SDK application. PC SDK Reference is an important complement to
this manual, as these make up the complete reference to the class libraries of PC
SDK. For more information, see Documentation and help on page 15.

Note

The SDK Reference is NOT integrated in Visual Studio. You must access it from
the Start menu.

Tip

For more information on the web address to RobotStudio Community, where
PC SDK developers discuss software problems and solutions online, see
Documentation and help on page 15.

54 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

4 Developing Controller applications
4.6 How to use the online help

5 Using the PC SDK
5.1 Controller API

PC SDK domains
The PC SDK class libraries are organized in the following domains:

• Controllers
• ConfigurationDomain
• Discovery
• EventLogDomain
• FileSystemDomain
• Hosting
• IOSystemDomain
• Messaging
• MotionDomain
• RapidDomain
• UserAuthorizationManagement

CAPI illustration
The classes used to access robot controller functionality together make up the
Controller API (CAPI). The following illustration shows a part of the CAPI object
model:

8.2.2_1Class

Continues on next page
3HAC036957-001 Revision: A 55

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.1 Controller API

PC SDK Reference
This Application manual covers some of the PC SDK functionality, but is by no
means a complete guide to the APIs of the PC SDK.
The Reference Manual PC SDK is the complete reference of the PC SDK class
libraries. It should be your companion while programming.
It can be launched from Windows Start menu by pointing at Programs - ABB
Industrial IT - Robotics IT - RobotStudio 5.xx - SDK and selecting PC SDK
Reference.

56 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.1 Controller API

Continued

5.2 Create a simple PC SDK application

Overview
To get started with programming, create a simple application that displays all the
virtual and real controllers on the network. It should then be possible to log on to
a controller and start RAPID execution.

CAUTION

Remote access to controllers must be handled carefully. Make sure you do not
unintentionally disturb a system in production.

Setting up the project
Use this procedure to set up a PC SDK project:

ActionStep

On the Filemenu in Visual Studio, selectNew and click Project. Select aWindows
Application project.

1

Add the references to the PC SDK assemblies, ABB.Robotics.dll and ABB.Robot-
ics.Controllers.dll, to the project. The assemblies are located in the installation
directory, by default at C:\Program Files\ABB Industrial IT\Robotics IT\SDK\PC
SDK 5.xx.

2

Open Form1.cs and add the needed namespace statements at the top of the
source code page:

3

VB:
Imports ABB.Robotics

Imports ABB.Robotics.Controllers

Imports ABB.Robotics.Controllers.Discovery

Imports ABB.Robotics.Controllers.RapidDomain

C#:
using ABB.Robotics;

using ABB.Robotics.Controllers;

using ABB.Robotics.Controllers.Discovery;

using ABB.Robotics.Controllers.RapidDomain;

In the Solution Explorer right-click Form1.cs and select View Designer. Create
the Graphical User Interface according to the instruction in the next section.

4

Continues on next page
3HAC036957-001 Revision: A 57

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.2 Create a simple PC SDK application

Create the user interface
The following screenshot shows the running PC SDK application that we will create.
As you see both virtual and real controllers on the network are included in a network
scan.

7.1_1PCApp

Use this procedure to create the user interface of the application:

ActionStep

Change the Text property of the form to “Network scanning window”.1

Change its Size to 850; 480.2

Add a ListView control to the form. Set the following properties to get a similar
look as in the figure above:

3

FullRowSelect - True
GridLines - True
View - Details

Add the columns for IPAdress, ID, Availability, Virtual, System name, RobotWare
Version and Controller name and adjust the width of the columns.

4

Add a Panel with a Button under the listview. Set the Text of the button.5

Implement network scanning
To find all controllers on the network we start by declaring thesemember variables
in the class Form1
VB:

Private scanner As NetworkScanner = Nothing

Private controller As Controller = Nothing

Private tasks As Task() = Nothing

Private networkWatcher As NetworkWatcher = Nothing

C#:
private NetworkScanner scanner = null;

private Controller controller = null;

private Task[] tasks = null;

Continues on next page
58 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.2 Create a simple PC SDK application

Continued

private NetworkWatcher networkwatcher = null;

As the application is supposed to scan the network as soon as it is started, we can
put the code for it in the Form1_Load event handler, like this:
VB:

Me.scanner = New NetworkScanner

Me.scanner.Scan()

Dim controllers As ControllerInfoCollection = Me.scanner.Controllers

Dim controllerInfo As ControllerInfo = Nothing

Dim item As ListViewItem

For Each controllerInfo In controllers

item = New ListViewItem(controllerInfo.IPAddress.ToString())

item.SubItems.Add(controllerInfo.Id)

item.SubItems.Add(controllerInfo.Availability.ToString())

item.SubItems.Add(controllerInfo.IsVirtual.ToString())

item.SubItems.Add(controllerInfo.SystemName)

item.SubItems.Add(controllerInfo.Version.ToString())

item.SubItems.Add(controllerInfo.ControllerName)

Me.listView1.Items.Add(item)

item.Tag = controllerInfo

Next

C#:
this.scanner = new NetworkScanner();

this.scanner.Scan();

ControllerInfoCollection controllers = scanner.Controllers;

ListViewItem item = null;

foreach (ControllerInfo controllerInfo in controllers)

{

item = new ListViewItem(controllerInfo.IPAddress.ToString());

item.SubItems.Add(controllerInfo.Id);

item.SubItems.Add(controllerInfo.Availability.ToString());

item.SubItems.Add(controllerInfo.IsVirtual.ToString());

item.SubItems.Add(controllerInfo.SystemName);

item.SubItems.Add(controllerInfo.Version.ToString());

item.SubItems.Add(controllerInfo.ControllerName);

this.listView1.Items.Add(item);

item.Tag = controllerInfo;

}

Add a network watcher
By implementing a NetworkWatcher the application can supervise the network
and detect when controllers are lost or added. This example shows how to program
network supervision, and how to add a detected controller to the listview.
After having added a NetworkWatcher object to the FormLoad event handler, we
add a subscription to its Found event.
VB:

Me.networkWatcher = New NetworkWatcher(Me.scanner.Controllers)

AddHandler Me.networkWatcher.Found, AddressOf Me.HandleFoundEvent

AddHandler Me.networkWatcher.Lost, AddressOf Me.HandleLostEvent

Me.networkWatcher.EnableRaisingEvents = True

Continues on next page
3HAC036957-001 Revision: A 59

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.2 Create a simple PC SDK application

Continued

C#:
this.networkwatcher = new NetworkWatcher(scanner.Controllers);

this.networkwatcher.Found += new
EventHandler<NetworkWatcherEventArgs>(HandleFoundEvent);
this.networkwatcher.Lost += new
EventHandler<NetworkWatcherEventArgs>(HandleLostEvent);
this.networkwatcher.EnableRaisingEvents = true;

Note

In C# the event handler skeleton is auto generated using the Tab key twice after
“+=” in the above statements. If you prefer, you can use a simplified syntax when
using generic event handlers:
networkwatcher.Found += HandleFoundEvent;

Handle event
As the events will be received on a background thread and should result in an
update of the user interface the Invokemethodmust be called in the event handler.
For more information on how to force execution from background to GUI thread,
see Invoke method on page 48.
VB:

Private Sub HandleFoundEvent(ByVal sender As Object, ByVal e As
NetworkWatcherEventArgs)

Me.Invoke(New EventHandler(Of
NetworkWatcherEventArgs)(AddControllerToListView), New
[Object]() {Me, e})

End Sub

C#:
void HandleFoundEvent(object sender, NetworkWatcherEventArgs e)

{

this.Invoke(new
EventHandler<NetworkWatcherEventArgs>(AddControllerToListView),
new Object[] { this, e });

}

This event handler updates the user interface:
VB:

Private Sub AddControllerToListView(ByVal sender As Object, ByVal
e As NetworkWatcherEventArgs)

Dim controllerInfo As ControllerInfo = e.Controller

Dim item As New ListViewItem(controllerInfo.IPAddress.ToString())
item.SubItems.Add(controllerInfo.Id)

item.SubItems.Add(controllerInfo.Availability.ToString())

item.SubItems.Add(controllerInfo.IsVirtual.ToString())

item.SubItems.Add(controllerInfo.SystemName)

item.SubItems.Add(controllerInfo.Version.ToString())

item.SubItems.Add(controllerInfo.ControllerName)

Me.listView1.Items.Add(item)

item.Tag = controllerInfo

End Sub

Continues on next page
60 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.2 Create a simple PC SDK application

Continued

C#:
private void AddControllerToListView(object

sender,NetworkWatcherEventArgs e)

{

ControllerInfo controllerInfo = e.Controller;ListViewItem item
= new ListViewItem(controllerInfo.IPAddress.ToString());
item.SubItems.Add(controllerInfo.Id);item.SubItems.Add(controllerInfo.Availability.ToString());item.SubItems.Add(controllerInfo.IsVirtual.ToString());item.SubItems.Add(controllerInfo.SystemName);item.SubItems.Add(controllerInfo.Version.ToString());item.SubItems.Add(controllerInfo.ControllerName);this.listView1.Items.Add(item);item.Tag
= controllerInfo;

}

Establish connection to controller
When you double-clicks a controller in the list a connection to that controller should
be established and you should be logged on. Use this procedure to implement the
functionality:

ActionStep

Generate the DoubleClick event of the ListView.1

In the event handler create a Controller object that represents the selected robot
controller.

2

Log on to the selected controller. For more information, see the code sample of
Implement event handler on page 61.

3

Implement event handler
This example shows the code of the ListView.DoubleClick event handler:

VB:

Dim item As ListViewItem = Me.listView1.SelectedItems(0)

If item.Tag IsNot Nothing Then Dim controllerInfo As ControllerInfo
= DirectCast(item.Tag, ControllerInfo)

If controllerInfo.Availability = Availability.Available Then

If Me.controller IsNot Nothing Then Me.controller.Logoff()
Me.controller.Dispose() Me.controller = Nothing

End If

Me.controller = ControllerFactory.CreateFrom(controllerInfo)
Me.controller.Logon(UserInfo.DefaultUser)

Else MessageBox.Show("Selected controller not available.") End
If

End If

C#:

ListViewItem item = this.listView1.SelectedItems[0]; if (item.Tag
!= null)

{

ControllerInfo controllerInfo = (ControllerInfo)item.Tag; if
(controllerInfo.Availability == Availability.Available)

{

if (this.controller != null)

{ this.controller.Logoff(); this.controller.Dispose();
this.controller = null; }

this.controller = ControllerFactory.CreateFrom(controllerInfo);
this.controller.Logon(UserInfo.DefaultUser);

} else

Continues on next page
3HAC036957-001 Revision: A 61

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.2 Create a simple PC SDK application

Continued

{

MessageBox.Show("Selected controller not available.");

}

}

Note

The check to see whether the Controller object already exists is important,
as you should explicitly log off and dispose of any existing controller object
before creating a new one. The reason is that a logon session allocates resources
that should not be kept longer than necessary.

Start program execution
The Click event handler of the Start RAPID Program button should start program
execution of the first RAPID task.
Starting RAPID execution in manual mode can only be done from the FlexPendant,
so we need to check that the controller is in automatic mode before trying. We then
need to request mastership of Rapid and call the Start method. If mastership is
already held, by ourselves or another client, an InvalidOperationException
will be thrown. For further information, see Mastership on page 33.
It is necessary to release mastership whether or not the start operation succeeds.
This can be done by calling Release() or Dispose() in a finally clause, as
shown in the VB example, or by applying the using mechanism, as shown in the
C# example.
VB:

Private Sub button1_Click(ByVal sender As Object, ByVal e As
EventArgs)

Try

If controller.OperatingMode = ControllerOperatingMode.Auto Then
tasks = controller.Rapid.GetTasks()

Using m As Mastership = Mastership.Request(controller.Rapid)

'Perform operation

tasks(0).Start()

End Using

Else

MessageBox.Show("Automatic mode is required to start execution
from a remote client.")

End If

Catch ex As System.InvalidOperationException

MessageBox.Show("Mastership is held by another client." &
ex.Message)

Catch ex As System.Exception

MessageBox.Show("Unexpected error occurred: " & ex.Message)

End Try

End Sub

C#:
private void button1_Click(object sender, EventArgs e)

{

Continues on next page
62 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.2 Create a simple PC SDK application

Continued

try

{

if (controller.OperatingMode == ControllerOperatingMode.Auto)

{

tasks = controller.Rapid.GetTasks();

using (Mastership m =Mastership.Request(controller.Rapid))

{

//Perform operation

tasks[0].Start();

}

}

else

{

MessageBox.Show("Automatic mode is required to start
execution from a remote client.");

}

}

catch (System.InvalidOperationException ex)

{

MessageBox.Show("Mastership is held by another client." +
ex.Message);

}

catch (System.Exception ex)

{

MessageBox.Show("Unexpected error occurred: " + ex.Message);

}

}

3HAC036957-001 Revision: A 63
© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.2 Create a simple PC SDK application

Continued

5.3 Discovery domain

Overview
To create a connection to the controller from a PC SDK application it has to make
use of the Netscan functionality of the Discovery namespace. A NetworkScanner
object must be created and a Scan call must be performed.
For the PC SDK to establish a connection either RobotStudio or Robot
Communications Runtime must be installed on the PC hosting the PC SDK
application. Robot Communications Runtime can be installed from C:\Program
Files\ABB Industrial IT\Robotics IT\SDK\PC SDK
5.xx\Redistributable\RobotCommunicationRuntime, if RobotStudio is not installed.
To find out what controllers are available on the network you use the
NetworkScanner methods Scan, Find, GetControllers and
GetRemoteControllers.

NetworkScanner
The NetworkScanner class can be declared and represented at class level. No
scanning is done until the Scan method is called. When the GetControllers
method is called a collection of ControllerInfo objects is returned. Each such
object holds information about a particular controller connected to the local network.
Both virtual and real controllers are detected this way.
VB:

Private aScanner As NetworkScanner = New NetworkScanner

...’ Somewhere in the code

aScanner.Scan()

Dim aCollection As ControllerInfo() = aScanner.GetControllers()

C#:
private NetworkScanner aScanner = new NetworkScanner();

... // Somewhere in the code

aScanner.Scan();

ControllerInfo[] aCollection = aScanner.GetControllers();

For a complete code sample, see Implement network scanning on page 58.
If only real controllers are of interest, you can first scan the network and then
request only real controllers using the NetworkScannerSearchCriterias
enumeration in the GetControllers method.
VB:

Dim aCollection As ControllerInfo() =
aScanner.GetControllers(NetworkScannerSearchCriterias.Real)

C#:
ControllerInfo[] aCollection =

aScanner.GetControllers(NetworkScannerSearchCriterias.Real);

If you know which controller system you want to connect to you can call the Find
method, which finds a specified controller on the network. It takes the system ID
as a System.Guid data type as argument. The system’s globally unique identifier
(GUID) can be find in the system.guid file in the INTERNAL folder of the robot
system file system.

