
 58 ABB review 2|13

Title picture
Emulating the control environment of a complex
industrial plant, such as this liquified natural gas
plant in Norway, in software and hardware is a
difficult job. A new emulator that ably imitates
subsystem interfaces is now making the job a lot
easier.

Virtually speaking

MARIO HOERnICkE, TRYgVE HARVEI – A modern industrial plant is a thing of
bewildering sophistication. Hundreds, or even thousands, of sensors, meters and
various intelligent field devices send data to, and receive data from, automation
controllers in a vast, precisely orchestrated torrent of bytes. Building a full
hardware test infrastructure in the factory for such a complex system is wholly
infeasible, so software emulators are used to imitate its constituent subsystems.
Over the years, these have become very refined. However, missing from such
emulation environments has been a satisfactory way to emulate the interfaces
between the subsystems and the distributed control systems they serve. A
research initiative launched to solve this problem resulted in SoftCI. SoftCI is
meant to replace AC800M controller communication interfaces during integration
and factory acceptance tests.

DCS-to-subsystem interface emulation
using SoftCI

Virtually
speaking

 59

 60 ABB review 2|13

SoftFF [2], a Foundation Fieldbus simula-
tor, can be used to verify the integrity of
the emulation.

SoftCI environment
During an FAT, the entire system must be
comprehensively emulated in order to test
the consistency of the engineering effort.

Everything that is
not performed on a
standard PC is ex-
ecuted on an emu-
lator. Different em-
ulators represent
different subsys-
tems and fieldbus-
es ➔ 1. There is, for
instance, a DCS/
controller emula-
tion available that

focuses on IEC61131-3 code [3]. Today,
each system has to be tested separately
in its own context without regard for sys-
tem or communication aspects.

It is against this background that SoftCI
was developed. SoftCI handles vertical
communication between the DCS and
subsystem emulations. A plant will have
many subsystems performing many dif-
ferent tasks, but usually only one DCS
type. In order to show that the SoftCI
concept works, attention has been
 focused on the ABB AC800M controller.

O
bviously, a complete process
plant cannot be built in the lab
to test new automation sys-
tems. So, the plant’s func-

tions are emulated in hardware and soft-
ware. Whereas much of the plant’s
functionality can now be successfully imi-
tated, the communication between the

distributed control system (DCS) emulator
and subsystem emulator is usually not.
Due to the increasing usage of fieldbuses
and Ethernet in plants, and the criticality
of error-free communication, this is a
 major problem

The Next Generation Factory Acceptance
Test (NGFAT) initiative aims to solve this
problem [1]. Included in the goals of the
initiative is the development of a generic
controller communication interface (CI)
emulation – SoftCI. As a result, a software
development kit (SDK) has been imple-
mented that allows the user to integrate
CI emulation into existing subsystem em-
ulators or execute it in standalone mode.

1 Emulators for process control system hardware – situation today.
 SoftCI is needed for communication between the components.

Since the communication
functions of different CIs are
often similar, one generic
communications concept
could cover many CI types.

Today, each sys-
tem has to be test-
ed separately in its
own context with-
out regard for sys-
tem or communi-
cation aspects.

Controller
OPC servers

System server(s)

HSE = high-speed Ethernet

Profinet IO

Profibus DP
FF H1

FF HSE IEC 61850

Profibus PA

Process

Process
simulation

FF HSE OPC
connectivity
server

Plant network/
Client-server network

61850 OPC server

Control network

HMISystem clients

Controller
(DCS)

DCS emulation
(eg, AC800M
Softcontroller

Profibus
emulation

I/O emulation
(eg, SoftIO)

FF emulation
(eg, SoftFF)

IEC61850
emulation

Ci emulation is
missing – SoftCi
is required

Profinet
emulation

I/O

 61

system can be mapped to the control
variables, as for FF.

Except for the difference that FF uses a
single table and IEC61850 uses several,
the CI scheme is similar ➔ 3.

Since the communication functions
of different CIs are often similar, one
 generic communications concept could
cover many CI types. For example,
most CIs are used to simply exchange
values from IEC61131 variables to sub-
system signals and do not provide sup-
plemental functionality. Thus, a config-
ured CI could be modeled as a mapping
table.

