Introduction

The Endura AZ25 Combustion Oxygen Analyzer is the latest in a long line of high-quality, combustion gas analyzers from ABB. The AZ25 is designed to measure oxygen concentration in high temperature furnace atmospheres.

The sensor, based on a zirconium oxide cell, is mounted at the tip of the probe that is inserted directly into the furnace. The resulting direct, in-situ measurement provides an accurate and rapid oxygen reading, for combustion control / optimization and process quality control purposes.

The in situ technique provides a true oxygen measurement inside the process. It eliminates ‘equilibrium shift’ that is common to systems in which gas samples are extracted and cooled before measurement.
For more information

Further publications for the Endura AZ25 probe are available for free download from:
www.abb.com/measurement

or by scanning this code:

<table>
<thead>
<tr>
<th>Search for or click on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Sheet</td>
</tr>
<tr>
<td>Endura AZ25 oxygen analyzer</td>
</tr>
<tr>
<td>Combustion gas analysis</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Addendum</td>
</tr>
<tr>
<td>RoHS Directive 2011/65/EU (RoHS II)</td>
</tr>
</tbody>
</table>
Contents

1 Safety ... 2
 1.1 Health & Safety .. 2
 1.2 Electrical safety – CEI / IEC 61010-1:2001-2 2
 1.3 Symbols – CEI / IEC 61010-1:2001-2 2
 1.4 Product recycling information 3
 1.5 Product disposal .. 3
 1.6 Restriction of Hazardous Substances (RoHS) 4
 1.7 REACH directive ... 4
 1.8 Safety precautions ... 4
 1.9 Safety conventions ... 4
 1.10 Safety recommendations 5
 1.11 Service and repairs .. 5
 1.12 Potential safety hazards 5

2 Overview .. 6

3 Mechanical installation .. 7
 3.1 General installation requirements 7
 3.2 Unpacking .. 7
 3.3 Identifying the probe ... 7
 3.4 System location requirements 8
 3.4.1 Endura AZ25 system without AutoCal 8
 3.4.2 Endura AZ25 system with AutoCal 8
 3.5 Pneumatic connections 9
 3.5.1 Pneumatic entry types 9
 3.5.2 Schematic – Endura AZ25 system without AutoCal 9
 3.5.3 Schematic – Endura AZ25 system with AutoCal 10
 3.5.4 Pneumatic connection configurations 11
 3.5.5 Test gas and reference air supply configurations – AutoCal systems with test gas restrictors 12
 3.5.6 Test gas and reference air supply configurations – AutoCal systems without test gas restrictors 13
 3.5.7 Test gas and reference air supply configurations – non-AutoCal systems without test gas restrictors 14
 3.6 Overall dimensions ... 15
 3.6.1 Endura AZ25 probe 15
 3.6.2 Endura AZ25 AutoCal unit (with wall / pipe-mounting bracket) .. 15
 3.7 Endura AZ25 probe flanges – all probe lengths 16
 3.8 Mounting – Endura AZ25 AutoCal unit 18
 3.9 Mounting – Endura AZ25 probe 18
 3.10 End-of-life disposal .. 19
 3.10.1 Endura AZ25 system weights (probe, cable, transmitter, AutoCal unit) 19

4 Electrical connections ... 20
 4.1 Electrical entry types 20
 4.2 Endura AZ25 system without AutoCal 21
 4.2.1 Cable preparation – 6-core sensor cable / Endura AZ25 remote transmitter to Endura AZ25 probe 21
 4.2.2 Cable connections – 6-core sensor cable / Endura AZ25 remote transmitter to Endura AZ25 probe 22
 4.3 Endura AZ25 system with AutoCal 23
 4.3.1 Cable preparation – 6-core sensor cable / Endura AZ25 AutoCal unit to Endura AZ25 probe 23
 4.3.2 Cable connections – 6-core sensor cable / Endura AZ25 AutoCal unit to Endura AZ25 probe 24
 4.3.3 Cable preparation – 14-core cable / Endura AZ25 AutoCal unit to Endura AZ25 remote transmitter 25
 4.3.4 Cable connections – 14-core cable / Endura AZ25 AutoCal unit to Endura AZ25 remote transmitter 25
 4.4 Test gas and reference air connections 27
 4.4.1 Restrictors .. 27
 4.4.2 Connection types 27
 4.4.3 Test gas and reference air connections 27
 4.4.4 Test gas inlet ... 27
 4.4.5 Vent (AutoCal unit) 27
 4.4.6 Reference air inlet (probe) 28
 4.4.7 Inline shut-off valves 28
 4.4.8 Internal test gas and reference air tubes (AutoCal unit) .. 28

5 Start-up and operation ... 29
 5.1 Preparation .. 29
 5.2 Setting up test gases 29
 5.2.1 AutoCal System with restrictors 29
 5.2.2 AutoCal System without restrictors 30
 5.2.3 Non-AutoCal System with restrictors 30

6 Specification ... 31

Appendix A – Electrical connections, Endura AZ25 to heritage ABB products ... 32

Appendix B – Accessories and spares 33

Table B.1 Notes ... 34
1 Safety

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of the Technical Publications Department.