Continues on next page
64 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.3 Discovery domain

ControllerInfo object
When a network scan is performed a collection of ControllerInfo objects is
returned. The ControllerInfo object has information about availability. Remember
that the ControllerInfo object is not updated when controller status changes. If you
again need to find out if a controller is available, you need to perform a new network
scan or use an existing Controller object and check the status directly.

Add controllers from outside local network
A network scan is done only on the local network. To detect controllers outside
the local network you need to supply the IP address of the controller using the
static AddRemoteController method or configuring it in the App.config file. For
more information, see PC application configuration on page 35.
If you supply the controller IP address you either use a string argument or a
System.Net.IPAddress object.
VB:

Dim ipAddress As System.Net.IPAddress

Try

ipAddress = System.Net.IPAddress.Parse(Me.textBox1.Text)
NetworkScanner.AddRemoteController(ipAddress) Catch ex As
FormatException Me.textBox1.Text = "Wrong IP address format"

End Try

C#:
System.Net.IPAddress ipAddress;

try

{

ipAddress = System.Net.IPAddress.Parse(this.textBox1.Text);

NetworkScanner.AddRemoteController(ipAddress);

}

catch (FormatException ex)

{

this.textBox1.Text = "Wrong IP address format";

}

NetworkWatcher
By using a NetworkWatcher object you can supervise network changes and find
out when a new controller is found or when a controller is lost. For a complete code
example, see Add a network watcher on page 59.

3HAC036957-001 Revision: A 65
© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.3 Discovery domain

Continued

5.4 Accessing the controller

Controller object
By using a Controller object you can get access to the different domains of the
robot controller, for example IO signals, RAPID, file system and elog messages.
To create a Controller object you normally make a call to the
ControllerFactory:
VB:

Dim info As New ControllerInfo(New Guid("systemid"))

Dim aController As Controller

aController = ControllerFactory.CreateFrom(info)

C#:
ControllerInfo info = new ControllerInfo(new Guid("systemid"));

Controller aController; aController =
ControllerFactory.CreateFrom(info);

The argument is a ControllerInfo object, whichmay have been retrieved during
a network scan, see NetworkScanner on page 64. It is also possible to add an
optional argument if the IP address of the controller or the system ID (guid) should
be used.
If the PC application is supposed to work with a single controller it can be specified
in an app.config file. The default constructor can then be used to create the
controller object, for example aController = new Controller(). For more
information, see <defaultSystem> on page 36.
If several classes in your application need to access the controller, it is
recommended that they all reference the same Controller object. This is done
either by passing the Controller object as an argument to the constructor or by
using a Controller property.

Note

You should be aware that the .NET objects created for operations toward the
robot controller will access native resources (C++ and COM code). The .NET
garbage collector does not collect such objects, but these must be disposed of
explicitly by the application programmer. For more information, see Accessing
the controller on page 66.

Memory management in PC applications
An important feature of the .NET runtime environment is the garbage collector,
which reclaims not referenced memory from the managed heap. Generally, this
means that the programmer does not have to free memory that has been allocated
by the use of new. There is no way of knowing exactly when garbage collection
will be performed however.
For a PC application indeterministic deallocation of resources is usually not a
problem (as opposed to a FlexPendant application, which runs on a small device
with limited memory). The IDisposable interface, however, can be used in a PC

Continues on next page
66 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.4 Accessing the controller

application to obtain deterministic deallocation of resources. Using this interface
you can make an explicit call to the Dispose method of any disposable object.
If your application is running in a Single Threaded Apartment (STA) the Dispose
call will dispose of managed objects, but native resources (created internally by
the PC SDK) will remain. To release these native objects, the method
ReleaseUnmanagedResources should be called periodically, for example when
you clicks a certain button or each time data has been written to the controller.
The method call is not costly.
For an application running in a Multi Threaded Apartment (MTA) the Dispose call
will remove both managed and native objects.

Note

The method Controller.ReleaseUnmanagedResources should be called
once in a while to avoid memory leaks in PC SDK applications running in STA.

Dispose
It is the creator of a disposable object that is responsible for its lifetime and for
calling Dispose. A check should be done that the object still exists and any
subscriptions to controller events should be removed before the Dispose call.
This is how you dispose of a Controller object:
VB:

If aController IsNot Nothing Then

aController.Dispose()

aController = Nothing

End If

C#:
if (aController != null)

{

aController.Dispose();

aController = null;

}

Logon and logoff
Before accessing a robot controller, the PC SDK application has to log on to the
controller. The UserInfo parameter of the Logon method has a DefaultUser
property that can be used. By default all robot systems have such a user configured.
VB:

aController.Logon(UserInfo.DefaultUser)

C#:
aController.Logon(UserInfo.DefaultUser);

If it is necessary for your application to handle users with different rights, these
users can be configured by using the UserAuthorizationManagement
namespace or by using the UAS administration tool in RobotStudio. This is how
you create a new UserInfo object for login purposes.

Continues on next page
3HAC036957-001 Revision: A 67

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.4 Accessing the controller

Continued

VB:
Dim aUserInfo As New UserInfo("name", "password")

C#:
UserInfo aUserInfo = new UserInfo("name", "password");

Note

It is necessary to log off from the controller at application shut down at the latest.
VB: AController.LogOff()
C#: aController.LogOff();

Mastership
In order to get write access to some of the controller domains the application has
to request mastership. The Rapid domain, that is, tasks, programs, modules,
routines and variables that exist in the robot system, is one such domain. The
Configuration domain is another.
For more information, see Mastership on page 33.
It is important to release mastership after a modification operation. One way of
doing this is applying the using statement, which results in an automatic disposal
of the Mastership object at the end of the block. Another possibility is releasing
mastership in a Finally block, which is executed after the Try and Catch blocks.
See how it can be coded in the examples of Start program execution on page 62.

Controller events
The Controller object provides several public events, which enable you to listen
to operating mode changes, controller state changes, mastership changes and so
on.
VB:

AddHandler AController.OperatingModeChanged, AddressOf
OperatingModeChanged

AddHandler AController.StateChanged, AddressOf StateChanged

AddHandler AController.ConnectionChanged, AddressOf
ConnectionChanged

C#:
AController.OperatingModeChanged += new

EventHandler<OperatingModeChangeEventArgs>(OperatingModeChanged);

AController.StateChanged += new
EventHandler<StateChangedEventArgs>(StateChanged);

AController.ConnectionChanged += new
EventHandler<ConnectionChangedEventArgs>(ConnectionChanged);

Note

Controller events use their own threads. Carefully study Controller events and
threads on page 47 to avoid threading conflicts.

Continues on next page
68 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.4 Accessing the controller

Continued

Note

PC SDK 5.09 and onwards uses the generic event handling introduced by .NET
Framework 2.0.

CAUTION

Do not rely on receiving an initial event when setting up/activating a controller
event. There is no guarantee an event will be triggered, so you had better read
the initial state from the controller.

Backup and Restore
Using the Controller object you can call the Backup method. The argument is
a string describing the directory path on the controller where the backup should
be stored. You can also restore a previously backed up system. This requires
mastership of Rapid and Configuration and can only be done in Auto mode.

Backup sample
As the backup process is performed asynchronously you can add an event handler
to receive a BackupCompleted event when the backup is completed. The backup
directory should be created in the system backup directory, or else an exception
will be thrown.
VB:

Dim backupDir As String = "(BACKUP)$" & backupDirName

AddHandler Me.aController.BackupCompleted, AddressOf
aController_BackupCompleted

Me.aController.Backup(backupDir)

C#:
string backupDir = "(BACKUP)$" + backupDirName;

this.aController.BackupCompleted += new
EventHandler<BackupEventArgs>(aController_BackupCompleted);

this.aController.Backup(backupDir);

Restore sample
The Restoremethod is synchronous, that is, execution will not continue until the
restore operation is completed.
VB:

Dim restoreDir As String = "(BACKUP)$" & dirName

Using mc As Mastership =
Mastership.Request(Me.aController.Configuration), mr As
Mastership = Mastership.Request(Me.aController.Rapid)

Me.aController.Restore(restoreDir, RestoreIncludes.All,
RestoreIgnores.All)

End Using

C#:
string restoreDir = "(BACKUP)$" + dirName;

using (Mastership mc =
Mastership.Request(this.aController.Configuration), mr =
Mastership.Request(this.aController.Rapid))

Continues on next page
3HAC036957-001 Revision: A 69

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.4 Accessing the controller

Continued

{

this.aController.Restore(restoreDir, RestoreIncludes.All,
RestoreIgnores.All);

}

Note

You need to be logged in with required grants to perform the above functions.

VirtualPanel
You can programmatically change the operating mode of the virtual IRC5 using
the VirtualPanel class and its ChangeModemethod. This blocks the application
thread until you manually accepts the mode change to Auto using the Virtual
FlexPendant. An alternative to blocking the application thread eternally is to add
a time-out and use a try-catch block to catch the TimeoutException.
VB:

Dim vp As VirtualPanel = VirtualPanel.Attach(aController)

Try

'user need to acknowledge mode change on flexpendent

vp.ChangeMode(ControllerOperatingMode.Auto, 5000)

Catch ex As ABB.Robotics.TimeoutException

Me.textBox1.Text = "Timeout occurred at change to auto"

End Try

vp.Dispose()

C#:
VirtualPanel vp = VirtualPanel.Attach(aController);

try

{

//user need to acknowledge mode change on flexpendent

vp.ChangeMode(ControllerOperatingMode.Auto, 5000);

}

catch (ABB.Robotics.TimeoutException ex)

{

this.textBox1.Text = "Timeout occurred at change to auto";

}

vp.Dispose();

There are also the asynchronousmethod calls BeginChangeOperatingMode and
EndChangeOperatingMode. It is important to use the second method in the
callback since it returns the waiting thread to the thread-pool.
VB:

Dim vp As VirtualPanel = VirtualPanel.Attach(aController)

vp.BeginChangeOperatingMode(ControllerOperatingMode.Auto, New
AsyncCallback(ChangedMode), vp)

C#:
VirtualPanel vp = VirtualPanel.Attach(aController);

vp.BeginChangeOperatingMode(ControllerOperatingMode.Auto, new
AsyncCallback(ChangedMode), vp);

Continues on next page
70 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.4 Accessing the controller

Continued

The callback method must have the following signature and call the
EndChangeOperatingMode as well as dispose the VirtualPanel.
VB:

Private Sub ChangedMode(ByVal iar As IAsyncResult)

Dim vp As VirtualPanel = DirectCast(iar.AsyncState, VirtualPanel)

vp.EndChangeOperatingMode(iar)

vp.Dispose()

......

End Sub

C#:
private void ChangedMode(IAsyncResult iar)

{

VirtualPanel vp = (VirtualPanel) iar.AsyncState;

vp.EndChangeOperatingMode(iar);

vp.Dispose();

....

}

Learn more
This Application manual only covers some of the PC SDK functionality. To get the
full potential of the PC SDK you shouldmake use of the PCSDKReference located
in the PC SDK installation directory. For more information, see PC SDK Reference
on page 56.
You can also learn a lot by becoming an active member of the RobotStudio
Community. Its PC SDK User Forum should be your number one choice when you
find yourself stuck with a coding issue you cannot solve on your own. For more
information, see RobotStudio Community on page 15.

3HAC036957-001 Revision: A 71
© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.4 Accessing the controller

Continued

5.5 Rapid domain

5.5.1 Working with RAPID data

Overview
The RapidDomain namespace enables access to RAPID data in the robot system.
There are numerous PC SDK classes representing the different RAPID data types.
There is also a UserDefined class used for referring to the RECORD structures
in RAPID.
The ValueChanged event enables notification from the controller when persistent
RAPID data has changed.
To speed up event notification from the controller there is a new functionality in
PC SDK 5.10, which allows you to set up subscription priorities. This possibility
applies to I/O signals and persistent RAPID data. This mechanism is further
described in Implementing high priority data subscriptions on page 78.

Note

To read RAPID data you need to log on to the controller. To modify RAPID data
you must also request mastership of the Rapid domain.

Providing the path to the RAPID data
To read or write to RAPID data you must first create a RapidData object. The path
to the declaration of the data in the controller is passed as argument. If you do not
know the path, you need to search for the RAPID data by using the
SearchRapidSymbol functionality.

Direct access
Direct access requires less memory and is faster, and is therefore recommended
if you do not need to use the task and module objects afterwards.
The following example shows how to create a RapidData object that refers to the
instance “reg1” in the USER module.
VB:

Dim rd As RapidData = aController.Rapid.GetRapidData("T_ROB1",
"user", "reg1")

C#:
RapidData rd = aController.Rapid.GetRapidData("T_ROB1", "user",

"reg1");

Hierarchical access
If you need the task and module objects hierarchical access can be more efficient.
GetRapidData exists in the Rapid, Task and Module class.
VB:

rd = aController.Rapid.GetTask("T_ROB1").GetModule("user").

GetRapidData("reg1")

Continues on next page
72 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.1 Working with RAPID data

C#:
rd = aController.Rapid.GetTask("T_ROB1").GetModule("user").

GetRapidData("reg1");

Accessing data declared in a shared module
If your application is to be used with a MultiMove system (one controller and several
motion tasks/robots), it may happen that the RAPID instance you need to access
is declared in a Shared RAPID module. Such a module can be used by all tasks,
T_ROB1, T_ROB2 and so on.
The following example shows how to create a RapidData object that refers to the
instance “reg100”, which is declared in a shared module.
C#:

Task tRob1 = aController.Rapid.GetTask("T_ROB1");

if (tRob1 != null)

{

RapidData rData = tRob1.GetRapidData("user", "reg1");

}

Note

From RobotWare 5.12 onwards, even if the data is declared in a Shared Hidden
module it can be accessed by the PC SDK.

