ZX0.2 Digital
Simplicity meets flexibility
ZX0.2 Digital concept

• Introduction
• Customer value of ZX0.2 Digital concept
• The magic behind ZX0.2 Digital
 • Panel variants
 • Communication
At the end of this presentation you will be able to understand the benefits and general functioning of ABB’s ZX0.2 Digital as part of the ABB Ability™ GIS for MV - ZX concept. This is applicable for ZX0.2 Digital panels as per IEC standard.
Typical challenges

- Safety hazards because of possible faults in instrument transformers
- Changes during project execution
- Tough project timeline
- Extension of the switchgear line up
- Complex and unclear specifications
- Safety hazards because of cable breaks in hard-wired interlockings

ZX0.2 Digital offers a solution to all these challenges
ZX0.2 Digital

Typical challenges

<table>
<thead>
<tr>
<th>Changes during project execution</th>
<th>Safety hazards because of cable breaks in hard-wired interlockings</th>
<th>Safety hazards because of possible faults in instrument transformers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy incorporation of changing requirements during project execution thanks to only two sensor variants and streamlined wiring.</td>
<td>Increased safety because of continuous supervision of communication between protection relays.</td>
<td>Increased safety because possible faults in instrument transformers are eliminated by utilizing sensor technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tough project timeline</th>
<th>Complex and unclear specifications</th>
<th>Extension of the switchgear line up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorter delivery time thanks to streamlined engineering processes.</td>
<td>Complex current and voltage transformer requirements are melted down to just one current and one voltage sensor variant</td>
<td>Easy extension of switchgear line ups thanks to IEC 61850 communication standard and reduced wiring</td>
</tr>
</tbody>
</table>
Safe and reliable
- Additional safety thanks to continuously supervised and redundant communication
- No aging effects thanks to fewer insulating components
- No fuse required for voltage sensors because of non-hazardous low-level signals
- No unsafe situations arise because of possible failures in instrument transformers
ZX0.2 Digital

Customer value

Simple and efficient

- All ratings are covered by just one current sensor and one main voltage sensor variant
- Streamlined wiring in low voltage compartment thanks to GOOSE\(^1\) interlockings and process bus according to IEC 61850
- Cable testing without removing voltage sensors: sensors sustain cable testing voltages
- Reduced delivery time
- Lower energy consumption by up to 250 MWh representing savings of up to 42,500 EUR\(^2\)
- Special applications such as tariff metering possible by combination of sensors and instrument transformers

\(^1\) GOOSE = Generic Object Oriented Substation Events – a protocol for communication within a substation, which is part of the IEC 61850 standard

\(^2\) Compared to a conventional ZX0.2 line up with 14 panels over 30 years and an energy price of 0,17 EUR per kWh
Flexible and intelligent
- Superior flexibility towards grid disturbances and varying load flows thanks to linear sensor characteristic
- Late customization and changes possible without any replacement of sensors
- Interoperability thanks to native support of IEC 61850
ZX0.2 Digital

Concept

ABB’s innovative sensor technology

IEC 61850

Advanced communication concepts:
- Station bus incl. GOOSE (8-1)
- Process bus incl. redundant network (9-2)

Well-proven ABB switchgear

Comprehensive concept for medium voltage gas-insulated switchgear
ZX0.2 Digital
Sensor variants

Current Sensor
- KECA 80 C85
 - Nominal current: up to 2500 A
 - Rated primary current: 80 A / 150 mV at 50 Hz or 80 A / 180 mV at 60 Hz
 - Accuracy class: 0.5 / 5P630 for 50 and 60 Hz

Voltage Sensor
- KEVA 36 G22/G23
 - Rated voltage: up to 36 kV
 - Rated primary voltage: 33 / \(\sqrt{3}\) kV
 - Rated power frequency withstand voltage: 70 kV
 - Rated lightning impulse withstand voltage: 170 kV
 - Transformation ratio: 10 000 : 1
 - Accuracy class: 0.5 / 3P

Two sensor variants cover ZX0.2 portfolio
ZX0.2 Digital

Sensor variants

Current Sensor
KECA 80 C85

- Metering accuracy class 0.5
- Linear sensor characteristic

- Protection accuracy class 5P630

Voltage Sensor
KEVA 36 G22/G23

- Metering accuracy class 0.5
- Linear sensor characteristic

- Protection accuracy class 3P

Superior characteristic of voltage and current sensors
ZX0.2 Digital
Sensor locations

Feeder (450mm panel w/o cable voltage sensor)

- Protection relay with IEC 61850
- Current sensors
- Voltage sensors (either on cable side or busbar)

Coupler/Riser
Communication according to IEC 61850-8-1 (GOOSE)

Superior data transmission with GOOSE messaging
On behalf of ABB AG, KEMA tested the performance of GOOSE communications in comparison with direct signal transmission between two devices through conventional wiring. The test programme was based on IEC 62271-3 and was performed with gas-insulated switchgear of type ZX and the REM615 and REF630 protection devices from the Relion® product range.