1.1 Health & Safety

<table>
<thead>
<tr>
<th>Health and Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>To ensure that our products are safe and without risk to health, the following points must be noted:</td>
</tr>
<tr>
<td>- The relevant sections of these instructions must be read carefully before proceeding.</td>
</tr>
<tr>
<td>- Warning labels on containers and packages must be observed.</td>
</tr>
<tr>
<td>- Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.</td>
</tr>
<tr>
<td>- Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and / or temperature.</td>
</tr>
</tbody>
</table>

Safety advice concerning the use of the equipment described in this manual or any relevant Material Safety Data Sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.

1.2 Electrical safety – CEI / IEC 61010-1:2001-2

This equipment complies with the requirements of CEI / IEC 61010-1:2001-2 ‘Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use’ and complies with US NEC 500, NIST and OSHA.

If the equipment is used in a manner NOT specified by the Company, the protection provided by the equipment may be impaired.

1.3 Symbols – CEI / IEC 61010-1:2001-2

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Protective earth (ground) terminal.</td>
</tr>
<tr>
<td></td>
<td>Functional earth (ground) terminal.</td>
</tr>
<tr>
<td></td>
<td>Direct current supply only.</td>
</tr>
<tr>
<td></td>
<td>Alternating current supply only.</td>
</tr>
<tr>
<td></td>
<td>Both direct and alternating current supply.</td>
</tr>
<tr>
<td></td>
<td>The equipment is protected through double insulation.</td>
</tr>
<tr>
<td></td>
<td>This symbol, when noted on a product, indicates a potential hazard which could cause serious personal injury and / or death. The user should reference this instruction manual for operation and / or safety information.</td>
</tr>
<tr>
<td></td>
<td>This symbol, when noted on a product enclosure or barrier, indicates that a risk of electrical shock and / or electrocution exists and indicates that only individuals qualified to work with hazardous voltages should open the enclosure or remove the barrier.</td>
</tr>
<tr>
<td></td>
<td>This symbol indicates that the marked item can be hot and should not be touched without care.</td>
</tr>
<tr>
<td></td>
<td>This symbol indicates the presence of devices sensitive to electrostatic discharge and indicates that care must be taken to prevent damage to them.</td>
</tr>
<tr>
<td></td>
<td>This symbol identifies a risk of chemical harm and indicates that only individuals qualified and trained to work with chemicals should handle chemicals or perform maintenance on chemical delivery systems associated with the equipment.</td>
</tr>
</tbody>
</table>
This symbol indicates the need for protective eye wear.

This symbol indicates the need for protective hand wear.

Electrical equipment marked with this symbol may not be disposed of in European public disposal systems. In conformity with European local and national regulations, European electrical equipment users must now return old or end-of-life equipment to the manufacturer for disposal at no charge to the user.

Products marked with this symbol indicates that the product contains toxic or hazardous substances or elements. The number inside the symbol indicates the environmental protection use period in years.

1.4 Product recycling information

Electrical equipment marked with this symbol may not be disposed of in European public disposal systems after 12 August 2005. In conformity with European local and national regulations (EU Directive 2002 / 96 / EC), European electrical equipment users must now return old or end-of-life equipment to the manufacturer for disposal at no charge to the user.

Note. For return for recycling, please contact the equipment manufacturer or supplier for instructions on how to return end-of-life equipment for proper disposal.

1.5 Product disposal

Note. The following applies only to European customers.

ABB is committed to ensuring that the risk of any environmental damage or pollution caused by any of its products is minimized as far as possible. The European Waste Electrical and Electronic Equipment (WEEE) Directive (2002 / 96 / EC) that came into force on August 13 2005 aims to reduce the waste arising from electrical and electronic equipment; and improve the environmental performance of all those involved in the life cycle of electrical and electronic equipment.

In conformity with European local and national regulations (EU Directive 2002 / 96 / EC stated above), electrical equipment marked with the above symbol may not be disposed of in European public disposal systems after 12 August 2005.
1.6 Restriction of Hazardous Substances (RoHS)

The European Union RoHS Directive and subsequent regulations introduced in member states and other countries limit the use of six hazardous substances used in the manufacturing of electrical and electronic equipment. Currently, monitoring and control instruments do not fall within the scope of the RoHS Directive, however ABB has taken the decision to adopt the recommendations in the Directive as the target for all future product design and component purchasing.

1.7 REACH directive

The candidate list according to Article 59 of the Regulation (EC) No 1907/2006 on the Registration, Evaluation, Authorisation and Restriction of chemicals (REACH) continues to expand. Article 33 places a legal obligation on an article producer to inform recipients of the information requirements when a candidate list substance is contained within an article at percentage of greater than 0.1% W/W.

The AZ25 probe, product number AZ25/ all variants, aluminosilicates (CAS, 142844-00-6) a class 2 carcinogen, is contained at a percentage marginally greater than 0.1% of the weight of the product. The material is totally enclosed within the product and should pose no risk to the user during installation, use and decommissioning providing the probe is handled in accordance with the instructions defined in the user manual. The probe should be disposed of as hazardous waste.

Further information on refractory ceramic fibers can be found at Fiberfrax, www.Fiberfrax.com and on the ECHA (European Chemicals Hazards Agency) websites.