Creating an object representing the RAPID data value
The RapidData object stores the path to the RAPID data. But this is not enough
if you want to access its value (at least not if you want tomodify it). To do that you
need to create another object, which represents the value of the RAPID data.
In the RapidDomain namespace there are types representing the different RAPID
data types. To create the object needed to represent the RAPID data value you
use the RapidData property Value and cast it to the corresponding type, for
example Num, Bool or Tooldata.
To access the value of a RAPID data of the RAPID data type bool:
VB:

'declare a variable of data type RapidDomain.Bool

Dim rapidBool As ABB.Robotics.Controllers.RapidDomain.Bool

Dim rd As ABB.Robotics.Controllers.RapidDomain.RapidData =
aController.Rapid.GetRapidData("T_ROB1", "MainModule", "flag")

'test that data type is correct before cast

If TypeOf rd.Value Is ABB.Robotics.Controllers.RapidDomain.Bool
Then

rapidBool = DirectCast(rd.Value,
ABB.Robotics.Controllers.RapidDomain.Bool)

'assign the value of the RAPID data to a local variable

Dim boolValue As Boolean = rapidBool.Value

End If

C#:
//declare a variable of data type RapidDomain.Bool

ABB.Robotics.Controllers.RapidDomain.Bool rapidBool;

Continues on next page
3HAC036957-001 Revision: A 73

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.1 Working with RAPID data

Continued

ABB.Robotics.Controllers.RapidDomain.RapidData rd =
aController.Rapid.GetRapidData("T_ROB1", "MainModule",
"flag");

//test that data type is correct before cast

if (rd.Value is ABB.Robotics.Controllers.RapidDomain.Bool)

{

rapidBool = (ABB.Robotics.Controllers.RapidDomain.Bool)rd.Value;

//assign the value of the RAPID data to a local variable

bool boolValue = rapidBool.Value;

}

If you want only to read this variable you can use the following technique instead
of creating a RapidDomain.Bool object:
VB:

Dim b As Boolean = Convert.ToBoolean(rd.Value.ToString())

C#:
bool b = Convert.ToBoolean(rd.Value.ToString());

The .NET type ToolData (representing the RAPID data type tooldata) can be
created like this:
VB:

Dim aTool As ToolData

If TypeOf rd.Value Is ToolData Then

aTool = DirectCast(rd.Value, ToolData)

End If

C#:
ToolData aTool;

if (rd.Value is ToolData)

{

aTool = (ToolData) rd.Value;

}

IRapidData.ToString method
All RapidDomain structures representing RAPID data types implement the
IRapidData interface. It has a ToString method, which returns the value of the
RAPID data in the form of a string. This is a simple example:

string bValue = rapidBool.ToString();

The string is formatted according to the principle described in
IRapidData.FillFromString method on page 75.
The following is an example of a complex data type. The ToolDataTframe property
is of type Pose. Its Trans value is displayed in a label in the format [x, y, z].
VB:

Me.label1.Text = aTool.Tframe.Trans.ToString()

C#:
this.label1.Text = aTool.Tframe.Trans.ToString();

Continues on next page
74 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.1 Working with RAPID data

Continued

IRapidData.FillFromString method
The IRapidData interface also has a FillFromString method, which fills the
object with a valid RAPID string representation. The method can always be used
when you need to modify RAPID data. Using the method with the
RapidDomain.Bool variable used earlier in the chapter will look like this:
rapidBool.FillFromString("True")

Using it for a RapidDomain.Num variable is similar:
rapidNum.FillFromString("10")

String format
The format is constructed recursively. The following example illustrate it.
Example:
The RapidDomain.Pose structure represents the RAPID data type pose, which
describes how a coordinate system is displaced and rotated around another
coordinate system.

public struct Pose : IRapidData

{

public Pos trans;

public Orient rot;

}

The following is an example in RAPID:
VAR pose frame1;

...

frame1.trans := [50, 0, 40];

frame1.rot := [1, 0, 0, 0];

The frame1 coordinate transformation is assigned a value that corresponds to a
displacement in position where X=50mm, Y=0mm, and Z=40mm. There is no
rotation.
The RapidDomain.Pose structure consists of two struct variables called trans
and rot of the data types Pos and Orient. Pos has three floats and Orient consists
of four doubles. The FillFromString format for a Pose object is “[[1.0, 0.0, 0.0,
0.0][10.0, 20.0, 30.0]]”.
The example shows how to write a new value to a RAPID pose variable:
VB:

If TypeOf rd.Value Is Pose Then

Dim rapidPose As Pose = DirectCast(rd.Value, Pose)

rapidPose.FillFromString("[[1.0, 0.5, 0.0, 0.0][10, 15, 10]]")

rd.Value = rapidPose

End If

C#:
if (rd.Value is Pose)

{

Pose rapidPose = (Pose) rd.Value;

rapidPose.FillFromString("[[1.0, 0.5, 0.0, 0.0][10, 15, 10]]");

rd.Value = rapidPose;

}

Continues on next page
3HAC036957-001 Revision: A 75

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.1 Working with RAPID data

Continued

Note

The string format must be carefully observed. If the string argument has a wrong
format, a RapidDataFormatException is thrown.

Writing to RAPID data
Writing to RAPID data is possible only by using the type cast RapidData value,
to which the new value is assigned. To write the new value to the RAPID data in
the controller, you must assign the .NET object to the Value property of the
RapidData object. The following example uses the rapidBool object created in
Creating an object representing the RAPID data value on page 73.
VB:

'Assign new value to .Net variable

rapidBool.Value = False

'Request mastership of Rapid before writing to the controller

Me.master = Mastership.Request(Me.aController.Rapid)

'Change: controller is repaced by aController

rd.Value = rapidBool

'Release mastership as soon as possible

Me.master.Dispose()

C#:
//Assign new value to .Net variable

rapidBool.Value = false;

//Request mastership of Rapid before writing to the controller

this.master = Mastership.Request(this.aController.Rapid);

//Change: controller is repaced by aController

rd.Value = rapidBool;

//Release mastership as soon as possible

this.master.Dispose();

For more information on how the controller handles write accesa, see Mastership
on page 33 and for another code example of implementing mastership in a PC
SDK application, see Start program execution on page 62.
The preceding example is simple, as the value to change was a simple bool. Often,
however, RAPID uses complex structures. By using the FillFromStringmethod
you can assign a new Value to any RapidData and write it to the controller.
The string must be formatted according to the principle described in the
IRapidData. FillFromString section. The following example shows how to
write a new value to the pos structure (x, y, z) of a RAPID tooldata:
VB:

Dim aPos As New Pos()

aPos.FillFromString("[2,3,3]")

aTool.Tframe.Trans = aPos

Using Mastership.Request(aController.Rapid)

rd.Value = aTool

End Using

C#:
Pos aPos = new Pos();

Continues on next page
76 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.1 Working with RAPID data

Continued

aPos.FillFromString("[2,3,3]");

aTool.Tframe.Trans = aPos;

using (Mastership.Request(aController.Rapid))

{

rd.Value = aTool;

}

Note

The new value is not written to the controller until the last statement is executed.

Letting the user know that RAPID data has changed
In order to be notified that RAPID data has changed you need to add a subscription
to the ValueChanged event of the RapidData instance. However, that this only
works for persistent RAPID data.

Add subscription
This is how you add a subscription to the ValueChanged event:
VB:

AddHandler rd.ValueChanged, AddressOf rd_ValueChanged

C#:
rd.ValueChanged += new

EventHandler<DataValueChangedEventArgs>(rd_ValueChanged);

Handle event
The following example shows the implementation of the event handler. Remember
that controller events use their own threads, and avoidWinforms threading problems
by the use of Control.Invoke, which forces the execution from the background
thread to the GUI thread.
VB:

Private Sub rd_ValueChanged(ByVal sender As Object, ByVal e As
DataValueChangedEventArgs)

Me.Invoke(New EventHandler(UpdateGUI), sender, e)

End Sub

C#
private void rd_ValueChanged(object sender,

DataValueChangedEventArgs e)

{

this.Invoke(new EventHandler(UpdateGUI), sender, e);

}

To learn more about potential threading conflicts in PC SDK applications, see
Controller events and threads on page 47.

Read new value from controlller
Update the user interface with the new value. As the value is not part of the event
argument, you must use the RapidDataValue property to retrieve the new value:

Continues on next page
3HAC036957-001 Revision: A 77

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.1 Working with RAPID data

Continued

VB:
Private Sub UpdateGUI(ByVal sender As Object, ByVal e As

System.EventArgs)

Dim tool1 As ToolData = DirectCast(Me.rd.Value, ToolData)

Me.label1.Text = tool1.Tframe.Trans.ToString()

End Sub

C#
private void UpdateGUI(object sender, System.EventArgs e)

{

ToolData tool1 = (ToolData)this.rd.Value;

this.label1.Text = tool1.Tframe.Trans.ToString();

}

Note

Subscriptions work only for RAPID data declared as PERS.

Implementing high priority data subscriptions
To speed up event notification from the controller, it is possible to set up
subscription priorities for persistent RAPID data. To do this, you can use the
Subscribe method and the enumeration EventPriority as argument. The
following example shows an ordinary signal subscription and a subscription with
high priority:
VB:

AddHandler rd.ValueChanged, AddressOf rd_ValueChanged

rd.Subscribe(rd_ValueChanged, EventPriority.High)

C#:
rd.ValueChanged += new

EventHandler<DataValueChangedEventArgs>(rd_ValueChanged);

rd.Subscribe(rd_ValueChanged, EventPriority.High);

To deactivate subscriptionswith high priority you can call the Unsubscribemethod
as described in the following example:
VB:

rd.Unsubscribe(rd_ValueChanged)

C#:
rd.Unsubscribe(rd_ValueChanged);

Note

High priority subscriptions can be used for I/O signals and RAPID data declared
PERS. The controller can handle 64 high priority subscriptions.

RapidData disposal
You are recommended to dispose the RapidData objects when they are no longer
needed. For more information, see Memory management in PC applications on
page 66.

Continues on next page
78 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.1 Working with RAPID data

Continued

VB:
If rd IsNot Nothing Then

rd.Dispose()

rd = Nothing

End If

C#:
if (rd != null)

{

rd.Dispose();

rd = null;

}

3HAC036957-001 Revision: A 79
© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.1 Working with RAPID data

Continued

5.5.2 Handling arrays

Overview
In RAPID you can have up to three dimensional arrays. These are accessible by
using a RapidData object like for any other RAPID data.
There are mainly two ways of accessing each individual element of an array: by
indexers or by an enumerator.

ArrayData object
If the RapidData references a RAPID array is Value property returns an object
of ArrayData type. Before making a cast, check the type using the is operator
or by using the IsArray property on the RapidData object.
VB:

Dim rd As RapidData = aController.Rapid.GetRapidData("T_ROB1",
"user", "num_array")

If rd.IsArray Then

Dim ad As ArrayData = DirectCast(rd.Value, ArrayData)

.....

End If

C#:
RapidData rd = aController.Rapid.GetRapidData("T_ROB1", "user",

"num_array");

if (rd.IsArray)

{

ArrayData ad = (ArrayData)rd.Value;

.....

}

Array dimensions
The dimension of the array is returned by the Rank property. If you need to check
the length of the individual arrays you can use the GetLength method on the
ArrayData object passing the dimension index as argument.
VB:

Dim aRank As Integer = ad.Rank

Dim len As Integer = ad.GetLength(aRank)

C#:
int aRank = ad.Rank;

int len = ad.GetLength(aRank);

Array item access by using indexers
By the use of indexers you can access each array element, even in three
dimensional arrays. A combination of the GetLengthmethod and For loopsmakes
it possible to access any item:
VB:

Dim aSum As Double = 0R Dim aNum As Num Dim rd As RapidData =
aController.Rapid.GetRapidData("T_ROB1", "user", "num_array")
Dim ad As ArrayData = DirectCast(rd.Value, ArrayData) Dim

Continues on next page
80 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.2 Handling arrays

aRank As Integer = ad.Rank If ad.Rank = 1 Then For i As
Integer = 1 To ad.Length aNum = DirectCast(ad(i), Num) aSum
+= CDbl(aNum) Next ElseIf ad.Rank = 2 Then For i As Integer
= 1 To ad.GetLength(0) For j As Integer = 1 To ad.Length aNum
= DirectCast(ad(i, j), Num) aSum += CDbl(aNum) Next Next Else
For i As Integer = 0 To ad.GetLength(0) - 1 For j As Integer
= 0 To ad.GetLength(1) - 1 For k As Integer = 0 To
ad.GetLength(2) - 1 aNum = DirectCast(ad(i, j, k), Num) aSum
+= CDbl(aNum) Next Next Next End If

C#:
double aSum = 0d;Num aNum;RapidData rd =

aController.Rapid.GetRapidData("T_ROB1", "user",
"num_array");ArrayData ad = (ArrayData)rd.Value;int aRank =
ad.Rank;if (ad.Rank == 1){for (int i = 1; i <= ad.Length;
i++){aNum = (Num)ad[i];aSum += (double)aNum;}}else if (ad.Rank
== 2) { for (int i = 1; i <= ad.GetLength(0); i++) { for (int
j = 1; j <= ad.Length; j++) { aNum = (Num)ad[i, j]; aSum +=
(double)aNum; } } } else { for (int i = 0; i <
ad.GetLength(0); i++) { for (int j = 0; j < ad.GetLength(1);
j++) { for (int k = 0; k < ad.GetLength(2); k++) { aNum =
(Num)ad[i, j, k]; aSum += (double)aNum; } } } }

Array item access using enumerator
You can also use the enumerator operation (foreach) like it is used by collections
in .NET. Note that it can be used for both one dimension and multi-dimensional
arrays to access each individual element. The previous example is a lot simpler
this way:
VB:

Dim sum As Double = 0R For Each ANum As Num In ad sum += CDbl(ANum)
Next

C#:
double sum = 0d;foreach (Num ANum in ad){

sum += (double)ANum;

}

3HAC036957-001 Revision: A 81
© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.2 Handling arrays

Continued

5.5.3 ReadItem and WriteItem methods

Overview
An alternative way of accessing RAPID data stored in an array are the ReadItem
and WriteItem methods.

ReadItem method
Using the ReadItem method you can directly access a RapidData item in an
array, for example an array with RobTargets or Nums. The index to the item is
explicitly specified in the ReadItem call. The first item is in position 1, that is, the
array is 1-based as in RAPID.
VB:

Dim aNum As Num = DirectCast(rd.ReadItem(1, 2), Num)

C#:
Num aNum = (Num)rd.ReadItem(1, 2);

This example retrieves the second Num value in the first array of the RAPID data
variable referenced by rd.