The results of the KEMA test at a glance:
- Data transmission with GOOSE is between 12 ms and 15 ms faster than with conventional wiring.
- In the event of an interruption to GOOSE communication, the system reacts as specified and blocks the set protection functions.
- Interlocks to prevent double switching operations function as specified

The Relion® devices comply with class P1, message type 1A “Trip” to IEC 61850-5 for message transmission time less than 10 ms.

Easy implementation of protection schemes: e.g. Reverse interlocking, circuit breaker failure protection.
Communication according to IEC 61850-9-2 (Process bus)

Protection functions based on voltage signal from process bus (based on sampled measured values)
ZX0.2 Digital

GOOSE and process bus on one glass fibre/ethernet cable
Redundant communication (recommended if process bus used)

HSR (High-availability Seamless Redundancy)
- Each information is twice on the bus
- Zero-time recovery
- Internal switches of relays are sufficient
- Maximum number of relays limited to 30

PRP (Parallel Redundancy Protocol)
- Each relay attached to two independent networks
- Zero-time recovery
- Separate switches needed

Redundant communication recommended when using process bus
ZX0.2 Digital
Protection relays

Relion® Product Type

<table>
<thead>
<tr>
<th>Relion®</th>
<th>Product Type</th>
<th>Standard configuration</th>
<th>Sensor support</th>
<th>IEC 61850-9-2 support</th>
</tr>
</thead>
<tbody>
<tr>
<td>615 series</td>
<td>REF615 5.0 FP1</td>
<td>G</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>REM615 5.0 FP1</td>
<td>D</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RED615 5.0 FP1</td>
<td>E</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>620 series</td>
<td>REF620 2.0 FP1</td>
<td>AC (input and output selection)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>REM620 2.0 FP1</td>
<td>DA (input and output selection)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
ZX0.2 Digital
RIO600

RIO600:
- Communication module (LECM)
- Power supply module (PSM)
- Smart control module for control of 3 position switch incl. 4 BI (SCM)
- IO modules:
 • 8 BI (DIM)
 • 4 BO (DOM)

- REF615 with sensors 8 BI 10 BO (sufficient for most standard configured ZX0.2 panels without motorized 3PS)
- REF620 with sensors 16 BI 14 BO with optional board +8 BI +4 BO
Panel variants

ZX0.2 Digital

450mm Feeder

Typical configuration

- 615 relay series with sensor inputs (8BI/10BO):
 - 2x optic, 1x galvanic (internal switch)
- Adapter box type A
- 3x current sensor on outer cone

Optional:
- RIO600 incl. SMC for motorized 3PS (requires one communication port at relay)
- External switch
- RC01 CT on outer cone for metering (DTO, max. height 160mm)
- Voltage sensor on cable for max. 2 cables per phase (DTO)
Panel variants

600mm Feeder

Typical configuration

- 615 relay series with sensor inputs (8BI/10BO):
 - 2x optic, 1x galvanic (internal switch)
- Adapter box type A/B
- 3x current sensor on outer cone

Optional:
- 3x either voltage sensor on cable or on busbar (Adapter box type B required)
- RIO600 incl. SMC for motorized 3PS (requires one communication port at relay)
- External switch
- RC10-188-150-75 CT on outer cone for metering (DTO, max. height 160mm)
- Voltage sensor on cable for max. 2 cables per phase (DTO)
ZX0.2 Digital
Panel variants

1200mm Feeder

Typical configuration

- 615 relay series with sensor inputs (8BI/10BO):
 - 2x optic, 1x galvanic (internal switch)
- Adapterbox type C
- 6x current sensor on outer cone
Optional:
- 3x either voltage sensor on cable or on busbar (Adapterbox type B required)
- RIO600 incl. SMC for motorized 3PS (requires one communication port at relay)
- External switch
- RC11-378-160-75 CT on outer cone for metering (DTO, max. height 160mm)
- Voltage sensor on cable for max. 2 cables per phase (DTO)
ZX0.2 Digital

Panel variants

Typical configuration

- 615 relay series with sensor inputs (8BI/10BO):
 - 2x optic, 1x galvanic (internal switch)
- Adapter box type A/B
- 3x current sensor on outer cone

Optional:
- 3x voltage sensor on busbar (Adapterbox type B required)
- RIO600 incl. 2x SMC for motorized 3PS (requires one communication port at relay)
- External switch
ZX0.2 Digital

Communication options

Redundant vs. non-redundant ring

- Internal switch with HSR (2x optic for ring, 1x galvanic for RIO600 connection)

Redundant vs. non-redundant star

- Managed external switches
- Internal PRP connection ports (2x optic for PRP, 1x galvanic for RIO600 connection)

- Managed switch, Connect RIO600 to switch or order internal switch as well
ZX0.2 Digital

Testing setup

ZX0.2 Digital enables advanced testing schemes