1.8 Safety precautions

Please read the entire manual before unpacking, setting up, or operating this instrument.

Pay particular attention to all warning and caution statements. Failure to do so could result in serious injury to the operator or damage to the equipment.

To ensure the protection provided by this equipment is not impaired, do not use or install this equipment in any manner other than that which is specified in this manual.

1.9 Safety conventions

Warning. In this manual, a warning is used to indicate a condition which, if not met, could cause serious personal injury and / or death. Do not move beyond a warning until all conditions have been met.

If a warning sign appears on the instrument itself, refer to Precautionary Labels – UL Certification and Electrical Safety – CEI / IEC 61010-1:2001-2 for an explanation.

Caution. A caution is used to indicate a condition which, if not met, could cause minor or moderate personal injury and / or damage to the equipment. Do not move beyond a caution until all conditions have been met.

Note. A note is used to indicate important information or instructions that should be considered before operating the equipment.
1.10 Safety recommendations
For safe operation, it is imperative that these service instructions be read before use and that the safety recommendations mentioned herein be scrupulously respected. If danger warnings are not heeded to, serious material or bodily injury could occur.

Warning. The installation of the instrument should be performed exclusively by personnel specialized and authorized to work on electrical installations, in accordance with relevant local regulations.

1.11 Service and repairs
Other than the serviceable items listed in Section B, page 33, none of the instrument’s components can be serviced by the user. Only personnel from ABB or its approved representative(s) is (are) authorized to attempt repairs to the system and only components formally approved by the manufacturer should be used. Any attempt at repairing the instrument in contravention of these principles could cause damage to the instrument and corporal injury to the person carrying out the repair. It renders the warranty null and void and could compromise the correct working of the instrument and the electrical integrity or the CE compliance of the instrument.

If you have any problems with installation, starting, or using the instrument please contact the company that sold it to you. If this is not possible, or if the results of this approach are not satisfactory, please contact the manufacturer’s Customer Service.

1.12 Potential safety hazards
The following potential safety hazards are associated with operating the system:

- Electrical (line voltage)
- Probe weight
- AutoCal unit and transmitter enclosure weights
2 Overview

This User Guide provides the following information:

- installation details for Endura AZ25 probes – see Section 3, page 7
- pneumatic schematics for systems fitted with or without restrictors (including test gas and reference air requirements) – see Section 3.5, page 9
- Endura AZ25 system electrical connection details:
 - for standard connection details (system without automatic calibration [AutoCal]) between an Endura AZ25 probe and an Endura AZ25 remote transmitter – see Section 4.2, page 21
 - for connection details (system with AutoCal) between an Endura AZ25 AutoCal unit and an Endura AZ25 remote transmitter – see Section A, page 32
- electrical connection details between Endura AZ25 probe / transmitter and ABB heritage products (see Appendix A, page 32):
 - ABB heritage ZMT transmitter and Endura AZ25 probe
 - ABB heritage ZDT transmitter and Endura AZ25 probe
 - ABB heritage ZGP2 probe and Endura AZ25 transmitter

The Endura AZ25 oxygen probe measures oxygen concentration in high temperature furnace atmospheres using an in situ 'wet analysis' method.

The 'wet analysis' method avoids measurement error (typically 20 % of reading higher than the actual value) that is introduced by a sampling system using the 'dry analysis' method.

For customers with an existing (heritage) installed ZGP2 probe with a ZMT or ZDT transmitter – both the AZ25 probe and the AZ25 transmitter are fully backward-compatible.

System equipment comprises a (process-mounted) AZ25 probe controlled by a remote AZ25 transmitter and where required, an optional automatic calibration unit.

The AZ25 has a zirconia cell and a thermocouple assembly within the probe. The zirconia cell produces a signal proportional to the oxygen partial pressure of the sample. The thermocouple measures the temperature of the cell for automatic temperature compensation of the cell output.

An output generated at the zirconia cell is processed in the transmitter giving a locally displayed \(O_2 \) reading and a 4 to 20mA retransmission signal over any range between 0 % and 25 % \(O_2 \).

Optional automatic calibration (AutoCal) enables automatic, semi-automatic or manual calibration to be performed using a remote gas control manifold mounted within the standalone housing. Calibration sequencing is software-controlled from the AZ25 transmitter. Optional restrictors control the test gas and reference air flow without the need for flowmeters and flow control valves.

Restrictors are fitted in the autocal unit to control the test gas flow rates and in the probe to control the reference air flow rate. The system requires only preset test gas and reference air pressures of 1 bar (15 psi) to maintain a constant flow of 1.0 l/ min (2.118 scfh) and 0.5 l/min (1.06 scfh).

Warning.

- System configuration must be carried out only by users or personnel with approved access rights (user privileges).
- Read all relevant sections of this guide before configuring the system or modifying system parameters.
- Install and use this equipment as detailed in this guide. Install and use associated equipment in accordance with the relevant national and local...
3 Mechanical installation

3.1 General installation requirements

Warning.
- Before installing the probe, check the probe data label in the head of the probe – see Section 3.3.
- Select a location away from strong electrical and magnetic fields. If this is not possible, particularly in applications where mobile communications equipment is expected to be used, screened cables within flexible, earthed metal conduit must be used.
- Before installing the probe, read the Safety notes in Section 1, page 2.