WriteItem method
It is possible to use the WriteItem method to write to an individual RAPID data
item in an array. The following example shows how to write the result of an
individual robot operation into an array representing a total robot program with
several operations:
VB:

Dim aNum As New Num(OPERATION_OK)

rd.WriteItem(aNum, 1, 2)

C#:
Num aNum = new Num(OPERATION_OK);

rd.WriteItem(aNum, 1, 2);

Note

If the index is not in the range specified, an IndexOutOfRangeException will
be thrown.

82 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.3 ReadItem and WriteItem methods

5.5.4 UserDefined data

Overview
RECORD structures are common in RAPID code. To handle these unique data
types, a UserDefined class is available. This class has properties and methods
to handle individual components of a RECORD.
In some cases implementing your own structure can improve application design
and code maintenance.

Creating UserDefined object
The UserDefined constructor takes a RapidDataType object as argument. To
retrieve a RapidDataType object you need to provide a RapidSymbol or the path
to the declaration of the RAPID data type.
The following example creates a UserDefined object representing the RAPID
RECORD processdata:
VB:

Dim rdt As RapidDataType

rdt = Me.aController.Rapid.GetRapidDataType("T_ROB1", "user",
"processdata")

Dim processdata As New UserDefined(rdt)

C#
RapidDataType rdt;

rdt = this.aController.Rapid.GetRapidDataType("T_ROB1", "user",
"processdata");

UserDefined processdata = new UserDefined(rdt);

Reading UserDefined data
UserDefined can be used to read any kind of RECORD variable from the controller.
The individual components of the RECORD are accessible using the Components
property and an index. Each Component can be read as a string.
VB:

Dim processdata As New UserDefined(rdt) processdata =
DirectCast(rd.Value, UserDefined) Dim no1 As String =
processdata.Components(0).ToString() Dim no2 As String =
processdata.Components(1).ToString()

C#:
UserDefined processdata = new UserDefined(rdt);processdata =

(UserDefined)rd.Value;string no1 =
processdata.Components[0].ToString();string no2 =
processdata.Components[1].ToString();

Each individual string can then be used in a FillFromStringmethod to convert
the component into a specific data type, for example RobTarget or ToolData.
For more information, see IRapidData.FillFromString method on page 75.

Continues on next page
3HAC036957-001 Revision: A 83

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.4 UserDefined data

Writing to UserDefined data
If you want to modify UserDefined data and write it to the controller, you must
first read the UserDefined object and the apply new values using the
FillFromString method. Then you need to perform a write operation using the
RapidData.Value property.
VB:

processdata.Components(0).FillFromString("[0,0,0]")
processdata.Components(1).FillFromString("10") rd.Value =
processdata

C#:
processdata.Components[0].FillFromString("[0,0,0]");processdata.Components[1].FillFromString("10");rd.Value

= processdata;

For more information and code samples, see IRapidData.FillFromString method
on page 75 andWriting to RAPID data on page 76.

Recursively reading the structure of any RECORD data type
If you need to know the structure of a RECORD data type (built-in or user-defined)
you must first retrieve the record components of the record. Then you need to
iterate the record components and check if any of them are also records. This
procedure must be repeated until all record components are atomic types.The
following code example shows how to get information about the robtarget data
type. The robtarget URL is “RAPID/robtarget” or just “robtarget”.

private void SearchRobtarget()

{

RapidSymbolSearchProperties sProp =
RapidSymbolSearchProperties.CreateDefault(); sProp.Recursive
= true; sProp.Types = SymbolTypes.Constant |
SymbolTypes.Persistent; sProp.SearchMethod =
SymbolSearchMethod.Block; RapidSymbol[] rsCol =
tRob1.SearchRapidSymbol(sProp, "RAPID/robtarget", "p10");
RapidDataType theDataType; if (rsCol.Length > 0) {
Console.WriteLine("RapidSymbol name = " + rsCol[0].Name);
theDataType = RapidDataType.GetDataType(rsCol[0]);
Console.WriteLine("DataType = " + theDataType.Name); if
(theDataType.IsRecord) { RapidSymbol[] syms =
theDataType.GetComponents(); SearchSymbolStructure(syms);
} }

}

private void SearchSymbolStructure(RapidSymbol[] rsCol)

{

RapidDataType theDataType;foreach (RapidSymbol rs in
rsCol){Console.WriteLine("RapidSymbol name = " +
rs.Name);theDataType =
RapidDataType.GetDataType(rs);Console.WriteLine("DataType
= " + theDataType.Name);if (theDataType.IsRecord) {
RapidSymbol[] syms = theDataType.GetComponents();
SearchSymbolStructure(syms); }}

}

The code example above produces the following printout:

Continues on next page
84 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.4 UserDefined data

Continued

RapidSymbol name = p10
DataType = robtarget
RapidSymbol name = trans
DataType = pos
RapidSymbol name = x
DataType = num
RapidSymbol name = y
DataType = num
RapidSymbol name = z
DataType = num
RapidSymbol name = rot
DataType = orient
RapidSymbol name = q1
DataType = num
RapidSymbol name = q2
DataType = num
RapidSymbol name = q3
DataType = num
RapidSymbol name = q4
DataType = num
RapidSymbol name = robconf
DataType = confdata
RapidSymbol name = cf1
DataType = num
RapidSymbol name = cf4
DataType = num
RapidSymbol name = cf6
DataType = num
RapidSymbol name = cfx
DataType = num
RapidSymbol name = extax
DataType = extjoint
RapidSymbol name = eax_a
DataType = num
RapidSymbol name = eax_b
DataType = num
RapidSymbol name = eax_c
DataType = num
RapidSymbol name = eax_d
DataType = num

Continues on next page
3HAC036957-001 Revision: A 85

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.4 UserDefined data

Continued

RapidSymbol name = eax_e
DataType = num
RapidSymbol name = eax_f
DataType = num

Implement your own struct representing a RECORD
The following example shows how you can create your own .NET data type
representing a RECORD in the controller instead of using the UsefDefined type.

Creating ProcessData type
VB:

Dim rdt As RapidDataType = ctr.Rapid.GetRapidDataType("T_ROB1",
"MyModule", "processdata") Dim pc As New ProcessData(rdt)
pc.FillFromString(rd.Value.ToString())

C#
RapidDataType rdt = ctr.Rapid.GetRapidDataType("T_ROB1", "MyModule",

"processdata");ProcessData pc = new
ProcessData(rdt);pc.FillFromString(rd.Value.ToString());

Implementing ProcessData struct
The following example shows how the new data type ProcessData may be
implemented. This is done by using a .NET struct and letting ProcessData wrap
the UserDefined object.
The struct implementation should include a FillFromString and ToString
method, that is, inherit the IRapidData interface. Any properties and methods
may also be implemented.
VB:

Public Structure ProcessData

Implements IRapidData

Private data As UserDefined

Public Sub New(ByVal rdt As RapidDataType)

data = New UserDefined(rdt)

End Sub

Private Property IntData() As UserDefined

Get

Return data

End Get

Set(ByVal Value As UserDefined)

data = Value

End Set

End Property

.....

End Structure

C#:
public struct ProcessData: IRapidData

Continues on next page
86 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.4 UserDefined data

Continued

{

private UserDefined data;

public ProcessData(RapidDataType rdt)

{

data = new UserDefined(rdt);

}

private UserDefined IntData

{

get { return data; }

set { data = value; }

}

public int StepOne

{

get

{

int res = Convert.ToInt32(IntData.Components[0].ToString());

return res;

}

set

{

IntData.Components[0] = new Num(value);

}

}

}

Implementing IRapidData methods
This piece of code shows how the two IRapidData methods ToString and
FillFromString can be implemented.
VB:

Public Sub FillFromString(ByVal newValue As String) Implements
ABB.Robotics.Controllers.RapidDomain.IRapidData.FillFromString

IntData.FillFromString(newValue)

End Sub

Public Overrides Function ToString() As String Implements
ABB.Robotics.Controllers.RapidDomain.IRapidData.ToString

Return IntData.ToString()

End Function

C#:
public void FillFromString(string newValue)

{

IntData.FillFromString(newValue);

}

public override string ToString()

{

return IntData.ToString();

}

Continues on next page
3HAC036957-001 Revision: A 87

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.4 UserDefined data

Continued

NOTE! The ToStringmethod has to use the Overrides keyword in Visual Basic
and the override keyword in C#.

Property implementation
Each item in the RECORD structure should have a corresponding property in the
extended .NET data type. The get and set methods have to implement the
conversion from/to controller data type to .NET data type.
VB:

Public Property Step() As Integer

Get

Dim res As Integer =
Convert.ToInt32(IntData.Components(0).ToString())

Return res

End Get

Set(ByVal Value As Integer)

Dim tmp As Num = New Num

tmp.FillFromNum(Value)

IntData.Components(0) = tmp

End Set

End Property

C#:

public int Step

{

get

{

int res = Convert.ToInt32(IntData.Components[0].ToString());

return res;

}

set

{

Num tmp = new Num();

tmp.FillFromNum(value);

IntData.Components[0] = tmp;

}

}

88 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.4 UserDefined data

Continued

5.5.5 RAPID symbol search

Overview
Most RAPID elements (variables, modules, tasks, records and so on.) are members
of a symbol table, in which their names are stored as part of a program tree
structure.
It is possible to search this table and get a collection of RapidSymbol objects,
each one including the RAPID object name, location, and type.

Search method
The searchmust be configured carefully, due to the large amount of RAPID symbols
in a system. To define a query you need to consider from where in the program
tree the search should be performed, which symbols are of interest, and what
information you need for the symbols of interest. To enable search from different
levels, the SearchRapidSymbol method is a member of several different SDK
classes, for example Task, Module, and Routine. The following example shows
a search performed with Task as the starting point:
VB:

Dim RSCol As RapidSymbol()

RSCol = ATask.SearchRapidSymbol(SProp, "num", string.Empty)

C#:
RapidSymbol[] rsCol;rsCol = aTask.SearchRapidSymbol(sProp, "num",

string.Empty)

The SearchRapidSymbol method has three arguments. The first argument, of
data type RapidSymbolSearchProperties, is detailed in the next section. The
second and third arguments are detailed in the following sections.

Search properties
The RapidSymbolSearchProperties type is complex and requires some
knowledge about RAPID concepts.
It is used to specify search method, type of RAPID symbol to search for, whether
the search should be recursive, whether the symbols are local and/or global, and
whether or not the search result should include only symbols currently used by a
program. If a property is not valid for a particular symbol, it will be discarded and
will not exclude the symbol from the search result.
The table describes the different properties of RapidSymbolSearchProperties.

DescriptionProperty

Specifies the direction of the search, which can be Block
(down) or Scope (up). Example: If the starting point of the
search is a routine, a block-search will return the symbols de-
clared within the routine, whereas a scope-search will return
the symbols accessible from the routine.

SearchMethod

Continues on next page
3HAC036957-001 Revision: A 89

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.5 RAPID symbol search

DescriptionProperty

Specifies which RAPID type(s) you want to search for. The
SymbolTypes enumeration includes Constant, Variable,
Persistent, Function, Procedure, Trap, Module, Task,
Routine, RapidData. and so on. (Routine includes Func-
tion, Procedure and Trap. RapidData includes Constant,
Variable and Persistent.)

Types

For both block and scope search it is possible to choose if the
search should stop at the next scope or block level or recurs-
ively continue until the root (or leaf) of the symbol table tree is
reached.

Recursive

Specifies whether global symbols should be included.GlobalSymbols

Specifies whether local symbols should be included.LocalSymbols

Specifies whether only symbols in use by the loaded RAPID
program should be searched.

InUse

Default instance
RapidSymbolSearchProperties has several staticmethods that return a default
instance.
VB:

Dim SProp As RapidSymbolSearchProperties =
RapidSymbolSearchProperties.CreateDefault()

C#:
RapidSymbolSearchProperties sProp =

RapidSymbolSearchProperties.CreateDefault();

The default instance has the following values:.

DescriptionProperty

SymbolSearchMethod.BlockSearchMethod

SymbolTypes.NoSymbolTypes

TrueRecursive

TrueGlobalSymbols

TrueLocalSymbols

TrueInUse

Using this instance you can specify the search properties of the search you want
to perform.
Example:
VB:

SProp.SearchMethod = SymbolSearchMethod.Scope

SProp.Types = SymbolTypes.Constant Or SymbolTypes.Persistent

SProp.Recursive = False

C#:
sProp.SearchMethod = SymbolSearchMethod.Scope;

sProp.Types = SymbolTypes.Constant | SymbolTypes.Persistent

sProp.Recursive = false;

Continues on next page
90 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.5 RAPID symbol search

Continued

Note

The default instance has the property Types set to NoSymbol. It must be
specified in order for a meaningful search to be performed!

Note

The Types property allows you to combine several types in a search. See the
preceding example.

Note

See PC SDK Reference for the static methods CreateDefaultForData and
CreateDefaultForRoutine.

Data type argument
The second argument of the SearchRapidSymbolmethod is the RAPID data type
written as a string. The data type should be written with small letters, for example
“num”, “string” or “robtarget”. It can also be specified as string.Empty.

Note

To search for a UserDefined data type, the complete path to the module that
holds the RECORD definition must be passed. For example:
result =

tRob1.SearchRapidSymbol(sProp,"RAPID/T_ROB1/MyModule/MyDataType",

string.Empty);

However, if MyModule is configured as -Shared the system sees its data types
as installed, and the task or module should not be included in the path
result = tRob1.SearchRapidSymbol(sProp,"MyDataType",

string.Empty);

Symbol name argument
The third argument is the name of the RAPID symbol. It can be specified as
string.Empty if the name of the symbol to retrieve is not known, or if the purpose
is to search ALL “num” data in the system.
Instead of the name of the RAPID symbol a regular expression can be used. The
search mechanism will then match the pattern of the regular expression with the
symbols in the symbol table. The regular expression string is not case sensitive.
A regular expression is a powerful mechanism. It may consist of ordinary characters
and meta characters. A meta character is an operator used to represent one or
several ordinary characters, and the purpose is to extend the search.
Within a regular expression, all alphanumeric characters match themselves, that
is, the pattern “abc” will only match a symbol named “abc”. To match all symbol
names containing the character sequence “abc”, it is necessary to add somemeta
characters. The regular expression for this is “.*abc.*”.

Continues on next page
3HAC036957-001 Revision: A 91

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.5 RAPID symbol search

Continued

The available meta character set is shown below:

MeaningExpression

Any single character.

Any symbol starting with^

Any single character in the non-empty set s, where s is a se-
quence of characters. Ranges may be specified as c-c.

