
PSR-How to use FUPLA 2 / 4. Diagrams and Programs 21

Rev.: 4.0 (2001.05) 3BHS 120511 E

4. Diagrams and Programs

The FUPLA 2 Editor provides you with a set of
simple, powerful drawing tools. You use the tools to
draw function diagrams and state diagrams.
Function diagrams and state diagrams closely
resemble the diagrams that control system
engineers use to design and document control
system programs.

After you have used the editor to draw the diagrams,
you can use other FUPLA 2 tools to turn the
diagrams directly into control system programs. You
perform only a few additional operations. The
FUPLA 2 system performs the rest of the work
automatically.

4.1 Function Diagrams

Function diagrams are widely used to document
control system application programs. They provide
clear pictures of program structure that closely
resemble the logic diagrams used by application
programming specialists.

Function diagrams represent programs written in
functional programming languages. Programs
written in functional programming languages are
often called FUP programs. Two of the references
listed in section 1.6 (Backus, 1978, and Henderson,
1980) discuss the theory of functional languages.

A FUP program performs logical and mathematical
operations on the data it receives in its input signals.
As output, a FUP program produces one or more
signals of its own. A FUP program's input signals
can contain the values of important process
variables, or commands entered by the person
operating a process control system. Its output
signals can control the operation of process
equipment. A function diagram displays a FUP
program as a set of function blocks, and a set of
signal lines that connect the function blocks. The
function blocks perform logical and mathematical
operations on signals that travel over the signal lines.

The FUPLA 2 system provides a library of standard
function blocks that perform a wide variety of
mathematical and logical operations. You can also
define function blocks of your own, called macros, by
combining library function blocks. You can use
macro function blocks to diagram a very complex
FUP program with a single function diagram.

FUP programs are also relatively easy to read and
understand. They clearly specify their internal data
flows without using potentially confusing lists of
variables and assignment statements.

FUP programs do not produce hidden side effects.
Only their visible outputs influence the outside world.

The Editor provides a very powerful set of drawing
tools that make it easy for you to draw the function
diagrams that represent FUP programs.

Figure 4.1 shows a function diagram that represents
a simple FUP program.

Fig. 4.1 Example of a Function Diagram

│ ┌ 1───┐ │
TESTBOX_SWITCH2 ├──────────────────┤ & │ │

│ │ │ ┌ 2───┐ │
TIMER_OUT ├──────────────────┤ ├─────────────────┤ >=1 │ │

│ └B────┘ │ │ │
TESTBOX_SWITCH3 ├──┤ ├────────────────┤TESTBOX_LIGHT2

│ └B────┘ │

PSR-How to use FUPLA 2 / 4. Diagrams and Programs 22

Rev.: 4.0 (2001.05) 3BHS 120511 E

The program's input, output, and internal signals
appear as connecting lines. Signals flow from left to
right and from top to bottom along the lines.

Notice that the signal that connects the two function
blocks has no name (segment local anonymous
signals). To send a signal between two function
blocks on the same diagram, all you need to do is
connect an output line on one function block to an
input line on the other one.

Only signals that enter the diagram as inputs or
leave it as outputs have signal names (cluster local
or global signals). The signal names on the input
and output signals connect the signals entering and
leaving the diagram to signals entering and leaving
other diagrams. By using named signals that travel
between separate diagrams you can build up
systems that contain large numbers of diagrams.

Two of the program's three input signals,
TESTBOX_SWITCH2 and TIMER_OUT, appear in
figure 4.1 as lines that connect to the left side of the
function block called &. Their signal names appear
at the left ends of the lines leading to &, to the left of
the vertical line at the left of the diagram.

TESTBOX_SWITCH2 and TIMER_OUT are binary
signals - signals having two possible values: TRUE
(1), and FALSE (0). The & function block performs
the logical AND operation on TESTBOX_SWITCH2
and TIMER_OUT, and produces a binary output
signal that goes to the upper input of the function
block called >=1. When both TESTBOX_SWITCH2
and TIMER_OUT are TRUE (1), the upper input
signal on the >=1 function block is TRUE (1).
Otherwise the upper input signal is FALSE (0).

The >=1 function block performs the logical OR
operation on the output signal from the & block and a

third binary input signal, TESTBOX_SWITCH3. If
either signal is TRUE, the output signal of the >=1
function block is TRUE. The output signal of the >=1
function block appears in figure 4.1 as a line that
connects to the right side of the function block. Its
signal name, TESTBOX_LIGHT2, appears at the
right end of the line that connects to the block, to the
right of the vertical line on the right side of the
diagram. TESTBOX_LIGHT2 is the only output
signal produced the FUP program that the
FLASH/INTERRUPT function diagram represents.