3.2 Unpacking

Caution.
- Unpack and handle with care do not subject it to hammer blows or other sharp shocks. The probe contains fragile ceramic components that can be damaged. Visually inspect equipment for damage before installing. Do not install damaged or faulty equipment.
- It is recommended to retain the protective probe packing materials to allow for re shipping in the unlikely event of a return.

3.3 Identifying the probe

The unique probe serial number and probe code (configuration) is printed on a data label attached to the inside the probe cover – see Fig. 3.1.

Caution. The details on each probe label are unique to the cell / probe combination they are attached to and cannot be used to identify any other probe or system.

*The probe code identifies if a restrictor is fitted at the probe head (Ref. Air) connection – refer to Fig. 3.6, page 11 for system pneumatic requirements.

Fig. 3.1 Probe identification label location (probe head cover shown removed)
3.4 System location requirements

3.4.1 Endura AZ25 system without AutoCal

*Maximum temperature is sheath-dependant – refer to Section 6, page 31.

Fig. 3.2 Endura AZ25 system without AutoCal

3.4.2 Endura AZ25 system with AutoCal

*Maximum temperature is sheath-dependant – refer to Section 6, page 31.

Fig. 3.3 Endura AZ25 system with AutoCal
3.5 Pneumatic connections

Note.
- The configuration option of having flow restrictors fitted to the probe determines the way the reference air and test gas flow is controlled. Ensure the instructions for the pneumatic connections are followed accurately – an incorrect configuration at the probe can cause errors and/or permanent damage.
- All configurations – do not use gas mixers online to supply test gases to the probe(s) unless it can be confirmed that errors are not introduced by the high delivery pressures required to the probe(s).
- Probes with restrictor – the reference air flow is regulated by a restrictor installed in the probe which requires a set pressure of 1 bar (15 psi) to deliver the correct flow. Because the gases are delivered as a pressure at the probe it is permissible to use parallel pipework for multiple-probe installations.
- Probes without restrictors – the reference air and test gas flow is regulated by flowmeters (with integral needle valves) fitted in the delivery lines to the sensor – one flowmeter is required in each delivery line.

3.5.1 Pneumatic entry types

<table>
<thead>
<tr>
<th>Endura AZ25 AutoCal unit / test gas 1, 2 and vent</th>
<th>Endura AZ25 probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric</td>
<td>Imperial</td>
</tr>
<tr>
<td>1/4 in. BSP female threaded entry supplied with 6 mm OD compression fitting</td>
<td>1/4 in. NPT female threaded entry supplied with 1/4 in. OD compression fitting</td>
</tr>
<tr>
<td>Test gas: 6 mm dia. stud</td>
<td>Test gas: 6 mm dia. stud</td>
</tr>
</tbody>
</table>

Table 3.1 Pneumatic entry types at Endura AZ25 AutoCal unit

Table 3.2 Pneumatic entry types at Endura AZ25 probe

3.5.2 Schematic – Endura AZ25 system without AutoCal

*Refer to Appendix B, page 33 for ABB part numbers
**Clean dry instrument air free from hydrocarbons

Fig. 3.4 Schematic – Endura AZ25 system without AutoCal
3.5.3 Schematic – Endura AZ25 system with AutoCal

*Refer to Appendix B, page 33 for ABB part numbers
**Clean dry instrument air free from hydrocarbons

Fig. 3.5 Schematic – Endura AZ25 system with AutoCal
3.5.4 Pneumatic connection configurations

The pneumatic configuration of each probe is detailed on the probe identification label – see Section 3.3, page 7.

To identify the pneumatic configuration/requirements of your probe, refer to the flowchart below (Fig. 3.6) to identify which configuration is the closest match for your system and refer to the relevant figure in Sections 3.5.5 (page 12) to 3.5.7 (page 13) for flow rates.

Endura AZ25 series probe
Combustion oxygen monitor

3 Mechanical installation

Fig. 3.6 Pneumatic connection configurations (schematic)
3.5.5 Test gas and reference air supply configurations – AutoCal systems with test gas restrictors

Fig. 3.7 System using air as test gas 1 and bottled gas as (optional) test gas 2

- **Endura AZ25 probe**
 - Test gas supply: restrictor in probe limits flow to l/min (2.118 scfh) at 1 bar (15 psi)
- **Endura AZ25 AutoCal unit**
 - Clean dry oil-free instrument air
 - **INPUT**: 10 bar (145 psi) max.
 - **OUTPUT**: 1 bar (15 psi) max.
 - 5 µm / Oil coalescing filter regulator
- **Non-return valve**
- **Reference air supply**: restrictor in probe limits flow to 0.3 to 0.5 l/min (0.64 to 1.06 scfh) at 1 bar (15 psi)
- **Test gas 1** / 1 bar (15 psi)
- **Test gas 2**
- **Test gas 2 (optional) from bottled gas – adjusted to 1 bar (15 psi) output**