The model of the CI is not the only part
that needs to be developed. During run-
time, a generic communication method
has to exchange values with the AC800M.
This is required for every type of CI since
the CIs are always exchanging data with
the AC800M. On the field level, so to
speak, a communication to the subsys-
tem emulator is required. The subsystem
emulation differs depending on the sub-
system type. The emulation can be ABB-
owned, open-source or third party and
can be characterized as being either open
or locked.

In focus: AC800M
The AC800M controller contains input
and output (I/O) modules, but also field-
bus and subsystem couplers – the CIs.
A coupler is a specific component used
to connect the physical fieldbus on the
device level ➔ 2.

A CI860, for instance, transfers data be-
tween the AC800M and a Foundation
Fieldbus (FF) device. It is engineered us-
ing a table to map IEC61131 control ap-
plication variables to FF signals. While
IEC61131 variables are connected to the
control application, FF provides the coun-
terpart within the corresponding engi-
neering tool, FieldBus Builder FF (FBB
FF). The FF signals are attached to the FF
function blocks using FBB FF. By con-
necting the signal to the function blocks,
the IEC61131 variable to the control ap-
plication and mapping the signal and the
variable in the mapping table, the engi-
neer can establish a value exchange be-
tween AC800M and FF.

Another example of a CI is the CI868 for
IEC61850 [4] networks. For IEC61850 the
structure below the CI looks different. The
CI contains a separate mapping table for
each intelligent electronic device (IED)
that is attached to the controller. In this
table, the signals coming from the sub-

2 Topology of AC800M. Here, the usage of
an FF coupler.

3 Characteristics of Foundation Fieldbus CI860 and IEC61850 CI868,
 showing the mapping done inside the CIs in Control Builder M (CBM).

– One CI for input and output variables
– FF Signals are copied to 1131 variables
 (and vice versa)
– Mapping is configured in a single table for each CI

– One CI for input and output variables
– IEC61850 signals are copied to 1131 variables
 (and vice versa)
– For each IED, a separate mapping table is engineered
– IEDs from the field are always inputs
– AC800M is treated as being an IED
– AC800M IED is always an output

Characteristics

Foundation Fieldbus (CI860) IEC61850 (CI868)

Virtually speaking

 62 ABB review 2|13

one part that describes the CI type and
another part that describes the CI in-
stance. The model for the CI type is
 developed once and is the same for each
instance, while the instance model is cre-
ated for every instance separately.

The meta-model for a CI type is delivered
as a .NET interface that can be imple-
mented in a class ➔ 4. It consists mainly of
the descriptive properties, name and ID of
the CI type, and a method to get the in-
stances of the described type from the
800xA engineering workplace. If automat-
ic creation of instance models is desired, a
method to create the model can be imple-
mented. If this is done, SoftCI can identify
the instances and create the models for
the instances without user interaction.

The meta-model for the instances is deliv-
ered as .NET classes, but is storable as
XML ➔ 5. The instance meta-model does
not use methods, but data properties only
to describe the specific instance. In gen-
eral, it is the representation of the map-
ping table from CBM.

Open emulators allow further functionality
to be included: The SoftCI could be inte-
grated into the subsystem emulator and
directly exchange the variables from the
AC800M with the subsystem emulator’s
variables. The CI model is executed within
the subsystem emulation.

Locked emulators do not allow expanded
functionality. These tools, however, should
still be usable with SoftCI and, therefore,
a different vertical standard communica-
tion method needs to be evaluated. This
implies that SoftCI should be able to exe-
cute CI models in standalone mode and
that a CI model might be developed man-
ually and must, therefore, be stored in a
human-interpretable form.

generic CI emulation
The scene has been set, then, for the
 development of generic functionality to
emulate different CI types.

CI models
A major part of the functionality is the cre-
ation of CI models. CI models consist of

4 CI model for a specific type

5 CI model of a specific instance

SoftCI handles
 vertical communi-
cation between the
DCS and subsys-
tem emulations.

