Power quality in buildings
How ABB’s solutions can help you to improve the power quality
Katja Hakoneva – Global Product Manager, ABB HVACR Drives
ABB at a glance
Facts and figures

What
Offering

Products
Systems
Services & software

For whom
Customers

Buildings
Industry
Transport & infrastructure

Where
Geographies

Asia, Middle East and Africa
Americas
Europe

Globally

Pioneering technology

Revenue ~$28 bn
Countries ~100
Employees ~110,000*

Source: Annual Report 2019 published financial results
*As of July 1, 2020
Agenda

- Power quality aspects in buildings
- Power line harmonics
- Why do we care?
- Different ways to mitigate harmonics
- Harmonic standards and recommendations
- ABBs ultra-low harmonic drive for HVACR applications
Power quality in a building
What aspects affect it
Everything what makes the voltage and/or frequency deviate from the nominal conditions affects power quality.

- Voltage sags, voltage transients, notching, over- and undervoltage, power line harmonics, low power factor.

Common way to mitigate these problems is to overdimension equipment or add external components to protect the sensitive devices.

Could there be a better way?

In this presentation, we’ll focus on the problems caused by the power line harmonics and low power factor.
Power line harmonics
What are they and where they come from
What are power line harmonics?
The effect they bring

Ideal vs. distorted current waveforms

Pure sinusoidal voltage
The ideal supply network voltage and current waveforms should be sinusoidal.

In reality, a range of power quality issues exists: e.g. dips, transients, voltage and frequency fluctuations etc.

The effect of harmonics
When a repetitive and predictable non-sinusoidal voltage or current distortion exists, this means the supply contains harmonic distortion.
What are power line harmonics?

Example of distorted current

All continuous periodic signals can be represented as a sum of sinusoidal components.
Power line harmonic causes
What is the source

Non-linear loads in buildings

- In all buildings there are many loads that are susceptible to harmonics and that generate harmonics.
- Variable speed drives controlling motors of fans, pumps and compressors also produce harmonics.
- VSD harmonic performance must be considered as VSD load can be significant compared to total electrical load of the building.
Power line harmonics

Why do we care?
Power line harmonics

Why to care

Electronics sensitive to noise
- Medical equipment
- Airport navigation aids
- Security systems
- Communication equipment
- Laboratory equipment

Interference in electronics having carrier signals
- Lighting systems
- Power meters

Risk for emergency power systems
- Generators
Power line harmonics

Why to care

- Harmonic currents increase the total line current causing increase in cable and fuse sizes.
- "Extra current" is not active current – it is reactive current.
- Power plant has to deliver and invoice also the reactive current.
- EC motor current drawn from the network is about 25-40% higher than the load is.
- Reactive current lowers the total power factor.
- Many electrical utilities charge for the reactive current or low power factor.

<table>
<thead>
<tr>
<th>6-pulse drive or typical EC motor</th>
<th>6-pulse drive with a DC choke</th>
<th>AFE drive with DC bus caps</th>
</tr>
</thead>
<tbody>
<tr>
<td>true power factor ca. 0.78</td>
<td>true power factor ca. 0.93</td>
<td>true power factor ca. 1.0</td>
</tr>
<tr>
<td>line current ca. 128%</td>
<td>line current ca. 108%</td>
<td>line current ca. 100%</td>
</tr>
</tbody>
</table>
Power line harmonics

Effect on power factor

Power factor (true, displacement, nominal, ..?)

\[
PF_{\text{true}} = PF_{\text{displacement}} \times PF_{\text{distortion}} = \frac{P}{S} \times \frac{1}{\sqrt{1 + (\text{THD}^2)}}
\]

- Reactive power \(Q\) affects \(PF_{\text{displacement}}\). Inductive loads like motors consume reactive power.

- Harmonic reactive power or distortion reactive power \(D\) affects \(PF_{\text{distortion}}\). Non-linear loads consume distortion reactive power.

- Both \(PF_{\text{displacement}}\) and \(PF_{\text{distortion}}\) have an effect on \(PF_{\text{true}}\), which is the power factor that should be considered.