[s]

Any single character not in the set s.[^s]

Zero or more occurrences of the regular expression r.r*

One or more occurrences of the regular expression r.r+

Zero or one occurrence of the regular expression r.r?

The regular expression r. Used for separate that regular expres-
sion from another.

(r)

The regular expressions r or r’.r | r’

Any character sequence (zero, one or several characters)..*

Example 1
"^c.*"
Returns all symbols starting with c or C.

Example 2
"^reg[1-3]"
Returns reg1, Reg1, REG1, reg2, Reg2, REG2, reg3, Reg3 and REG3.

Example 3
"^c.*|^reg[1,2]"
Returns all symbols starting with c or C as well as reg1, Reg1, REG1, reg2, Reg2
and REG2.

SearchRapidSymbol example
This example searches for VAR, PERS or CONST num data in a task and its
modules. The search is limited to globally declared symbols. By default the search
method is Block, so it does not have to be set.
VB:

Dim sProp As RapidSymbolSearchProperties =
RapidSymbolSearchProperties.CreateDefault() sProp.Types =
SymbolTypes.Data sProp.LocalSymbols = False Dim rsCol As
RapidSymbol() rsCol = aTask.SearchRapidSymbol(sProp, "num",
String.Empty)

C#:
RapidSymbolSearchProperties sProp =

RapidSymbolSearchProperties.CreateDefault();

sProp.Types = SymbolTypes.Data;

sProp.LocalSymbols = false;

RapidSymbol[] rsCol;

rsCol = aTask.SearchRapidSymbol(sProp, "num", string.Empty);

Continues on next page
92 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.5 RAPID symbol search

Continued

Search for UserDefined RAPID data - example
In this example a user defined RECORD data type (“mydata”) is declared in a
module (“myModule”). Assuming that the end-user can declare and use data of
this data type in any program module, the search method must be Block (default).
A search for all “mydata” instances may look like this:
VB:

Dim sProp As RapidSymbolSearchProperties =
RapidSymbolSearchProperties.CreateDefault() sProp.Types =
SymbolTypes.Data Dim rsCol As RapidSymbol() rsCol =
aTask.SearchRapidSymbol(sProp, "RAPID/T_ROB1/MyModule/mydata",
String.Empty) rsCol = aTask.SearchRapidSymbol(sProp, "mydata",
String.Empty)

C#:
RapidSymbolSearchProperties sProp =

RapidSymbolSearchProperties.CreateDefault();sProp.Types =
SymbolTypes.Data;RapidSymbol[] rsCol;rsCol =
aTask.SearchRapidSymbol(sProp, "RAPID/T_ROB1/MyModule/mydata",
string.Empty);rsCol = aTask.SearchRapidSymbol(sProp, "mydata",
string.Empty);

Note

If myModule is configured as -Shared and all myData instances are declared in
myModule, the search method must be set to Scope and the
SearchRapidSymbol call should look like this:
rsCol = aTask.SearchRapidSymbol(sProp, "mydata", string.Empty);

3HAC036957-001 Revision: A 93
© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.5 RAPID symbol search

Continued

5.5.6 Working with RAPID modules and programs

Overview
Using the Task object it is possible to load and save individual modules and
programs. You can also unload programs, as well as reset the program pointer
and start program execution.

Note

All these operations require mastership of the RAPID domain. For more
information, see Accessing the controller on page 66.

Load modules and programs
To load a module or program file, you need the path to the file on the controller.
While the file is loaded into memory the RapidLoadMode enumeration argument,
Add or Replace,specifies whether or not it should replace oldmodules
or programs.
If the file extension is not a valid module (mod or sys) or program (pgf) extension
an ArgumentException is thrown.
VB:

Try aTask.LoadProgramFromFile(aPrgFileName, RapidLoadMode.Replace)
aTask.LoadModuleFromFile(aModFileName, RapidLoadMode.Add)
Catch ex As ArgumentException Return End Try

C#:
try

{

aTask.LoadProgramFromFile(aPrgFileName, RapidLoadMode.Replace);

aTask.LoadModuleFromFile(aModFileName, RapidLoadMode.Add);

}

catch (ArgumentException ex)

{

return;

}

Note

All program files must reside in the file system of the controller and not locally
on the PC. In order to load a program from the PC, you must first download it to
the controller by using the FileSystem.PutFilemethod. Formore information,
see File system domain on page 112.

Note

If the User Authorization System of the controller is used by the PC SDK
application, it is required that the logged on user has the UAS grant
UAS_RAPID_LOADPROGRAM to load and unload RAPID programs. For more
information about which grants are necessary for a specific PC SDK method,
see the PC SDK Reference.

Continues on next page
94 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.6 Working with RAPID modules and programs

Save programs and modules
You can save programs using the Task.SaveProgramToFile method and a
single module by using the Module.SaveToFile method.
To unload a program after it has been saved to file you can call DeleteProgram().
VB:

Dim taskCol As Task() = aController.Rapid.GetTasks() For Each
atask As Task In taskCol atask.SaveProgramToFile(saveDir)
atask.DeleteProgram() Next

C#:
Task[] taskCol = aController.Rapid.GetTasks();foreach (Task atask

in
taskCol){atask.SaveProgramToFile(saveDir);atask.DeleteProgram();}

In this example a module is saved to a file:
VB:

Dim aModule As [Module] = aTask.GetModule("user")
aModule.SaveToFile(aFilePath)

C#
Module aModule =

aTask.GetModule("user");aModule.SaveToFile(aFilePath);

ResetProgramPointer method
Using ResetProgramPointer you can set the program pointer to the main entry
point of the task.
VB:

aTask.ResetProgramPointer()

C#:
aTask.ResetProgramPointer();

Start program
Starting program execution in the robot controller can only be done in automatic
operatingmode. There are several overloaded Startmethods to use, the simplest
way to start RAPID execution of a controller task is:
VB:

aTask.Start()

C#:
aTask.Start();

Note

If your application uses the User Authorization System of the controller (seeUser
Authorization System on page 50), you should also check whether the current
user has the grant UAS_RAPID_EXECUTE before calling the Start method.

Execution change event
It is possible to subscribe to events that occur when a RAPID program starts and
stops. It is done like this:

Continues on next page
3HAC036957-001 Revision: A 95

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.6 Working with RAPID modules and programs

Continued

VB:
AddHandler aController.Rapid.ExecutionStatusChanged, AddressOf

Rapid_ExecutionStatusChanged

C#
aController.Rapid.ExecutionStatusChanged += new

EventHandler<ExecutionStatusChangedEventArgs>(Rapid_ExecutionStatusChanged);

For more information on how to write the event handler that is needed to update
the GUI due to a controller event, see Avoiding threading conflicts on page106and
Letting the user know that RAPID data has changed on page 77.

96 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.6 Working with RAPID modules and programs

Continued

5.5.7 Enable operator response to RAPID UI-instructions from a PC

Remote operator dialog box
PC SDK supports operator dialog box to be launched on a PC instead of the
FlexPendant when RAPID UI- and TP-instructions are executed. In this chapter
this feature is referred to as Remote operator dialog. It enables an operator to give
the feedback required by the RAPID program from a PC instead of using the
FlexPendant.

Note

Remote operator dialog can only be used with RobotWare 5.12 and later.

Supported RAPID instructions
The following RAPID instructions are supported:

• UIAlphaEntry
• UIListView
• UIMessageBox
• UIMsgBox
• UINumEntry
• UINumTune
• TPErase
• TPReadFK
• TPReadNum
• TPWrite

UIInstructionType
The PC SDK UIInstructionType enumeration defines the different RAPID
instructions listed above. For a description of each instruction type, see PC SDK
Reference. The following is an example of such a description.
Example UIInstructionType.UIAlphaEntry :

DescriptionMember

The UIAlphaEntry (User Interaction Alpha Entry) is used to let
an operator communicate with the robot system via RAPID, by
enabling him to enter a string from the FlexPendant or from a
PC SDK application. After the operator has entered the text, it
is transferred back to the RAPID program by calling UI-
AlphaEntryEventArgs.SendAnswer.

UIAlphaEntry

Tip

For complete information about the usage in RAPID refer to RAPID Technical
reference manual (accessiable from RobotStudio).

Continues on next page
3HAC036957-001 Revision: A 97

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.7 Enable operator response to RAPID UI-instructions from a PC

Increased flexibility
Making use of theRemote operator dialog feature, the end-user of the robot system
can choose whether to use the FlexPendant or the PC SDK application to answer
a RAPID UI- or TP-instruction.
The FlexPendant will always show the operator dialog the usual way. If the operator
responds from the PC the message on the FlexPendant will disappear.

Note

The dialog box of the PC SDK application should disappear if the operator
chooses to respond from the FlexPendant. This is handled by the PC SDK
programmer.

Basic approach
The basic procedure for implementing Remote operator dialog in a PC SDK
application is shown below. The same approach is used internally by the
FlexPendant when it launches its operator view.

ActionStep

Set up a subscription to UIInstructionEvent.1

In the event handler check the UIInstructionEventType from the event
arguments. If Post or Send create an operator dialog by using the information
provided by the event arguments.

2

To transfer the response of the end-user to the RAPID program call the
SendAnswermethod of the specialized UIInstructionEventArgs object.

3

Remove any existing operator dialog if you get a UIInstructionEvent of
UIInstructionEventType.Abort.

4

Note

The controller events are always received on a background thread and you need
to enforce execution to the GUI thread by the use of Invoke before launching
the operator dialog. For more information, see Controller events and threads on
page 47.

UIInstructionEvent
To be notified when a UI-instruction event has occurred in the controller, you need
to set up a subscription to UIInstructionEvent. To do that you use the
UIInstruction property of the Rapid class, like this:

Controller c = new Controller();
c.Rapid.UIInstruction.UIInstructionEvent += new
UIInstructionEventHandler(OnUIInstructionEvent);

Tip

For a code example including an event handler see UIInstructionEvent in the PC
SDK Reference.

Continues on next page
98 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.7 Enable operator response to RAPID UI-instructions from a PC

Continued

UIInstruction event arguments
To create the dialog in accordance with the arguments of the RAPID instruction
and to transfer the response of the operator back to the executing RAPID program,
you can use the information of the event arguments.

UIInstructionEventArgs
The UIInstructionEventArgs object holds information about which RAPID
task and which UI- or TP-instruction triggered the event. The following picture
shows all UIInstructionEventArgs members.

7.5.7_1UIIns

UIInstructionEventArgs is a base class of several specialized classes, one
for each UI- and TP- instruction. The specialized class holds the additional
information needed to create the operator dialog, so type casting the
UIInstructionEventArgs object to the correct specialized type is necessary.
To do that you first check the InstructionType property, which you can see in
the preceding image.

Continues on next page
3HAC036957-001 Revision: A 99

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.7 Enable operator response to RAPID UI-instructions from a PC

Continued

UIListViewEventArgs
As an example of a specialized type, the members of the UIListViewEventArgs
class are shown below. The Buttons and ListItems properties are of course
crucial for creating the operator dialog.

7.5.7_2UIIns

Continues on next page
100 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.7 Enable operator response to RAPID UI-instructions from a PC

Continued

UIInstructionEventType
An important property in the picture above is UIInstructionEventType. It is
inherited from the base class and comes with all UI- and TP- instruction events.
The following table shows the members of the UIInstructionEventType
enumeration.

DescriptionMember

Undefined. Should not occur.Undefined

Post event type, for example TPWrite, TPErase. When the event is of this
type RAPID expects no response from the operator.

Post

Send event type, for example TPReadNum, UIListView. When the event is
of this type the running RAPID program expects feedback from the operator
before execution continuous.

Send

When the controller gets a response from a client (the FlexPendant or a PC
SDK application) it sends an event of Abort type. This tells all subscribing
clients that the UI-Instruction has been aborted, closed or confirmed by the
operator. When you get an event of this type you should remove any open
operator dialog.

Abort

Note

If the robot system has several RAPID tasks, it is necessary to keep track of
which operator dialog belongs to which task, and so on.
A RAPID task can handle only one pending Send, and it is not guaranteed that
an Abort event will always follow a Send event. Therefore, if you receive a new
Send event from the same task without a preceding Abortevent, you should
remove the existing dialog and display the new one.

SendAnswer method
To transfer the response of the end-user back to the RAPID program, you can call
the SendAnswer method. See the image of the UIListViewEventArgs class
above. SendAnswer is called with different arguments depending on the RAPID
instruction.
For example, if it is a UIAlphaEntry instruction you can send the string that the
operator has entered as argument. But if it is a UIListView instruction the
SendAnswer method will look like this:
public void SendAnswer(int listItemIdx, UIButtonResult btnRes);

Note

There is no mastership handling involved in using Remote operator dialog.

3HAC036957-001 Revision: A 101
© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.5.7 Enable operator response to RAPID UI-instructions from a PC

Continued

5.6 IO system domain

Overview
A robot system uses input and output signals to control processes. Signals can
be of digital, analog, or group signal type. Such IO signals are accessible using
the SDK.
Signal changes in the robot system are often significant, and there are many
scenarios where end-users of the system need notification of signal changes.
To speed up event notification from the controller, there is new functionality in PC
SDK 5.10, which allows you to set up subscription priorities. This possibility applies
to I/O signals and persistent RAPID data. This mechanism is further described in
Implementing high priority event subscription on page 105.

Accessing signals
Accessing signals is done through the Controller object and its property
IOSystem, which represents the IO signal space in the robot controller.
To access a signal you need the system name of the signal. The object that is
returned from the IOSystem.GetSignal method is of type Signal.
VB:

Dim signal1 As Signal =
aController.IOSystem.GetSignal("signal_name")

C#:
Signal signal1 = aController.IOSystem.GetSignal("signal_name");

The returned Signal object has to be typecast to digital, analog or group signal.
This example shows a how a signal of type DigitalSignal is created:
VB:

Dim diSig As DigitalSignal = DirectCast(signal1, DigitalSignal)

C#:
DigitalSignal diSig = (DigitalSignal)signal1;

This example shows a how an AnalogSignal is created:
VB:

Dim aiSig As AnalogSignal = DirectCast(Signal1, AnalogSignal)

C#:
AnalogSignal aiSig = (AnalogSignal)signal2

This example shows a how a GroupSignal is created:
VB:

Dim giSig As GroupSignal = DirectCast(signal3, GroupSignal)

C#:
GroupSignal giSig = (GroupSignal)signal3;

Note

Remember to call the Dispose method of the signal when it should no longer
be used.