Fig. 3.8 System using 2 bottled test gases

- **Endura AZ25 probe**
 - Test gas supply: restrictor in probe limits flow to l/min (2.118 scfh) at 1 bar (15 psi)
- **Endura AZ25 AutoCal unit**
 - Clean dry oil-free instrument air
 - **INPUT**: 10 bar (145 psi) max.
 - **OUTPUT**: 1 bar (15 psi) max.
 - 5 µm / Oil coalescing filter regulator
- **Non-return valve**
- **Reference air pump**
- **Reference air supply**: restrictor in probe limits flow to 0.3 to 0.5 l/min (0.64 to 1.06 scfh) at 1 bar (15 psi)
- **Test gas 1 from bottled gas – adjusted to 1 bar (15 psi) output**
- **Test gas 2 (optional) from bottled gas – adjusted to 1 bar (15 psi) output**
3.5.6 Test gas and reference air supply configurations – AutoCal systems without test gas restrictors

Fig. 3.9 System using air as test gas 1 and bottled gas as (optional) test gas 2

Fig. 3.10 System using 2 bottled test gases
3.5.7 Test gas and reference air supply configurations – non-AutoCal systems without test gas restrictors

Fig. 3.11 System using air as test gas 1 and bottled gas as (optional) test gas 2

Endura AZ25 probe

Reference air supply: 0.3 to 0.5 l/min (0.64 to 1.06 scfh) regulated by factory-fitted restrictor. If a restrictor is not already fitted, the reference air supply must be regulated using an optional flowmeter.

- Clean dry oil-free instrument air

 INPUT: 10 bar (145 psi) max.

 OUTPUT: 1 bar (15 psi) max.

- Shut-off valve for test gas runs >10 m (33 ft.)

- ABB flowmeter adjusted to 1 l/min (2.118 scfh) STP

- 3-Way valve

- 5 µm / Oil coalescing filter regulator

- Test gas 2 (optional) / bottled gas adjusted to 1 bar (15 psi) output

Fig. 3.12 System using 2 bottled test gases

Endura AZ25 probe

Reference air supply: 0.3 to 0.5 l/min (0.64 to 1.06 scfh) regulated by factory-fitted restrictor. If a restrictor is not already fitted, the reference air supply must be regulated using an optional flowmeter.

- Reference air pump

- ABB flowmeter adjusted to 1 l/min (2.118 scfh) STP

- 3-Way valve

- 5 µm / Oil coalescing filter regulator

- Test gas 1 / bottled gas adjusted to 1 bar (15 psi) output

- Test gas 2 (optional) / bottled gas adjusted to 1 bar (15 psi) output
3.6 Overall dimensions

3.6.1 Endura AZ25 probe

Dimensions in mm (in.)

<table>
<thead>
<tr>
<th>Probe version</th>
<th>Probe insertion length</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 mm</td>
<td>556 mm (21.89 in.)</td>
</tr>
<tr>
<td>700 mm</td>
<td>701 mm (27.60 in.)</td>
</tr>
<tr>
<td>800 mm</td>
<td>801 mm (31.53 in.)</td>
</tr>
<tr>
<td>900 mm</td>
<td>901 mm (35.47 in.)</td>
</tr>
<tr>
<td>1000 mm</td>
<td>956 mm (37.64 in.)</td>
</tr>
<tr>
<td>1250 mm</td>
<td>1251 mm (49.25 in.)</td>
</tr>
</tbody>
</table>

*See page 16 for flange details

Fig. 3.13 Overall dimensions – Endura AZ25 AZ25 probe

3.6.2 Endura AZ25 AutoCal unit (with wall / pipe-mounting bracket)

Dimensions in mm (in.)

Wall-mount arrangement
2 x M8 fixings through bracket

Pipe-mount arrangement using U-bolt / pipe clamp
Minimum clamping dia. 42 (1.65)
Maximum clamping dia. 60 (2.36)

Use only ABB-supplied bolts – M8 x 1.25 pitch x 35 mm (SS hex. head)

Fig. 3.14 Overall dimensions – Endura AZ25 AutoCal unit (with wall / pipe-mounting bracket)
3.7 Endura AZ25 probe flanges – all probe lengths

Note. These flanges are not pressure rated.

Dimensions in mm (in).

<table>
<thead>
<tr>
<th>Flange type</th>
<th>A</th>
<th>B (Ø)</th>
<th>C (ø)</th>
<th>D (PCD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI 2 in 150</td>
<td>152.4</td>
<td>12 (0.47)</td>
<td>19 (0.75)</td>
<td>120.6 (4.75)</td>
</tr>
<tr>
<td>ANSI 2.5 in 150</td>
<td>177.8</td>
<td>12 (0.47)</td>
<td>19 (0.75)</td>
<td>139.7 (5.50)</td>
</tr>
<tr>
<td>ANSI 3 in 150</td>
<td>190.5</td>
<td>12 (0.47)</td>
<td>19 (0.75)</td>
<td>152.4 (6.00)</td>
</tr>
<tr>
<td>DIN 65 PN16</td>
<td>185 (7.28)</td>
<td>12 (0.47)</td>
<td>18 (0.70)</td>
<td>145 (5.70)</td>
</tr>
<tr>
<td>JIS 65 5K</td>
<td>155 (6.10)</td>
<td>12 (0.47)</td>
<td>15 (0.59)</td>
<td>130 (5.12)</td>
</tr>
<tr>
<td>JIS 80 5K</td>
<td>180 (7.08)</td>
<td>12 (0.47)</td>
<td>19 (0.75)</td>
<td>145 (5.71)</td>
</tr>
</tbody>
</table>