- When talking about power factors, it is important to understand, if one is \(PF_{\text{true}}\), \(PF_{\text{displacement}}\) or \(PF_{\text{distortion}}\).
Ways to mitigate harmonics
Comparing different solutions
Harmonics – what can I do?
Mitigation techniques

Basic mitigation techniques

Reduction/abatement of particular harmonics at source or supply point

1. Reduction – correctly sized inductance (reactors, chokes)
2. Diversion – passive filters
3. Cancellation – 12/18/24 pulse rectifiers with special transformers or active harmonic filters
4. Managing – active rectifier (ultra-low harmonic drives)

Less desirable solutions

5. Low capacitive VFDs with no impedance (i.e. undersized DC bus caps) – low current distortion, but higher voltage distortion
6. Matrix style VFD with no DC bus capacitors – unable to achieve full voltage to the motor

Both solutions provide some help with lower frequency current harmonics but with quite a big penalty with robustness, power loss capabilities and/or motor control capabilities.
Methods of harmonic mitigation

Typical harmonic current distortion

- 90-120 % (No filtering)
- 35-45 % (DC link chokes, Passive filter)
- 5-15 % (18 pulse, Active filter)
- 5-10 % (Active rectifier)

Typical harmonic current distortion
Ways to mitigate harmonics
Pros and cons

AC line reactor/DC choke

Pros
- Usually built-in the drive but also available as external option
- Reduces harmonics significantly but also protects the drive for voltage transients from the power line

Cons
- In some cases harmonic reduction is not enough
- Voltage drop over the AC line reactor, 5% line reactor causes 2.5% voltage drop

Passive filter

Pros
- Reduces harmonics efficiently on nominal conditions
- Can be retrofitted on to existing system

Cons
- External component that requires a separate panel to achieve proper IP class
- Need of disconnection of capacitors on partial loads, otherwise causes a leading power factor
- Risk of resonances if multiple filters in the same network
- Potential voltage drop over the passive filter
Ways to mitigate harmonics

Pros and cons

<table>
<thead>
<tr>
<th>Active filter</th>
<th>Multi-pulse rectifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros</td>
<td>Pros</td>
</tr>
<tr>
<td>• Reduces harmonic current to 5% at PCC, also maintains good PF in the system</td>
<td>• 18-pulse and higher can significantly reduce harmonics</td>
</tr>
<tr>
<td>• Partial load performance is very good also on partial loads</td>
<td>• Traditional way to reduce harmonics</td>
</tr>
<tr>
<td>• Can be retrofitted to existing system and can be used with multiple non-linear loads</td>
<td>Cons</td>
</tr>
<tr>
<td>Cons</td>
<td>Cons</td>
</tr>
<tr>
<td>• Large size and cost</td>
<td>• Large size and cost</td>
</tr>
<tr>
<td>• Requires external sensors to function</td>
<td>• Requires special transformer</td>
</tr>
<tr>
<td>• In case of only one filter is installed, failure might cause overloading of the transformer</td>
<td>• Generates heat – means losses</td>
</tr>
<tr>
<td></td>
<td>• Existing line imbalance, transformer winding imbalance and/or excising harmonics reduce it’s harmonic performance</td>
</tr>
<tr>
<td></td>
<td>• Can’t be easily retrofitted in to existing system or even in an existing building</td>
</tr>
</tbody>
</table>
Ways to mitigate harmonics

Pros and cons

Drive with active rectifier (active front end) and DC bus capacitors

Pros

• Solution built in the drive
• Based on active supply unit and line filter
• Simple cabling
• Unity power factor
• Allows boosting up the DC (thus motor) voltage
• Typical full load THD (current) at drive input terminals below 5%, even less than 3%

Cons

• Slightly higher losses on the individual equipment level (minor impact on the system level)
• If designed poorly, active supply switching might cause higher frequency interference on the supply
Ways to mitigate harmonics

System efficiency over component efficiency

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>Network efficiency</th>
<th>Passive filter efficiency</th>
<th>6-pulse drive efficiency</th>
<th>Actual motor efficiency due to drive waveform and lower motor voltage</th>
<th>Motor voltage after system losses</th>
<th>Motor voltage after system losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 V</td>
<td>~ 98%</td>
<td>98.5%</td>
<td>98%</td>
<td>92%*</td>
<td>~ 370 V</td>
<td>400 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Network eff x PF eff x Drive eff x Motor eff = 0.98 x 0.985 x 0.98 x 0.92 = 87%

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>Network efficiency</th>
<th>ABB AFE drive efficiency</th>
<th>Actual motor efficiency at nominal motor voltage</th>
<th>Motor voltage after system losses</th>
<th>Motor voltage after system losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 V</td>
<td>~ 98%</td>
<td>96.5%</td>
<td>92.5%*</td>
<td>400 V</td>
<td>400 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Network eff x Drive eff x Motor eff = 0.98 x 0.965 x 0.925 = 87.5%