4.2 State Diagrams

State diagrams provide a widely accepted standard
method for specifying and documenting the allowed
operating states of process control systems, and the
rules for transitions between allowed states. State
diagrams look and behave like Petri net diagrams.
One of the references listed in section 1.6 (Peterson,
1981) discusses the theory of Petri nets.

The programs that state diagrams represent are
often called ALS programs. ALS is an acronym that
expands to AbLaufSteuerung in German.
Ablaufsteuerung means execution control in English.

An ALS program implements an object called a state
machine. At any instant of time, a state machine can
be in only one of a fixed number of states. The state
machine's state diagram and its cycle time control its
behaviour. At the end of each cycle time, the
machine uses the set of state transition rules
summarized in its state diagram to determine what
state it will be in during the next cycle time.

Figure 4.2 shows how the editor displays the state
diagram of a simple ALS program.

Fig.4.2 Example of a State Diagram

╔═══╗
║ ╟
╚═╤═╝
1B┼

┌──────────────>│
│ ┌─┴─┐
│ │ ├TESTBOX_LIGHT1
│ └─┬─┘
│TESTBOX_SWITCH1┼
│ ┌─┴─┐
│ │ ├TIMER_OUT
│ └─┬─┘
│ ┌┘
│ 1B┼
└──────────────┘

PSR-How to use FUPLA 2 / 4. Diagrams and Programs 23

Rev.: 4.0 (2001.05) 3BHS 120511 E

The state diagram has only two basic elements:
states and transitions. The editor uses a square box
to represent each state. The top box - outlined with
a double line - represents the starting state of the
machine. When the ALS program starts up, the
state machine it implements starts in the state
represented by the top box.

The straight lines that connect the state boxes
indicate the possible transitions between states. The
state machine implemented by the program moves
from the top state box in the diagram toward the
bottom state box in the sequence shown by the lines.
It can return to one of the state boxes in the upper
part of the diagram via a line that loops back to it, as
shown in figure 4.2.

All inputs and outputs of the state diagram are binary
signals. Each input signal controls a transition
between two states. Each output signal has a value
of TRUE, or 1, when, and only when, the system is in
the state that corresponds to the state box labelled
with the output signal's name.

A transition between two states is only possible when
the input signal that controls it has a value of TRUE,
or 1. You can attach a constant signal value of 1 to
a transition line to permanently enable transitions
between the states it connects.

Two of the lines in figure 4.2 are labelled with 1B to
show that transitions between the states they
connect are always possible. The third line is
labelled with the signal name TESTBOX_SWITCH1
to show that transitions between the states it
connects are only possible when the
TESTBOX_SWITCH1 signal has the value "TRUE"
or 1.

Figure 4.2 shows that the ALS program represented
by the FLASH/TIMER diagram sets the value of the
TESTBOX_LIGHT1 signal to the truth value of state
2 of the state machine that the program implements.
It sets the value of the TIMER_OUT signal to the
truth value of state 3.

If the TESTBOX_SWITCH1 signal has a value of 1
or TRUE, the state machine implemented by
FLASH/TIMER loops through states 2 and 3
continuously, first setting the value of the
TESTBOX_LIGHT1 signal to 1 or TRUE and the
value of the TIMER_OUT signal to 0 or FALSE, then
switching the values of the two signals, then
switching them back again, and so on. If the
TESTBOX_SWITCH1 signal has a value of 0 or
FALSE, the state machine will halt in state 2, with the
value of TESTBOX_LIGHT1 set to 1 or TRUE, and
the value of TIMER_OUT set to 0 or FALSE.

4.2.1 State Diagram Structure

You can build up an ALS state diagram by using
combinations of five basic structures:

 Sequences
 Alternatives
 Parallel branches
 Loops
 Exceptions

Each of the basic structures implements a different
set of rules for transitions between the states it
connects. Sections 4.2.1.1 through 4.2.1.5 explain
those rules.

To make the explanations easier to understand, we
will use a large black dot, called a token, to mark the
state box that corresponds to the current state of the
ALS state machine represented by a state diagram.
We can then explain the transition rules by showing
how tokens move from one state box to another
within each of the five basic structures.

On each example state diagram in sections 4.2.1.1
through 4.2.1.5, a state box that holds the token
corresponds to the current state of the ALS state
machine the diagram represents. The signal
connected to a state box that holds the token has a
value of TRUE. The signals connected to state
boxes that do not hold the token have values of
FALSE.

PSR-How to use FUPLA 2 / 4. Diagrams and Programs 24

Rev.: 4.0 (2001.05) 3BHS 120511 E

4.2.1.1 Sequences

Figure 4.3 illustrates the token passing rule for
sequences. The token travels from the upper state
box in the sequence to the lower box. It can only
reach the lower box if the signal that controls the
transition between the upper and lower boxes is
TRUE.

