ABB i-bus® EIB
Shutter Control Unit
Shutter Control Unit, MDRC

- Introduction, application, planning
- Parameters
- Communication objects
Shutter Control Unit, MDRC

- Tracking the position of the sun
- Applications:
 - anti-glare protection
 - daylight redirection
- Installation on DIN rail
- 2 modules width
- Bus connection terminal
Shutter Control Unit, MDRC

Anti-glare protection

- Protection against direct, dazzling daylight
- Maximum use of diffuse daylight
Daylight redirection

- Protection against direct, dazzling daylight
- Defined direction of daylight into the room
Shutter Control Unit, MDRC

Functions

- 4 façades per shutter control unit

- Per façade adjustable operation mode:
 - horizontal louvres
 - horizontal louvres with light redirection
 - vertical louvres

- 20 shadow objects (e.g. buildings, trees) per unit

- Structuring of the façade:
 - without shadow objects: all windows equal
 - with shadow objects: up to 200 windows individually
 (4 façade with 50 windows each)
 - shutter control units can be operated in parallel
Setting of a shutter control system using sun position tracking

- **Brightness sensor**
- **Shutter control unit**
 - "1" = sun and 8bit value
 - "0" = no sun
- **Shutter actuator**
 - Move into 8bit position
 - Move into pos. for sun = "0"
 - Automatic control
 - Direct positioning (up, down, stop, step)
Planning of a shutter control system using sun position tracking
Shutter Control Unit, MDRC

- Introduction, application, planning
- Parameters
- Communication objects
Calculation of the sun position

- Building position: latitude, longitude
- Date, time
Shutter Control Unit, MDRC

Louvre dimensions

- Louvre width, louvre spacing

- Angle for louvres fully opened and fully closed

Horizontal louvres

- Louvre width
- Louvre spacing

Vertical louvres

- Louvre width
- Louvre spacing
Shutter Control Unit, MDRC

Horizontal louvres with light redirection

- Angular deviation of the reflective surface

- Light emission angle
Effect of shadow objects (e.g. buildings, trees)

- Division of the windows of the façade
 - window grid
 (same sizes and intervals of windows)
 - user-defined (each window individually)
Parameterization of shadow objects
Delay periods

- Delay periods (shutter actuator, brightness sensor)
- Intermediate position when sun is temporarily obscured

![Graph showing real sun brightness and reaction of the shutter over time.]

- Real sun brightness: 0 = no sun; 1 = sun
- Reaction of the shutter: 0 = Position when sun =0; 1 = Position when sun=1
Introduction, application, planning
Parameters
Communication objects
Communication objects „Brightness“

- **Number:**
 up the 4 brightness sensors
 (typically: 3 -> east, south, west)

- **Brightness levels:**
 Up to 2 (normal / dazzling)
 -> Overriding dependent on actual brightness level

- **Type of brightness sensor:**
 minimum: 0 bis 20.000 Lux
 better: 0 bis 100.000 Lux or pyranometer

- **Delay periods and intermediate position**
Communication objects „Date“ and „Time“

- 2 communication objects for each „Date“ and „Time“ (input and output)
- Shutter control unit as slave, master or separate
Communication objects „Sun“, „Sun position“ and „Sun louvres“

- Sun = „1“: the sun is shining
 -> „move to sun position 0..255“ and „move to sun louvres 0..255“

- Sun = „0“: the sun is not shining
 -> position for sun = „0“
 (corresponding to the parameter setting in the shutter actuator)

- Up to 200 communication objects „Sun“ possible (4 façades with 50 windows each)