Table 3.3 4-Hole probe flange types and dimensions

<table>
<thead>
<tr>
<th>Flange type</th>
<th>A</th>
<th>B (Ø)</th>
<th>C (Ø)</th>
<th>D (PCD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABB standard</td>
<td>101 (3.97)</td>
<td>6 (0.24)</td>
<td>7.3 (0.29)</td>
<td>80 (3.15)</td>
</tr>
</tbody>
</table>

Table 3.4 6-Hole probe flange types and dimensions

<table>
<thead>
<tr>
<th>Flange type</th>
<th>A</th>
<th>B (Ø)</th>
<th>C (Ø)</th>
<th>D (PCD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI 4 in 150</td>
<td>228.6 (9.0)</td>
<td>12 (0.47)</td>
<td>19 (0.75)</td>
<td>190.5 (7.50)</td>
</tr>
<tr>
<td>DIN 80 PN16</td>
<td>200 (7.87)</td>
<td>12 (0.47)</td>
<td>18 (0.70)</td>
<td>160 (6.30)</td>
</tr>
<tr>
<td>DIN 100 PN16</td>
<td>220 (8.66)</td>
<td>12 (0.47)</td>
<td>18 (0.70)</td>
<td>180 (7.08)</td>
</tr>
<tr>
<td>JIS 100 5K</td>
<td>200 (7.87)</td>
<td>12 (0.47)</td>
<td>19 (0.75)</td>
<td>165 (6.50)</td>
</tr>
</tbody>
</table>

Table 3.5 8-Hole probe flange types and dimensions
Mounting plate

<table>
<thead>
<tr>
<th>Mounting plate</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABB standard flange mounting plate – part No. AZ200 796 comprising: mounting plate, gasket, 6 each: M6/M10 shakeproof washers, plain washers and nuts.</td>
<td>160 (6.3)</td>
<td>160 (6.3)</td>
<td>7 (0.27)</td>
<td>16 (0.63)</td>
</tr>
</tbody>
</table>

6 M6 Studs equispaced on 80 (3.15) PCD

Table 3.6 ABB flange mounting plate dimensions

Flange type

<table>
<thead>
<tr>
<th>Flange type</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Holes drilled by customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZGP2 heritage</td>
<td>125 (4.92)</td>
<td>5 (0.2)</td>
<td>Fixing holes (location / quantity) to be drilled by customer</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.7 ABB blank (heritage) flange dimensions

Flange type

<table>
<thead>
<tr>
<th>Flange type</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>1 in. male thread</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 in. NPT / BSP</td>
<td>69.8 (2.74)</td>
<td>15 (0.59)</td>
<td>45 (1.77)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.8 1 in. NPT / 1 in. BSP mounting flange dimensions
3.8 Mounting – Endura AZ25 AutoCal unit
The AutoCal unit can be pipe- or wall-mounted. Refer to Section 3.6.2, page 15 for mounting requirements.

3.9 Mounting – Endura AZ25 probe
The probe can be fitted horizontally or, preferably, vertically for prolonged high temperature operation.

Mount the probe through the furnace wall using the preferred method shown in Fig. 3.15. Ensure that a sufficiently large hole is provided through the mounting (min. bore 42 mm diameter) to avoid damage to the probe during insertion or use.

In applications such as high temperature incinerators, fluid bed boilers, and ore roasters, where the level of water vapor in the waste gases to be measured can be extremely high, it is important that the mounting flange of the probe, including any stand-off which may be used, is thermally insulated to minimize condensation within the probe – see Fig. 3.15.

Condensation within the probe sheath, particularly in outdoor installations, can be sufficient to allow water to come into contact with the hot ceramic (zirconia) tube leading to thermal shock and failure of the sensor. This problem is most likely to occur on such installations where the plant is shut-down regularly over the week-end. Additionally, take care to protect the head of the probe from the elements in out-door installations.

Raising the temperature of the probe as rapidly as possible will assist in reducing the level of condensation. This is not possible on some processes where the plant temperature is gradually raised to the normal operating level. The temperature rise at the head of the probe can be assisted by having a large clearance hole in the refractory allowing hot gases to get up to the mounting flange/stand-off – see Fig. 3.16.

The problems described above are more likely to occur on horizontal installations. Where it is not possible to mount the probe in the vertical position, install the probe with a slope of at least 10 to 15° downwards from the head of the probe – see Fig. 3.17.
3.10 End-of-life disposal
The remote transmitters contain a small lithium battery that must be disposed of responsibly in accordance with local environmental regulations. The remainder of the equipment does not contain any substance that causes undue harm to the environment and must be disposed of in accordance with the Directive on Waste Electrical and Electronic Equipment (WEEE). It must not be disposed of in Municipal Waste Collection.