Note: Standard drive has higher efficiency than AFE, but the efficiency drop in the passive or active filter and the lower motor voltage make the system efficiency lower meaning higher operating costs.
Ways to mitigate harmonics
Centralized vs decentralized harmonics mitigation

• AFE drives is a decentralized harmonics mitigation solution solving the root cause issue

• Benefits of the decentralized harmonics management:
 – no overdimensioned cables and network components
 – no disruption in power network operation due to harmonics
 – no energy losses over the power network length including cables and network equipment
 – no risk of system overload in case of centralized active filter failure
Harmonic standards and recommendations
Guidelines to follow
Power line harmonics

Main drivers for low-harmonic solutions

| End user’s own needs | 1 | Weak network due to locations
| | | – Remote locations or old buildings with weak supply |
| Authority regulations | 2 | Specified recommendations like IEEE519 and G5/4 in utility projects, standards like 61000-3-12
| | | – Adding anything might push over the limit |
| Utility pricing scheme | 3 | Penalties
| | | – Excess harmonics might trigger e.g. 10 k€ extra fee every month! |
| Consultant / supplier specification | 4 | 12/18/24 pulse multi-pulse solution required
| | | – Consultant may require a multi-pulse – it is better to provide low harmonics |

The need for low harmonic solutions comes from multiple directions
ABB ultra-low harmonic drives for HVAC
Product highlights and benefits
Selecting a drive technology for buildings
Benefiting from ABB active front end ultra-low harmonic drives

- No need to oversize power network equipment to avoid overheating and downtime
- Continuously clean and disturbance-free network for your critical applications
- Effective use of energy both in HVAC and power network, no extra cost on the energy bill or utility penalties
- Normal operation even in fluctuating network with no unexpected interruptions or downtime
- The most compact solution in its class on the drives’ market, with all components built-in

ACH580 ultra-low harmonic drives

Compliance with IEC 61000-3-12: 2011
Harmonics are below the limits set by IEEE519-2014 and G5/4
Selecting a drive technology for buildings
Benefiting from ABB active front end ultra-low harmonic drives

Distribution transformer
6-pulse drives need transformer oversize by 1.35 x motor kVA. With AFE drives, the factor is 1.1.

Cabling
Oversizing depends on the harmonics content in the grid.

<table>
<thead>
<tr>
<th>TDD</th>
<th>Oversize</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>1.00</td>
</tr>
<tr>
<td>50%</td>
<td>1.12</td>
</tr>
<tr>
<td>70%</td>
<td>1.22</td>
</tr>
</tbody>
</table>

Generator
Generator supplying 6-pulse drives to be derated by 40-50%. Avoided if using AFE drives.

10% cost down with AFE

20% cost down with AFE

50% cost down with AFE
ACH580-31 ultra-low harmonic drives for HVAC
Wall-mounted offering

Power range and voltage range:
• 4kW to 110kW
• 380 – 480 V
• IP21/IP55; UL Type 1/UL Type 12 enclosures
• 3 frame sizes
• 6 DI, 2AI/2AO, 3RO, STO, +24V supply for the control unit, BACnet MS/TP or Modbus RTU built-in.
• Two option slots to support wider range of I/Os and fieldbuses.
• Hand-Off-Auto control logic on the panel, additional Bluetooth option for the control panel. DriveTune app development is made in-house at ABB.
ACH580-34 ultra-low harmonic drives for HVAC
Module offering

Power range and voltage range:

- 132 kW to 355 kW
- 380 – 480 V
- IP00 and IP20 enclosures
- Frame R11

- 6 DI, 2AI/2AO, 3RO, STO, +24V supply for the control unit, BACnet MS/TP or Modbus RTU built-in.
- Two option slots to support wider range of I/Os and fieldbuses.
- Hand-Off-Auto control logic on the panel, additional Bluetooth option for the control panel. DriveTune app development is made in-house at ABB.

©ABB
August 26, 2020 | Slide 31
Summary
Excess harmonics in the power network cost money over the lifetime of the building.

There are multiple ways to manage harmonics, but some might cause problems, especially at part load operation, which is the case in HVAC applications.

Decentralized harmonics mitigation gives benefits also inside the building’s network compared to centralized mitigation.

ABB has truly unique offering for HVAC – application support and ultra-low harmonics in the same package.