Continues on next page
102 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.6 IO system domain

Getting signals using SignalFilter
Instead of just getting one signal at a time you can get a signal collection using a
signal filter. Some of the SignalFilter flags are mutually exclusive, for example
SignalFilter.Analog and SignalFilter.Digital. Others are inclusive, for
example SignalFilter.Digital and SignalFilter.Input. You can combine
the filter flags using the “|” character in C# and the Or operator in VB:
VB:

Dim aSigFilter As IOFilterTypes = IOFilterTypes.Digital Or
IOFilterTypes.Input Dim signals As SignalCollection =
aController.IOSystem.GetSignals(aSigFilter)

C#:
IOFilterTypes aSigFilter = IOFilterTypes.Digital |

IOFilterTypes.Input; SignalCollection signals =
aController.IOSystem.GetSignals(aSigFilter);

The following code iterates the signal collection and adds all signals to a ListView
control. The list has three columns displaying signal name, type, and value:
VB:

For Each signal As Signal In signals item = New
ListViewItem(signal.Name)
item.SubItems.Add(signal.Type.ToString())
item.SubItems.Add(signal.Value.ToString())
listView1.Items.Add(item) Next

C#:
foreach (Signal signal in signals){item = new

ListViewItem(signal.Name);item.SubItems.Add(signal.Type.ToString());item.SubItems.Add(signal.Value.ToString());listView1.Items.Add(item);}

If the signal objects are no longer needed they should be disposed of:
VB:

For Each signal As Signal In signals signal.Dispose() Next

C#:
foreach (Signal signal in signals) { signal.Dispose(); }

Reading IO signal values
The following examples show how to read a digital and an analog signal.

Digital signal
The following code reads the digital signal DO1 and selects a checkbox if the signal
value is 1 (ON):
VB:

Dim sig As Signal = aController.IOSystem.GetSignal("DO1") Dim
digitalSig As DigitalSignal = DirectCast(sig, DigitalSignal)
Dim val As Integer = digitalSig.[Get]() If val = 1 Then
Me.checkBox1.Checked = True End If

C#:
Signal sig = aController.IOSystem.GetSignal("DO1");DigitalSignal

digitalSig = (DigitalSignal)sig;int val = digitalSig.Get();if
(val == 1){this.checkBox1.Checked = true;}

Continues on next page
3HAC036957-001 Revision: A 103

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.6 IO system domain

Continued

Analog signal
The following of code reads the value of the analog signal AO1 and displays it in
a textbox:
VB:

Dim asig As Signal = aController.IOSystem.GetSignal("AO1") Dim
analogSig As AnalogSigna = DirectCast(asig, AnalogSignal) Dim
analogSigVal As Single = analogSig.Value Me.textBox1.Text =
analogSigVal.ToString()

C#:
Signal asig = aController.IOSystem.GetSignal("AO1");AnalogSigna

analogSig = (AnalogSignal)asig;float analogSigVal =
analogSig.Value;this.textBox1.Text = analogSigVal.ToString();

Writing IO signal values
The following section shows how the value of a digital or an analog IO signal can
be modified by a PC SDK application.

Note

In manual mode, a signal value can be modified only if the Access Level of the
signal is ALL. If not, the controller has to be in auto mode.

Digital signal
The following code changes the value of a digital signal in the controller when you
select/unselect a checkbox:
VB:

Private Sub checkBox1_Click(ByVal sender As Object, ByVal e As
EventArgs) If Me.checkBox1.Checked Then digitalSig.[Set]()
Else digitalSig.Reset() End If End Sub

C#:
private void checkBox1_Click(object sender, EventArgs e)

{

if (this.checkBox1.Checked)

{

digitalSig.Set();

}

else

{

digitalSig.Reset();

}

}

NOTE! You can also set the value using the Value property.

Analog signal
The following code writes the value entered in a text box to the analog signal AO1.
The value is converted from string to a float before it is written to the controller:
VB:

Dim analogSigVal As Single = Convert.ToSingle(Me.textBox1.Text)
analogSig.Value = analogSigVal

Continues on next page
104 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.6 IO system domain

Continued

C#:
float analogSigVal = Convert.ToSingle(this.textBox1.Text);

analogSig.Value = analogSigVal;

Listening to signal changes
Once a Signal object is available it is possible to add a subscription to its Changed
event, which is triggered at a signal change such as changed value, changed
simulated status or changed signal quality.

Visual Basic
Friend WithEvents sig As AnalogSignal

...

AddHandler sig.Changed, AddressOf sig_Changed

...

Private Sub sig_Changed(ByVal sender As Object, ByVal e As
SignalChangedEventArgs)

.....

End Sub

C#
sig.Changed += new

EventHandler<SignalChangedEventArgs>(sig_Changed);

...

private void sig_Changed(object sender, SignalChangedEventArgs e)

{..... }

Start and stop subscriptions
It is recommended that you activate and deactivate subscriptions to the Changed
event if these are not necessary throughout the lifetime of the application:
VB:

AddHandler sig.Changed, AddressOf sig_Changed RemoveHandler
sig.Changed, AddressOf sig_Changed

C#:
sig.Changed += new

EventHandler<SignalChangedEventArgs>(sig_Changed); sig.Changed
-= new EventHandler<SignalChangedEventArgs>(sig_Changed);

Implementing high priority event subscription
To speed up event notification from the controller, it is possible to set up
subscription priorities for I/O signals. To do this, you can use the Subscribe
method and the enumeration EventPriority as argument. The example shows
an ordinary signal subscription and a subscription with high priority:
VB:

AddHandler signal.Changed, AddressOf sig_Changed
signal.Subscribe(sig_Changed, EventPriority.High)

Continues on next page
3HAC036957-001 Revision: A 105

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.6 IO system domain

Continued

C#:
signal.Changed += new

EventHandler<SignalChangedEventArgs>(sig_Changed);
signal.Subscribe(sig_Changed, EventPriority.High);

To deactivate subscriptions with high priority you call the Unsubscribe method
like this:
VB:

signal.Unsubscribe(sig_Changed)

C#:
signal.Unsubscribe(sig_Changed);

Limitations for high priority events
High priority subscriptions can be used for I/O signals and RAPID data declared
PERS. The controller can handle 64 high priority subscriptions.

Avoiding threading conflicts
The controller events use their own threads, which are different from the application
GUI thread. This can cause problems if you want to display signal changes in the
application GUI. For more information, see Controller events and threads on
page 47.
If an update of the user interface is not necessary, you do not need to take any
special action, but can execute the event handler on the event thread. If, however,
you need to show to the user that the signal has changed you should use the
Invokemethod. It forces execution to the window control thread and thus provides
a solution to potential threading conflicts.
VB:

Me.Invoke(New EventHandler(Of SignalChangedEventArgs)(UpdateUI),
New [Object]() {sender, e})

C#:
this.Invoke(new EventHandler<SignalChangedEventArgs>(UpdateUI),

new Object[] { sender, e });

Reading the new value
The SignalChangedEventArgs object has a NewSignalState property, which
has information about signal value, signal quality and whether the signal is
simulated or not:
VB:

Private Sub UpdateUI(ByVal Sender As Object, ByVal e As
SignalChangedEventArgs)

Dim state As SignalState = e.NewSignalState

Dim val As Single

Val = state.Value

Me.textBox1.Text = val.ToString()

....

End Sub

C#:
private void UpdateUI(object sender, SignalChangeEventArgs e)

Continues on next page
106 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.6 IO system domain

Continued

{

SignalState state = e.NewSignalState;

....

float val = state.Value

this.textBox1.Text = val.ToString()

}

Note

There is no guarantee you will receive an initial event when setting up the
subscription. To get initial information about the value of a signal, you should
read it using the Value property.

Note

Make sure the subscription is removed before you dispose of the signal. For
more information, see Accessing the controller on page 66.

3HAC036957-001 Revision: A 107
© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.6 IO system domain

Continued

5.7 Event log domain

Overview
Event log messages may contain information about controller status, RAPID
execution, the running processes of the controller, and so on.
Using the SDK it is possible to either read messages in the queue or to use an
event handler that will receive a copy of each new log message. An event log
message contains queue type, event type, event time, event title, and message.

Accessing the controller event log
You can access the event log domain through the Controller property EventLog.
VB:

Private log As EventLog = aController.EventLog

C#:
private EventLog log = aController.EventLog;

Accessing event log categories
All event log messages are organized into categories. To search for an individual
message you have to know what category it belongs to. The enumeration type,
CategoryType, defines all available categories. You can get a category either by
using the method GetCategory or by using the Categories property, which is
an array of all available categories.
VB:

Dim cat As EventLogCategory

cat = Log.GetCategory(CategoryType.Program)

or
cat = log.Categories(4)

C#:
EventLogCategory cat;

cat = log.GetCategory(CategoryType.Program);

or
cat = log.GetCategory[4];

Note

The EventLogCategory should be disposed of when it is no longer used.

Accessing event log messages
To access a message you use the Messages property of the Category object. A
collection of messages is returned. The collection implements the ICollection
and IEnumerable interfaces , which means you can use the common operations
for collections. Access is done either using an index or by iterating using foreach.
VB:

Dim msg As EventLogMessage = cat.Messages(1)

Continues on next page
108 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.7 Event log domain

or
Dim msg As EventLogMessage

For Each msg In cat.Messages

Me.textBox1.Text = msg.Title

.....

Next Item

C#:
EventLogMessagemsg = cat.Messages[1];or foreach (EventLogMessage emsg in
cat.Messages)
{
this.textBox1.Text = emsg.Title;
....... }

MessageWritten event
It is possible to add an event handler that is notified when a new messages is
written to the controller event log. This is done by subscribing to the EventLog
event MessageWritten.
The event argument is of type MessageWrittenEventArgs and has a Message
property, which holds the latest event log message.
VB:

Private Sub log_MessageWritten(ByVal sender As Object, ByVal e As
MessageWrittenEventArgs) Dim msg As EventLogMessage =
e.Message End Sub

C#:
private void log_MessageWritten(object sender,

MessageWrittenEventArgs e)

{

EventLogMessage msg = e.Message;

}

Note

If the application user interface needs to be updated as a result of the event, you
must delegate this job to the GUI thread using the Invoke method. For more
information and code samples, see Controller events and threads on page 47.

Tip

Find out more about the EventLogDomain in the PC SDK Reference help.

3HAC036957-001 Revision: A 109
© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.7 Event log domain

Continued

5.8 Motion domain

Overview
The MotionDomain namespace lets you access the mechanical units of the robot
system.

Motion system
You can access the motion system by using the Controller property
MotionSystem.
VB:

Private aMotionSystem As MotionSystem

aMotionSystem = aController.MotionSystem

C#
private MotionSystem aMotionSystem;

aMotionSystem = aController.MotionSystem;

By using the MotionSystem object you can, for example, use its SpeedRatio
property to find out about the current speed of the robot.

Accessing Mechanical units
The mechanical units can be of different types, for example a robot with a TCP, a
multiple axes manipulator, or a single axis unit. All these are available through the
MotionSystem property MechanicalUnits. If only the active mechanical unit is
of interest you may use the ActiveMechanicalUnit property.
VB:

Dim aMechCol As MechanicalUnitCollection =
aController.MotionSystem.MechanicalUnits Dim aMechUnit As
MechanicalUnit = aController.MotionSystem.ActiveMechanicalUnit

C#:
MechanicalUnitCollection aMechCol =

aController.MotionSystem.MechanicalUnits;

MechanicalUnit aMechUnit =
aController.MotionSystem.ActiveMechanicalUnit;

Mechanical unit properties and methods
There are numerous properties available for the mechanical unit, for example
Name,Model, NumberOfAxes,SerialNumber,CoordinateSystem,
MotionMode, IsCalibrated, Tool and WorkObject, and so on. It is also possible
to get the current position of a mechanical unit as a RobTarget or JointTarget.
VB:

Dim aRobTarget As RobTarget =
aController.MotionSystem.ActiveMechanicalUnit.GetPosition(CoordinateSystemType.World)
Dim aJointTarget As JointTarget =
aController.MotionSystem.ActiveMechanicalUnit.GetPosition()

C#:
RobTarget aRobTarget =

aController.MotionSystem.ActiveMechanicalUnit.GetPosition(CoordinateSystemType.World);

Continues on next page
110 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.8 Motion domain

JointTarget aJointTarget=
aController.MotionSystem.ActiveMechanicalUnit.

GetPosition();

Tip

To read Rapid data that is, RobTarget and JointTarget, user must Logon to
controller
Find out more about the MotionDomain in the PC SDK Reference help.

Calibrating Axes
The revolution counters of a TCP mechanical unit is updated using the method
MechanicalUnit.SetRevolutionCounter. For example, when the control
system is disconnected and the robot axis is moved update the revolution counters.
MechanicalUnit.GetMechanicalUnitStatus property shows whether
calibration is needed or not.
Fine calibration is performed using themethodMechanicalUnit.FineCalibrate.
For more information, see Reference Manual PC SDK.
FineCalibrate and SetRevolutionCounter require the system to be either
in ’Auto mode and Motors off state’ or in ’manual mode and granted access’ by
the FlexPendant. FineCalibrate and SetRevolutionCounter also require the
corresponding UAS grants.
For more information on how to perform calibration, see Operating manual - IRC5
with FlexPendant.

CAUTION

If a revolution counter is incorrectly updated, it will cause incorrect robot
positioning,which in turn may cause damage or injury.

3HAC036957-001 Revision: A 111
© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.8 Motion domain

Continued

5.9 File system domain

Overview
Using the SDK it is possible to create, save, load, rename, and delete files in the
controller file system. It is also possible to create and delete directories.

Accessing files and directories
You can access the file system domain through the Controller property
FileSystem.
VB:

Dim aFileSystem As FileSystem = aController.FileSystem

C#:
FileSystem aFileSystem = aController.FileSystem;

Controller and PC directory
You can get and set the directory on the controller and on the local PC system
using the RemoteDirectory and LocalDirectory properties.
VB:

Dim remoteDir As String = aController.FileSystem.RemoteDirectory
Dim localDir As String = aController.FileSystem.LocalDirectory

C#:
string remoteDir = aController.FileSystem.RemoteDirectory;

string localDir = aController.FileSystem.LocalDirectory;

Environment variables
When specifying file system paths you can use environment variables to denote
the HOME, system, backup, and temp directories of the currently used system.
When an application uses “(BACKUP)$” it is internally interpreted as the path to
the backup directory of the current system. The other environment variables are:
HOME, TEMP and SYSTEM.