3.10.1 Endura AZ25 system weights (probe, cable, transmitter, AutoCal unit)

Note. Weights listed exclude flanges.

<table>
<thead>
<tr>
<th>Transmitter / AutoCal unit</th>
<th>Transmitter-only – unpacked</th>
<th>AutoCal unit only – packed / unpacked</th>
<th>AutoCal unit with bracket – unpacked</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.4 kg (8.8 lb)</td>
<td>8.5 kg (18.7 lb) / 3.0 kg (6.6 lb)</td>
<td>11.0 kg (24.5 lb)</td>
</tr>
</tbody>
</table>

Table 3.9 Endura AZ25 transmitter and AutoCal unit weights

<table>
<thead>
<tr>
<th>Probe with aluminous porcelain sheath</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe version</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>500 mm (23.62 in.)</td>
</tr>
<tr>
<td>700 mm (27.56 in.)</td>
</tr>
<tr>
<td>800 mm (31.50 in.)</td>
</tr>
<tr>
<td>900 mm (35.43 in.)</td>
</tr>
<tr>
<td>1000 mm (39.37 in.)</td>
</tr>
<tr>
<td>1250 mm (49.21 in.)</td>
</tr>
</tbody>
</table>

Table 3.10 Endura AZ25 probe with aluminous porcelain sheath

<table>
<thead>
<tr>
<th>Probe with Incoloy 800 (1.4876) sheath</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe version</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>500 mm (23.62 in.)</td>
</tr>
<tr>
<td>700 mm (27.56 in.)</td>
</tr>
<tr>
<td>800 mm (31.50 in.)</td>
</tr>
<tr>
<td>900 mm (35.43 in.)</td>
</tr>
<tr>
<td>1000 mm (39.37 in.)</td>
</tr>
<tr>
<td>1250 mm (49.21 in.)</td>
</tr>
</tbody>
</table>

Table 3.11 Endura AZ25 probe with Incoloy 800 (1.4876) sheath

<table>
<thead>
<tr>
<th>Probe with recrystallized alumina sheath</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe version</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>500 mm (23.62 in.)</td>
</tr>
<tr>
<td>700 mm (27.56 in.)</td>
</tr>
<tr>
<td>800 mm (31.50 in.)</td>
</tr>
<tr>
<td>900 mm (35.43 in.)</td>
</tr>
<tr>
<td>1000 mm (39.37 in.)</td>
</tr>
<tr>
<td>1250 mm (49.21 in.)</td>
</tr>
</tbody>
</table>

Table 3.12 Endura AZ25 probe with recrystallized alumina sheath

<table>
<thead>
<tr>
<th>Cable – AutoCal cable / probe (sensor) cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable length</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>5 m (16 ft.)</td>
</tr>
<tr>
<td>10 m (33 ft.)</td>
</tr>
<tr>
<td>25 m (82 ft.)</td>
</tr>
<tr>
<td>50 m (164 ft.)</td>
</tr>
<tr>
<td>75 m (246 ft.)</td>
</tr>
<tr>
<td>100 m (328 ft.)</td>
</tr>
</tbody>
</table>

Table 3.13 Endura AZ25 cable weights – AutoCal cable and probe (sensor) cable
4 Electrical connections

Warning.

- The transmitter is not fitted with a switch therefore a disconnecting device such as a switch or circuit breaker conforming to local safety standards must be fitted to the final installation. It must be fitted in close proximity to the instrument within easy reach of the operator and must be marked clearly as the disconnection device for the transmitter - see IM/AZ20E-EN.
- Electrical installation and earthing (grounding) must be in accordance with relevant national and local standards.
- Remove all power from supply, relay and any powered control circuits and high common mode voltages before accessing or making any connections.
- The Endura AZ25 cable carries the screened signal wires Do not use alternative wires.
- The equipment conforms to Installation Category II of IEC 61010.
- All connections to secondary circuits must have basic insulation.
- After installation, there must be no access to live parts, for example, terminals.
- Terminals for external circuits are for use only with equipment with no accessible live parts.
- If the equipment is used in a manner not specified by the Company, the protection provided by the equipment may be impaired.
- All equipment connected to the transmitter’s terminals must comply with local safety standards (IEC 60950, EN601010-1).

Caution.

- Make connections only as shown.
- Maintain Environmental Protection at all times.
- Ensure the seal and mating surfaces are clean to maintain environmental rating.
- Ensure cable glands are tightened after wiring. Do not overtighten the plastic cable glands to avoid destroying their sealing properties. Initially, tighten finger-tight, then a further 1/2 to 3/4 turn using a suitable spanner or wrench.
- Fit blanking plugs where required.
- Inductive loads must be suppressed or clamped to limit voltage swings.
- Operation of outputs is programmable.