Manager::SoftCiManager
“class Ci type model”

Interfaces::SoftCi

- GetCisOfType() : Dictionary <guid:string, name:string
- MapCiConfiguration(string) : SoftCiConfig
«Property»
- CiTypeName() : string
- CiTypeid{} : string

- GetSoftCis() ; Dictionary<string, iSoftCi>

SoftCI860::
SoftCI860iSoftCi

SoftCI868::
SoftCI868iSoftCi

{leaf}

class Ci type model

class Ci instance model

Config::mapping

- cycleTime: int
- direction: Direction
- AC800MVariable: Variable
- SubsystemVariable: Variable

Config::Variable

- Name: string
- Type: string
- OPCPath: string

«enumeration»
Config::Mapping::Direction

ReadAC800MVariable
ReadSubsystemVariable

«enumeration»
Config::ConnectionType

CyclicConnection
AsyncConnection

Config::
OPCServerPath

- Path: string
- Name: string

Config::SoftCiConfig

- Mapping: List<Mapping>

«Property»
- CiName() : string
- Ci Guid() : string
- CommunicationType() : ConnectionType
- AC800MServer() : OPCServerPath
- SubsystemServer() : OPCServerPath

SoftCiModeal : XML

 63

In addition to the mapping table from
CBM, the name and ID of the CI instance
is described. With those, SoftCI can show
the user which instances are emulated at
present. Additionally, the communication
type of the CI instance needs to be de-
scribed. The communication type might
by acyclic or cyclic, depending on the
communication method of the subsys-
tem. Mixtures of both are allowed.

CI communication
As mentioned above, a method to com-
municate with the AC800M Softcontroller
had to be found, so the communication
parameters for an instance have to be
modeled.

The chosen communication method is
OPC Data Access (DA). OPC DA is sup-
ported by the AC800M Softcontroller and
is usually preconfigured for the actual
hardware and the production system.
Hence, reconfiguration for the emulation
is not required. Since there might be sev-
eral OPC servers used in the process
control system, the path to, and name of,
the AC800M OPC server for the specific
controller instance has to be described
within the instance model.

SoftCI modules
The SoftCI SDK consists of a number of
software modules ➔ 6. Besides the mod-
el, a CI manager is supplied that can be
used to identify CI type models. It is pos-
sible that several types are used within a
single process control system for a plant.
The manager can identify them and auto-

matically create instance models for each
without user interaction.

The modules delivered with the SDK are
provided as class libraries that can be
used to quickly create CI emulation within
subsystem emulators. Additionally, a very
small and simple user interface is provid-
ed that can be used to execute CI emula-
tion in standalone mode.

Testing times
The concept described has been suc-
cessfully tested by implementing CI emu-
lation for FF. The concept has been
 proven in conjunction with IEC 61850
emulation too. SoftCI868 has been im-
plemented in prototype form and value
exchange between IEC 61850 emulation
and the AC800M softcontroller functions.

Towards the virtual plant
SoftCI is an SDK that provides generic
emulation functionality for AC800M com-
munication interfaces and, in doing so,
closes a white spot in the emulator land-
scape. Although it might not be usable
for every kind of CI, the majority of CI
types can be addressed. SoftCI860 has
already been im-plemented in SoftFF
and is ready for use in integration testing
and FATs (a first pilot project is currently
underway).

SoftCI is an evolutionary step towards ex-
haustive virtual commissioning functional-
ity for ABB’s Extended Automation Sys-
tem 800xA – ie, another important step
towards perfection of the virtual plant.

Mario Hoernicke

ABB Corporate Research

Ladenburg, Germany

mario.hoernicke@de.abb.com

Trygve Harvei

ABB Process Automation

Oslo, Norway

trygve.harvei@no.abb.com

References
[1] M. Hoernicke, J. Greifeneder, “Next Generation

Factory Acceptance Test,” Annual Report ABB
Corporate Research Germany, pp. 83–89, 2011.

[2] M. Hoernicke, P. Weemes, H. Hanking, “The
fieldbus outside the field: Reducing commission-
ing effort by simulating Foundation Fieldbus with
SoftFF,” ABB Review, 1/2012, pp. 47–52.

[3] IEC61131-3: Programmable controllers – Part 3:
Programming languages. Edition 2.0, 2003.

[4] IEC61850: Communication networks and systems
in substations, 2003.

6 SoftCI SDk modules A CI860, for in-
stance, transfers
data between the
AC800M and a
Foundation Field-
bus device.

CBM

Specific
data

source

Open interface

XML Discover

Configuration / offline

Runtime / online

Create Save

Configure

Specific
interfaces

OPC

OPC

Events

CI type
model

Subsystem OPC
DA server

Subsystem
emulator

AC800M OPC DA
server

CI engine

CI
manager

CI instance
model (XML)

CI instance
model

 Provided by SDK

 Specific CI

 External components

Virtually speaking