Loading files
You can load a file from the controller to the PC using the GetFile method. The
method generates an exception if the operation did not work. The arguments are
complete paths including filenames.
VB:

aController.FileSystem.GetFile(remoteFilePath, localFilePath)

C#:
aController.FileSystem.GetFile(remoteFilePath, localFilePath);

Saving files
You can save a file on the controller file system by using the PutFile method.
The method generates an exception if the operation did not work. The arguments
are complete paths including filenames.
VB:

aController.FileSystem.PutFile(localFilePath, remoteFilePath)

Continues on next page
112 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.9 File system domain

C#:
aController.FileSystem.PutFile(localFilePath, remoteFilePath);

CopyFile and CopyDirectory
The PutFile / GetFile methods generate a copy of a file and transfer it to or
from the controller file system. Using the CopyFile and CopyDirectory you can
create a copy directly on the controller:
VB:

aController.FileSystem.CopyFile(fromFilePath, toFilePath, True)
aController.FileSystem.CopyDirectory(fromDirPath, toDirPath,
True)

C#:
aController.FileSystem.CopyFile(fromFilePath, toFilePath,true);

aController.FileSystem.CopyDirectory(fromDirPath, toDirPath,true);

Getting multiple files and directories
The FileSystem class has a method called GetFilesAndDirectories. It can
be used to retrieve an array of ControllerFileSystemInfo objects with
information about individual files and directories. The
ControllerFileSystemInfo object can then be cast to either a
ControllerFileInfo object or a ControllerDirectoryInfo object.
This example uses search pattern to limit the search.
VB:

Dim anArray As ControllerFileSystemInfo() Dim info As
ControllerFileSystemInfo anArray =
aController.FileSystem.GetFilesAndDirectories("search
pattern") For i As Integer = 0 To anArray.Length - 1

info = anArray(i)

.....

Next

C#:
ControllerFileSystemInfo[] anArray;

ControllerFileSystemInfo info;

anArray = aController.FileSystem.GetFilesAndDirectories("search
pattern");

for (int i=0;i<anArray.Length;i++) {

info = anArray[i];

......

}

Using search patterns
As seen in the preceding example, you can use search patterns to locate files and
directories using the GetFilesAndDirectoriesmethod. The matching process
follows the Wildcard pattern matching in Visual Studio. The following is a brief
summary:

Matches in stringCharacter in pattern

Any single character?

Continues on next page
3HAC036957-001 Revision: A 113

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.9 File system domain

Continued

Matches in stringCharacter in pattern

Zero or more characters*

Any single digit (0–9)#

Any single character in charlist[charlist]

Any single character not in charlist[!charlist]

Tip

Find out more about the FileSystemDomain in the PC SDK Reference help.

114 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.9 File system domain

Continued

5.10 Messaging domain

Overview
The Messaging domain of the PC SDK can be used to send and receive data
between a PC SDK application and a RAPID task.
The corresponding RAPID functionality, RAPID Message Queue, includes RAPID
data types and RAPID instructions and functions for sending and receiving data.
It enables communication between RAPID tasks or between a RAPID task and a
PC SDK application.
This section provides information about how to implement messaging in a PC SDK
application. To make it work it is necessary to do part of the implementation in
RAPID. In order to show how this can be done, a code example in C# and RAPID
is provided at the end of the section.

Note

For more information on how to implement messaging in RAPID, seeApplication
manual - Robot communication and I/O Control.

RobotWare option
The functionality in RAPID that is needed to utilize messaging - RAPID Message
Queue - is included in the RobotWare options PC Interface, FlexPendant Interface
and Multitasking. As PC Interface is required on a robot controller to be used with
a PCSDK client, thismeans no extra option is needed to start usingRAPIDMessage
Queue with a PC SDK application.

Continues on next page
3HAC036957-001 Revision: A 115

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.10 Messaging domain

Messaging illustration
The following illustration shows possible senders and receivers in the robot system.
The arrows represent ways to communicate by posting a message to a queue.

en0700000430

Note

In principle, messages might as well be sent between a PC SDK client and a PC
SDK application running on the FlexPendant.

Note

The messaging functionality of the FlexPendant SDK has not yet been made
public, but in PC SDK 5.11 a mechanism has been implemented, which allows
advanced users to access it. You should contact the customer support if you
need information about how to use it.

Benefits
Together with RAPID Message Queue the functionality of the Messaging domain
represent a new, flexible way for a PC SDK application to interact with a RAPID
task.
Messaging is usually done when a RAPID task is executing, but it is also possible
to send amessage to a RAPID task when it has been stopped. The RAPID interrupt
will then occur once the RAPID task has been started.

Continues on next page
116 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.10 Messaging domain

Continued

An simple example of usage would be to set a flag from a PC SDK application in
order to control the program flow in the RAPID program.

Note

Sending messages can be done in both manual and auto mode. As opposed to
using RapidData to modify a RAPID variable no mastership is required.

The Messaging namespace
The Microsoft Windows operating system provides mechanisms for facilitating
communications and data sharing between applications. Collectively, activities
enabled by these mechanisms are called Interprocess communications (IPC).
These are the classes and enumerations available in the Messaging namespace:

7.9_1Messagi

The Ipc class is used to handle message queues with methods like GetQueue,
CreateQueue, DeleteQueue and so on. When you have an IpcQueue object you
can use its Sendmethod to send an IpcMessage to a RAPID task or its Receive
method to receive a message from a RAPID task.
When sending a message you use an existing queue in the controller as the
IpcQueue object. The naming principle of queues in the controller is using the
name of the corresponding task prefixed with “RMQ_”, e.g “RMQ_T_ROB1”. To

Continues on next page
3HAC036957-001 Revision: A 117

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.10 Messaging domain

Continued

receive a message from RAPID you must first create your own message queue
and use that object with the Receive method.

Note

When the execution context in a RAPID task is lost, for example when the program
pointer is moved to main, the corresponding queue is emptied.

Basic approach
To utilize messaging in a PC SDK application, you need to do the implementation
both in RAPID and in the PC application.
To send data from a PC application and receive it in a RAPID task:

1 In the PC application connect to the queue of the RAPID task.
2 Create the message.
3 Send the message.
4 In the RAPID program set up a trap routine that reads the message. Connect

an interrupt so that the trap routine is called each time a new message
appears.

For a complete code example using this scenario, see Code example on page120.

What can be sent in a message?
In RAPID there is a rmqmessage data type. In the PC SDK the corresponding
type is IpcMessage. An IpcMessage object stores the actual data in themessage,
but also information about message size, who the sender is and so on.
The data in a message is a pretty-printed string with data type name (and array
dimensions) followed by the actual data value. The data type can be any RAPID
data type. Arrays and user defined records are allowed.
Message data - examples:
“robtarget;[[930,0,1455],[1,0,0,0],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]]”
“string;“Hello world!””
“num;23”
“bool;FALSE”
“bool{2, 2};[[TRUE,TRUE],[FALSE,FALSE]]”
“msgrec;[100,200]” (user defined data type)

Continues on next page
118 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.10 Messaging domain

Continued

The method IpcMessage.SetData is used to fill the IpcMessage with the
appropriate data. Likewise, the GetData method retrieves the data from an
IpcMessage object.

Note

The IpcMessage.Data is set and retrieved as a byte array, SetData(byte[]
data) and byte[] GetData(). This means you must convert the message
data string to a byte array before calling the SetData method. It may look like
this in C#:
Byte[] data = new UTF8Encoding().GetBytes("string;\"Hello

world\"");

For more examples, see Messaging domain on page 115.

Note

The RAPID program can specify what RAPID data type it expects to receive by
connecting it to a TRAP routine. A message containing data of a data type that
no interrupt is connected to will be discarded with only an event log warning.

RAPID Message Queue system parameters
This is a brief description of each system parameter of RAPID Message Queue.
For further information, see the respective parameter in Technical referencemanual
- System parameters.
These parameters belong to the Task type in the Controller topic:.

DescriptionParameter

The following values are possible:
• None - Disables the RAPID Message Queue functionality in this

RAPID task. This is the default value.
• Internal - Enables the RAPID Message Queue for local usage

on the controller.
• Remote - Enables the RAPID Message Queue for local usage

and for PC and FlexPendant applications.

RmqType

• Interruptmode - Amessage can be received either by connecting
a trap routine to a specified message type or by using the send-
wait functionality. Any messages that are not the answer to an
active send-wait instruction or have the type connected to a trap
routine will be discarded. This is the default mode.

• Synchronous mode - All messages will be queued and can only
be received through the new read-wait instruction RMQReadWait.
No messages will be discarded unless the queue is full. The
send-wait instruction is not available in this mode. New mode
from 5.12.

RmqMode

The maximum data size, in bytes, for a message. The default value is
350. The value cannot be changed in RobotStudio or on the FlexPend-
ant.

RmqMaxMsgSize

Maximum number of messages in queue. The default value is 5. The
value cannot be changed in RobotStudio or on the FlexPendant.

RmqMaxNoOfMsg

Continues on next page
3HAC036957-001 Revision: A 119

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.10 Messaging domain

Continued

Note

To read the values of these system parameter from the PC SDK you use the
IpcQueue properties RemoteAccessible, MessageSizeLimit and
Capacity.

Remote RmqType
The system parameter RmqType must be set to Remote to enable messaging
between RAPID and PC SDK:

7.9_2Syspara

Code example
This simple messaging example can be tested with a virtual or a real controller.
The system parameter RmqType must be set to Remote as shown in RAPID
Message Queue system parameters on page 119.
The following code sample creates a message and sends it to a RAPID task, which
reads it and sets a RAPID variable accordingly. Then an “Acknowledged”message
is sent back to the PC SDK queue. Finally, the PC SDK application launches the
received message in a Message Box.

PC SDK - C#
A message is created and sent to the RAPID queue “RMQ_T_ROB1”. An answer
message is then received from RAPID and launched in a Message Box.
C#:

//declarations

private Controller c;

private IpcQueue tRob1Queue;

private IpcQueue myQueue;

Continues on next page
120 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.10 Messaging domain

Continued

private IpcMessage sendMessage;

private IpcMessage recMessage;

...

//initiation code, eg in constructor

c = new Controller(); //default ctrl used here (App.config)

//get T_ROB1 queue to send msgs to RAPID task

tRob1Queue = c.Ipc.GetQueue("RMQ_T_ROB1");

//create my own PC SDK queue to receive msgs

if (!c.Ipc.Exists("RAB_Q"))

{

myQueue = c.Ipc.CreateQueue("PC_SDK_Q", 5, Ipc.IPC_MAXMSGSIZE);

myQueue = c.Ipc.GetQueue("PC_SDK_Q");

}

//Create IpcMessage objects for sending and receiving

sendMessage = new IpcMessage();

recMessage = new IpcMessage();

...

//in an event handler, eg. button_Click

SendMessage(true);

CheckReturnMsg();

...

public void SendMessage(bool boolMsg)

{

Byte[] data = null;

//Create message data

if (boolMsg)

{

data = new UTF8Encoding().GetBytes("bool;TRUE");

}

else

{

data = new UTF8Encoding().GetBytes("bool;FALSE");

}

//Place data and sender information in message

sendMessage.SetData(data);

sendMessage.Sender = myQueue.QueueId;

//Send message to the RAPID queue

tRob1Queue.Send(sendMessage);

}

private void CheckReturnMsg()

{

IpcReturnType ret = IpcReturnType.Timeout;

Continues on next page
3HAC036957-001 Revision: A 121

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.10 Messaging domain

Continued

string answer = string.Empty;

int timeout = 5000;

//Check for msg in the PC SDK queue

ret = myQueue.Receive(timeout, recMessage);

if (ret == IpcReturnType.OK)

{

//convert msg data to string

answer = new UTF8Encoding().GetString(recMessage.Data);

MessageBox.Show(answer);

//MessageBox should show: string;"Acknowledged"

}

else

{

MessageBox.Show("Timeout!");

}

}

RAPID
A trap is created for a message of data type bool. In the trap, the value of the
message data is assigned to the flag variable. Then an “Acknowledged”message
is sent back to the PC SDK client. In main the WHILE loop is executed until a
message with a TRUE value is received.
MODULE RAB_COMMUNICATION

VAR bool flag := FALSE;

VAR intnum connectnum;

PROC main()

CONNECT connectnum WITH RABMsgs;

IRMQMessage flag, connectnum;

WHILE flag = FALSE DO

!do something, eg. normal processing...

WaitTime 3;

ENDWHILE

!PC SDK message received - do something...

TPWrite "Message from PC SDK, will now...";

IDelete connectnum;

EXIT;

ENDPROC

TRAP RABMsgs

VAR rmqmessage msg;

VAR rmqheader header;

VAR rmqslot rabclient;

VAR num userdef;

VAR string ack := "Acknowledged";

RMQGetMessage msg;

Continues on next page
122 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.10 Messaging domain

Continued

RMQGetMsgHeader msg \Header:=
header\SenderId:=rabclient\UserDef:=userdef;

!check data type and assign value to flag variable

IF header.datatype = "bool" THEN

RMQGetMsgData msg, flag;

!return receipt to sender

RMQSendMessage rabclient, ack;

ELSE

TPWrite "Unknown data received in RABMsgs...";

ENDIF

ENDTRAP

ENDMODULE

Note

Error handling should be implemented in C# and in RAPID.

Note

From RobotWare 5.12 there is a new RAPID instruction, RMQEmptyQueue, that
can be used to empty the queue in a task.

3HAC036957-001 Revision: A 123
© Copyright 2010-2012 ABB. All rights reserved.

5 Using the PC SDK
5.10 Messaging domain

Continued

This page is intentionally left blank

6 PC - Debugging and troubleshooting
6.1 Debugging

Introduction
Using the Visual Studio debugger for a PC SDK application presents no difference
compared to standard .NET development. Debugging can be done using the virtual
IRC5 in RobotStudio or a real controller.

Exception error codes
Some exceptions that may appear during development have error codes associated
with them. The error codes may help you correct the problem.

DescriptionCode

The requested poll level could not be met, poll level low is used.0x80040401

The requested poll level could not be met, poll level medium is used.0x80040402

No connection with controller.0xC0040401

Error connecting to controller.0xC0040402

No response from controller.0xC0040403

Message queue full. (Should only happen if asynchronous calls are made.)0xC0040404

Waiting for a resource.0xC0040405

The message sent is too large to handle.0xC0040406

A string does not contain characters exclusively from a supported encoding,
for example ISO-8859-1 (ISO-Latin1).