When the token moves from the upper state box to
the lower one, the signal connected to the upper
state box changes from TRUE to FALSE. The signal
connected to the lower state box changes from
FALSE to TRUE.

Figure 4.3 Sequence Transition Rules

TRUE

TRUE

FALSE TRUE

TRUE

FALSE

PSR-How to use FUPLA 2 / 4. Diagrams and Programs 25

Rev.: 4.0 (2001.05) 3BHS 120511 E

4.2.1.2 Alternatives

Figure 4.4 illustrates the token passing rules for
alternatives. In an alternative structure, the token
still travels from the upper state toward the lowest
state. However, it can follow either of two possible
paths.

If only one of the two possible transitions in an
alternative structure has a TRUE signal, the token
follows the path created by that transition. If both
possible transitions have TRUE signals, the token
follows the path created by the left transition.

Figure 4.4 Alternative Transition Rules

X

FALSE

FALSE

FALSE FALSE

TRUE

TRUE

FALSEX

FALSE

FALSE

FALSE

TRUE

TRUE

FALSEX

FALSE

FALSE

FALSE FALSE

FALSE

FALSE

TRUEX

TRUE

FALSE

FALSE

FALSE

TRUE

PSR-How to use FUPLA 2 / 4. Diagrams and Programs 26

Rev.: 4.0 (2001.05) 3BHS 120511 E

4.2.1.3 Parallel Branches

Figure 4.5 illustrates the token passing rules for
parallel branches. In a parallel structure, the token
can enter two state boxes at the same time. Both
state boxes represent the same state. This structure
provides a way to attach two or more signal names
to the same state.

The token still moves from upper states toward lower
states on the diagram, and can not travel via a
transition whose controlling signal is FALSE.
However, when the signal controlling the transition
above the parallel structure is TRUE, the token can
move to both parallel state boxes from the state box
above them. The token can only leave the two state
boxes when the signal that controls the transition to
the state box below them is TRUE.

Figure 4.5 Parallel Transition Rules

FALSE

TRUE

TRUE

FALSEFALSE

TRUE

TRUE TRUE

FALSE

TRUE TRUE

TRUETRUE

FALSE FALSE

TRUE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

PSR-How to use FUPLA 2 / 4. Diagrams and Programs 27

Rev.: 4.0 (2001.05) 3BHS 120511 E

4.2.1.4 Loops

Figure 4.6 illustrates the token passing rules for
loops. A loop transition enables the token to travel
upward on a state diagram, returning to a state box it
has already occupied.

If the signal controlling the loop transition is TRUE,
and the signal controlling the transition below the

loop transition is FALSE, the token travels upward to
the previously occupied state box via the loop
transition. If the signal controlling the loop transition
is FALSE, and the signal controlling the transition
below the loop transition is TRUE, the token travels
downward to the next state box via the transition
below the loop.

Figure 4.6 Loop Transition Rules

FALSE

TRUE
TRUE TRUE

FALSE

FALSEFALSE

TRUE FALSE

TRUE
TRUE TRUE

FALSE

or

TRUE

TRUE

FALSE

TRUE

FALSE

PSR-How to use FUPLA 2 / 4. Diagrams and Programs 28

Rev.: 4.0 (2001.05) 3BHS 120511 E

4.2.1.5 Exceptions

Exceptions provide ways for a system to jump to
special states when an error or an unusual event
occurs. The X-transitions shown in figures 4.7 and
4.8 implement exception structures.

Whenever an error or an unusual event occurs, the
system can set the value of the signal controlling an
X-transition to TRUE. Otherwise the signal can
remain FALSE, and the token traverses the state
diagram as if the X-transition did not exist.

If the token is in a structure containing an X-
transition when the signal controlling the X-transition
becomes TRUE, the token immediately jumps to the
state box below the X-transition. If two X-transitions
become TRUE at the same time, the following rules
determine where the token goes:

1. As shown in figure 4.7, if the signals controlling
two parallel X-transitions become TRUE at the
same time, the token takes the path provided by
the left transition.

Figure 4.7 The Parallel X-Transition Rule

TRUE TRUE

2. Figure 4.8 illustrates the concept of the
scope of an X-transition. A path paralleled by an
X-transition falls within the scope of the
transition. The token takes the path created by
the closest X-transition whose controlling signal
is TRUE, and whose scope includes the path the
token is on.