0xC0040408

The resource can not be released since it is in use.0xC0040409

The client is already logged on as a controller user.0xC0040410

The controller was not present in NetScan.0xC0040411

The NetScanID is no longer in use. Controller removed from list.0xC0040412

The client id is not associated with a controller user. Returned only by
methods that need to check this before sending request to controller. Oth-
erwise, see 0xC004840F.

0xC0040413

The RobotWare version is later than the installed Robot Communication
Runtime. A newer Robot Communication Runtime needs to be installed.
Returned by RobHelperFactory.

0xC0040414

The major and minor part of the RobotWare version is known, but the revi-
sion is later and not fully compatible. A newer Robot Communication
Runtime needs to be installed. Code returned by RobHelperFactory.

0xC0040415

The RobotWare version is no longer supported. Code returned by RobHelp-
erFactory.

0xC0040416

The helper type is not supported by the RobotWare. Helper might be obsol-
ete or for later RobotWare versions, or the helper may not be supported by
a BootLevel controller. Code returned by RobHelperFactory.

0xC0040417

System id and network idmismatch, they do not identify the same controller.0xC0040418

Call was made by other client than the one that made the Connect() call.0xC0040601

File not found on the local file system. Can be that file, directory or device
does not exist.

0xC0040602

Continues on next page
3HAC036957-001 Revision: A 125

© Copyright 2010-2012 ABB. All rights reserved.

6 PC - Debugging and troubleshooting
6.1 Debugging

DescriptionCode

File not found on the remote file system. Can be that file, directory or device
does not exist.

0xC0040603

Error when accessing/creating file on the local file system.0xC0040604

Error when accessing/creating file on the remote file system.0xC0040605

The path or filename is too long or otherwise bad for the VxWorks file sys-
tem.

0xC0040606

The file transfer was interrupted. When transferring to remote system, the
cause may be that the remote device is full.

0xC0040607

The local device is full.0xC0040608

Client already has a connection and can not make a new connection until
the present one is disconnected.

0xC0040609

One or more files in the release directory is corrupt and cannot be used
when launching a VC.

0xC0040701

One or more files in the system directory is corrupt and cannot be used
when launching a VC.

0xC0040702

A VC for this system has already been started; only one VC per system is
allowed.

0xC0040703

Could not warm start VC since it must be cold started first.0xC0040704

The requested operation failed since VC ownership is not held or could not
be obtained.

0xC0040705

Out of memory.0xC0048401

Not yet implemented.0xC0048402

The service is not supported in this version of the controller.0xC0048403

Operation not allowed on active system.0xC0048404

The data requested does not exist.0xC0048405

The directory does not contain all required data to complete the operation.0xC0048406

Operation rejected by the controller safety access restriction mechanism.0xC0048407

The resource is not held by caller.0xC0048408

An argument specified by the client is not valid for this type of operation.0xC0048409

Mismatch in controller id between backup and current system.0xC004840A

Mismatch in key id, that is, options, languages and so on. between backup
and current system.

0xC004840B

Mismatch in robot type between backup and current system.0xC004840C

Client not allowed to log on as local user.0xC004840D

The client is not logged on as a controller user.0xC004840F

The requested resource is already held by caller0xC0048410

The max number of the requested resources has been reached.0xC0048411

No request active for the given user.0xC0048412

Operation/request timed out on controller.0xC0048413

No local user is logged on.0xC0048414

The operation was not allowed for the given user.0xC0048415

Continues on next page
126 3HAC036957-001 Revision: A

© Copyright 2010-2012 ABB. All rights reserved.

6 PC - Debugging and troubleshooting
6.1 Debugging

Continued

DescriptionCode

The URL used to initialize the helper does not resolve to a valid object.0xC0048416

The amount of data is too large to fulfill the request.0xC0048417

Controller is busy. Try again later.0xC0048418

The request was denied.0xC0048419

Requested resource is held by someone else.0xC004841A

Requested feature is disabled.0xC004841B

The operation is not allowed in current operation mode. For example, a
remote user may not be allowed to perform the operation in manual mode.

0xC004841C

The user does not have required mastership for the operation.0xC004841D

Operation not allowed while backup in progress.0xC004841E

Operation not allowed when tasks are in synchronized state.0xC004841F

Operation not allowed when task is not active in task selection panel.0xC0048420

Mismatch in controller id between backup and current system.0xC0048421

Mismatch in controller id between backup and current.0xC0048422

Invalid client id.0xC0048423

RAPID symbol was not found.0xC0049000

The given source position is illegal for the operation.0xC0049001

The given file was not recognized as a program file, for example the XML
semantics may be incorrect.

0xC0049002

Ambiguous module name.0xC0049003

The RAPID program name is not set.0xC0049004

Module is read protected.0xC0049005

Module is write protected.0xC0049006

Operation is illegal in current execution state.0xC0049007

Operation is illegal in current task state.0xC0049008

The robot is not on path and is unable to restart. Regain to or clear path.0xC0049009

Operation is illegal at current execution level.0xC004900A

Operation can not be performed without destroying the current execution
context.

0xC004900B

The RAPID heap memory is full.0xC004900C

Operation not allowed due to syntax error(s).0xC004900D

Operation not allowed due to semantic error(s).0xC004900E

Given routine is not a legal entry point. Possible reasons are: routine is a
function, or routine has parameters.

0xC004900F

Illegal to move PCP to given place.0xC0049010

Max number of rob targets exceeded.0xC0049011

Object is not mod possible. Possible reasons are: object is a variable, object
is a parameter, object is an array.

0xC0049012

Operation not allowed with displacement active.0xC0049013

Continues on next page
3HAC036957-001 Revision: A 127

© Copyright 2010-2012 ABB. All rights reserved.

6 PC - Debugging and troubleshooting
6.1 Debugging

Continued

DescriptionCode

The robot is not on path and is unable to restart. Regain to path. Clear is
not allowed.

0xC0049014

Previously planned path remains. Choose to either consume the path, which
means the initial movement might be in an unexpected direction, or to clear
the path and move directly to next target.

0xC0049015

General file handling error.0xC004A000

The device is full.0xC004A001

Wrong disk. Change disk and try again.0xC004A002

The device is not ready.0xC004A003

Invalid path.0xC004A004

Not a valid device.0xC004A005

Unable to create directory.0xC004A006

The directory does not exist.0xC004A007

The directory already exists.0xC004A008

The directory contains data.0xC004A009

Unable to create file.0xC004A00B

File not found or could not be opened for reading.0xC004A00C

Disable of unit not allowed at trustlevel 0.0xC004A200

128 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

6 PC - Debugging and troubleshooting
6.1 Debugging

Continued

6.2 Troubleshooting

Overview
If you encounter problems with your PC SDK application follow these steps before
contacting ABB support.

Action

Check whether your problem is in the checklist in the next section.1

Answers to many questions are available in the Release Notes of the specific PC SDK
release. The document is available on the RobotWare DVD and on the Software
Download Site.

2

Pinpoint the problem by debugging your code so that a precise problem description
can be provided.

3

Check the User Forum of ABB’s RobotStudio Community, which includes a forum
dedicated to discussion and chat on PC SDK topics.

4

Tip

Atwww.abb.com/roboticssoftware there is a link to theRobotStudio Community.

Checklist
• Unable to connect to controllers? Make sure the system on the controller

has the RobotWare option PC Interface. This applies to both virtual and real
controllers.

• Is the problem is GUI hangings?Make sure you use Invokewhenmodifying
the user interface due to a robot controller event. For more information, see
GUI and controller event threads in conflict on page 47 and Invoke method
on page 48.

• Is the problem is related to netscan? If NetworkScanner.Scan does not find
the robot controller during netscan you should try to increase the time allowed
for scanning. Increase the networks scanner delay time in an app.config file
as explained in Application configuration file on page 35 or add the time
directly in the code like this: NetworkScanner aScanner = new
NetworkScanner(); aScanner.Scan();

System.Threading.Thread.Sleep(4000);aScanner.Scan();

• Do you get “Invalid Client ID” when trying to do a read operation toward the
robot controller? If so, the reason is probably that you have forgotten to log
on to the controller. To write to RAPID data or to the configuration database,
for example, you also need to require mastership. For more information, see
Logon and logoff on page 67 and Mastership on page 33.

• If you are working with a previous version of PC SDK (earlier than 5.10) you
might run into problems related to licence verification? If you get the run-time
error “A valid license cannot be granted for the type
ABB.Robotics.Controllers.Licenses.PCSdk. Contact the manufacturer of the
component for more information“ when accessing the NetworkScanner

Continues on next page
3HAC036957-001 Revision: A 129

© Copyright 2010-2012 ABB. All rights reserved.

6 PC - Debugging and troubleshooting
6.2 Troubleshooting

and the Controller classes you need to add a licx file to the project. For
more information, see Licenses.licx on page 39.

Important support information
If you are unable to solve the problem, make sure that the following information is
available when you contact ABB support:

• Written description of the problem.
• Application source code.
• System error logs.
• A backup of the system.
• Description of work-around if such exists.

130 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

6 PC - Debugging and troubleshooting
6.2 Troubleshooting

Continued

7 Deployment of a PC SDK application
7.1 Overview

Introduction
When your application is ready it has to be deployed to the customer’s PC. This
chapter gives information about the facilities for deployment included in the PC
SDK installation.

Note

Neither PC SDK nor a PC SDK licence need to be installed on the PC that will
host your application. Furthermore, from PC SDK 5.10 you do NOT need to add
the licence key to your project as described in Licence verification - applies only
to versions earlier than PC SDK 5.10 on page 39, as deployed PC applications
no longer perform license verification when executing.

Facilities for deployment
In the redistributable folder at C:\Program Files\ABB Industrial IT\Robotics
IT\SDK\PC SDK 5.xx there are some files to be used for deployment of a PC SDK
application:

• ABBControllerAPI.msm
• ABB Industrial Robot Communication Runtime.msi

These two packages include all dependencies a PC SDK application has apart
from .NET 2.0.

ABBControllerAPI.msm
APCSDK application cannot execute without the PC SDK assemblies it references.
For your convenience, the ABBControllerAPI merge module contains the PC SDK
assemblies. Add it to your install program to have them installed in the Global
Assembly Cache (GAC).
The GAC is automatically installed with the .NET runtime. It enables a PC to share
assemblies across numerous applications. If the customer’s PC has RobotStudio
Online of the same release as the PS SDK used to create the application the PC
SDK dlls your application needs should be in the GAC already.

Note

If you want to create an msi file (or a setup.exe) of the msm file, you can include
the ABBControllerAPI.msm file in a Visual Studio SetUp Project.

Note

Before, ABBControllerAPI.msmworked only with InstallShield. This problem has
now been resolved.

Continues on next page
3HAC036957-001 Revision: A 131

© Copyright 2010-2012 ABB. All rights reserved.

7 Deployment of a PC SDK application
7.1 Overview

ABB Industrial Robot Communication Runtime.msi
To connect a PC SDK application to a controller either RobotStudio or Robot
Communications Runtime is required. If RobotStudio is not installed on the PC
that hosts your application, Robot Communications Runtime needs to be included
in your installation. ABB Industrial Robot Communication Runtime.msi can be used
for redistribution as a separate installation.

132 3HAC036957-001 Revision: A
© Copyright 2010-2012 ABB. All rights reserved.

7 Deployment of a PC SDK application
7.1 Overview

Continued

Index
A
Array, 80

dimensions, 80
enumerator, 81
indexers, 80
object, 80

C
compatibility, 40
Configuration, 35

App.config, 35
CAPI, 35
Section tag, 35

ControllerInfo Object, 65

E
Exception, 52

.Error Codes, 125

.NET, 53
Try-catch, 52
Typecasting, 52

G
GAC, 20

I
Installation, 19

Requirements, 19
Invoke, 48
IRC5 controller., 13

N
NetworkScanner, 64
NetworkWatcher, 65

R
ReadItem, 82
Remote operator dialog, 97

S
safety, 11

W
WriteItem, 82

3HAC036957-001 Revision: A 133
© Copyright 2010-2012 ABB. All rights reserved.

Index

Contact us

ABB AB
Discrete Automation and Motion
Robotics
S-721 68 VÄSTERÅS, Sweden
Telephone +46 (0) 21 344 400

ABB AS, Robotics
Discrete Automation and Motion
Box 265
N-4349 BRYNE, Norway
Telephone: +47 51489000

ABB Engineering (Shanghai) Ltd.
5 Lane 369, ChuangYe Road
KangQiao Town, PuDong District
SHANGHAI 201319, China
Telephone: +86 21 6105 6666

www.abb.com/robotics

3H
AC

03
69
57
-0
01
,R

ev
A,

en

	Cover Page
	Table of contents
	1 Introduction
	1.1 About creating controller applications
	1.2 Documentation and help
	1.3 Terminology

	2 Installation and development environment
	2.1 Installation overview
	2.2 How to obtain and install a license key for RAB 5.09 or earlier
	2.3 How to set up your PC to communicate with robot
	2.4 Development environment
	2.5 Two development models - virtual and real
	2.6 Conversion of VS 2005 projects to Visual Studio 2008

	3 Run-time environment
	3.1 Overview
	3.2 Running PC SDK Applications
	3.2.1 Overview
	3.2.2 Mastership
	3.2.3 PC application configuration
	3.2.4 Communication between PC and controller
	3.2.5 Licence verification - applies only to versions earlier than PC SDK 5.10

	3.3 Release upgrades and compatibility

	4 Developing Controller applications
	4.1 Introduction
	4.2 Analysis and design
	4.3 Controller events and threads
	4.4 User Authorization System
	4.5 Exception handling
	4.6 How to use the online help

	5 Using the PC SDK
	5.1 Controller API
	5.2 Create a simple PC SDK application
	5.3 Discovery domain
	5.4 Accessing the controller
	5.5 Rapid domain
	5.5.1 Working with RAPID data
	5.5.2 Handling arrays
	5.5.3 ReadItem and WriteItem methods
	5.5.4 UserDefined data
	5.5.5 RAPID symbol search
	5.5.6 Working with RAPID modules and programs
	5.5.7 Enable operator response to RAPID UI-instructions from a PC

	5.6 IO system domain
	5.7 Event log domain
	5.8 Motion domain
	5.9 File system domain
	5.10 Messaging domain

	6 PC - Debugging and troubleshooting
	6.1 Debugging
	6.2 Troubleshooting

	7 Deployment of a PC SDK application
	7.1 Overview

	Index