Figure 4.8 X-Transition Scope

TRUE
TRUE

PSR-How to use FUPLA 2 / 4. Diagrams and Programs 29

Rev.: 4.0 (2001.05) 3BHS 120511 E

4.3 Program structure

You need to be able to divide large process control
programs into subunits to make them readable and
maintainable. One useful way to do that is to divide
programs into subunits that perform different

functions. Each subunit can perform a single
function.

The FUPLA 2 system provides a two level hierarchy
that enable you to divide large programs into
subunits. Figure 4.9 illustrates the relationships
between the two structures.

Figure 4.9 FUPLA 2 Program Structure

Project

Cluster 1 Cluster n

Segment 1 Segment m

PSR-How to use FUPLA 2 / 4. Diagrams and Programs 30

Rev.: 4.0 (2001.05) 3BHS 120511 E

4.3.1 Segments

Segments are the smallest subunits of process
control application programs. You can program,
modify, store, and reuse a segment as if it were
completely separate from all the other segments in a
program.

A segment can contain either a function diagram or a
state diagram. The two types of diagrams provide
two complementary ways to specify program
functions.

You can not combine a function diagram with a state
diagram inside the same segment. However, by
connecting segments that contain function diagrams
to segments that contain state diagrams, you can
include both types of diagrams in the same
application program. This arrangement helps you
produce clear, well-structured application programs
that use both types of diagrams.

A function diagram or state diagram should contain
as much information as possible, but it must not
exceed a reasonable size, or it will be hard to read,
change, and reuse. For that reason the editor limits

the sizes of function diagrams and state diagrams.
Each diagram occupies one A3 or A4 page.

4.3.2 Clusters

You can use clusters to group subunits that perform
related functions into larger structures. You do that
by creating a segment for each of the subunits, and
grouping the segments into a cluster. You decide
which segments to put into each cluster of a project.

4.3.3 Links between segments and clusters

You can use signal names to link segments and
clusters together into large programs. You can use
global signal names to link clusters to each other or
to link a program to input and output devices. You
can use local signal names to link segments within
the same cluster. You do not need to name signals
that remain inside individual segments.

You can also combine signals into signal groups.
Signal groups are logical structures like clusters and
segments. You can use them to arrange signals in
well-organized data structures.

Figure 4.10 shows the logical relationships between
signals, signal groups, segments, and clusters.

Figure 4.10 Signals and Signal Groups

Cluster 1 Cluster 2

Cluster n

Seg5
Seg6

Seg9

Seg1

Seg3

Seg2
Seg4

Seg7

Seg8

Seg10

Seg11
Seg12

Signal Group 1

Signal Group 2

Signal Group I/O

global signals

cluster local signals

PSR-How to use FUPLA 2 / 4. Diagrams and Programs 31

Rev.: 4.0 (2001.05) 3BHS 120511 E

4.3.4 Projects

A project usually includes programs that control all or
part of a process control system. The usual way to
group a project's programs and data files together is
to keep them in a separate project directory in the
FUPLA 2 host computer's file system.

4.3.5 Using Macros in Function Diagrams

You can create your own "macro" function blocks
and use them to build up function diagrams in
exactly the same way you use the library function
blocks. You can use the editor's macro function to
define part or all of a function diagram as a macro.
We will show you how to do that in Chapter 7.

The editor displays a macro function block as if it
were a library function block You can display the
contents of a macro function block by using the
editor's zoom function.

Macros are like the "procedures" of traditional
programming languages. You can use them to

 1. program frequently-used functions once, and
use them in several segments without having to
program them again

 2. make function diagrams more informative and
easier to read.

Figure 4.11 shows an example of a macro function
block.

Figure 4.11 A Macro Function Block

Function 1

Function 2

Function 3

Function 4

IN1

OUT1
OUT2

IN2
IN3

IN1
IN2
IN3

IN1
IN2
IN3

OUT

OUT1
OUT2

IN4

OUT
IN

Unzoom

Zoom

PSR-How to use FUPLA 2 / 4. Diagrams and Programs 32

Rev.: 4.0 (2001.05) 3BHS 120511 E

4.3.6 Using State Subcharts in State Diagrams

A state subchart condenses a section of a state
diagram into a single state box. You can use state
subcharts to

 1. reduce the size of state diagrams,

 2. make them easier to read, and

 3. refine the definitions of complex process
sequences one step at a time.

Unlike macros, which you can reuse in different
segments, state subcharts can only be used in the
segments that contain them.

Figure 4.12 shows an example of a state subchart.

Figure 4.12 A State Subchart

SUB

S4

T3

RS1S3

T2

S2

T1
RS1

T5 T7

T6

S5 S6

T8

S7

T9

RS1

State Chart

State Subchart

	4. Diagrams and Programs
	4.1 Function Diagrams
	4.2 State Diagrams
	4.3 Program structure