4.1 Electrical entry types

<table>
<thead>
<tr>
<th>Endura AZ25 transmitter</th>
<th>Metric</th>
<th>Imperial</th>
</tr>
</thead>
<tbody>
<tr>
<td>M20 (plastic glad)</td>
<td>1/2 in. NPT (plastic glad)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1 Electrical entry types at Endura AZ25 transmitter

<table>
<thead>
<tr>
<th>Endura AZ25 AutoCal unit</th>
<th>Metric</th>
<th>Imperial</th>
</tr>
</thead>
<tbody>
<tr>
<td>M20 (plastic glad)</td>
<td>1/2 in. NPT (plastic glad)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2 Electrical entry types at Endura AZ25 AutoCal unit

<table>
<thead>
<tr>
<th>Endura AZ25 probe</th>
<th>Metric</th>
<th>Imperial</th>
</tr>
</thead>
<tbody>
<tr>
<td>M16 (metal gland)</td>
<td>1/2 in. NPT (metal gland)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.3 Electrical entry types at Endura AZ25 probe
4.2 Endura AZ25 system without AutoCal

4.2.1 Cable preparation – 6-core sensor cable / Endura AZ25 remote transmitter to Endura AZ25 probe

![Diagram showing cable preparation and wire colors]

Wire colors – 6-core sensor cable

- Green (TC+)
- Blue (ACJC)
- Orange (ACJC)
- White (TC–)
- Red (Cell +)
- Black (Cell –)

6-core screened sensor cable, probe to transmitter, maximum length 100 m (328 ft.) – coded option

Fig. 4.1 Cable preparation – 6-core sensor cable / Endura AZ25 remote transmitter to Endura AZ25 probe
4.2.2 Cable connections – 6-core sensor cable / Endura AZ25 remote transmitter to Endura AZ25 probe

<table>
<thead>
<tr>
<th>Transmitter terminal block color</th>
<th>6-core screened remote transmitter to probe cable – wire colors</th>
<th>Probe / remote transmitter connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Green</td>
<td>TC +</td>
</tr>
<tr>
<td>White</td>
<td>White</td>
<td>TC –</td>
</tr>
<tr>
<td>Red</td>
<td>Red</td>
<td>Cell +</td>
</tr>
<tr>
<td>Black</td>
<td>Black</td>
<td>Cell –</td>
</tr>
<tr>
<td>Orange</td>
<td>Orange</td>
<td>ACJC</td>
</tr>
<tr>
<td>Blue</td>
<td>Blue</td>
<td>ACJC</td>
</tr>
</tbody>
</table>

SCN (not used) – see Fig. 4.2
sensor cable screen (drain) is
connected at internal earth stud only

Screen (drain) – see Fig. 4.2 for sensor
cable screen connection requirements

Screen / drain – see Fig. 4.2 for sensor
cable screen connection requirements
at transmitter
(no screen connection made at probe head)

Table 4.4 Cable connections – 6-core sensor cable / Endura AZ25 remote transmitter to Endura AZ25 probe

Cut the screen, screen foil and drain at probe head back and isolate only – do not connect these items at probe

Connect drain from 6-core cable to transmitter to the transmitter internal earth stud only – do not connect to transmitter terminal SCN connector or transmitter external earth

Fig. 4.2 Cable connections – 6-core sensor cable / Endura AZ25 remote transmitter to Endura AZ25 probe
4.3 Endura AZ25 system with AutoCal

Note.
- Endura AZ25 systems with AutoCal require 2 cable types (ABB-only supply):
 - 6-core cable: Endura AZ25 probe to Endura AZ25 AutoCal unit only – see Fig. 4.3
 - 14-core cable: Endura AZ25 AutoCal unit to Endura AZ25 transmitter only – see Fig. 4.5, page 25

- Mandatory earthing requirements:
 - 6-core cable at Endura AZ25 probe: outer insulation sheath, screen foil and drain wire cut back and isolated – see Fig. 4.3
 - 6-core cable at Endura AZ25 AutoCal unit: outer insulation sheath and screen foil cut back and isolated, drain wire connected to AutoCal unit inner terminal block SCN connector – see Fig. 4.3
 - 14-core cable: at Endura AZ25 AutoCal unit: outer insulation sheath and screen foil cut back and isolated, drain wire connected to AutoCal unit outer terminal block SCN connector – see Fig. 4.5, page 25
 - 14-core cable: at Endura AZ25 transmitter: outer insulation sheath and screen foil cut back and isolated, drain wire connected to transmitter internal terminal earth stud – see Fig. 4.5, page 25

- The maximum combined (6-core plus 14-core) cable run is 100 m (328 ft.), coded option.

4.3.1 Cable preparation – 6-core sensor cable / Endura AZ25 AutoCal unit to Endura AZ25 probe
4.3.2 Cable connections – 6-core sensor cable / Endura AZ25 AutoCal unit to Endura AZ25 probe

<table>
<thead>
<tr>
<th>AutoCal inner terminal block connection</th>
<th>6-core screened AutoCal unit to probe cable – wire colors</th>
<th>Probe / AutoCal unit connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green (TC +)</td>
<td>Green</td>
<td>TC +</td>
</tr>
<tr>
<td>White (TC –)</td>
<td>White</td>
<td>TC –</td>
</tr>
<tr>
<td>Red (Cell +)</td>
<td>Red</td>
<td>Cell +</td>
</tr>
<tr>
<td>Black (Cell –)</td>
<td>Black</td>
<td>Cell –</td>
</tr>
<tr>
<td>Orange (ACJC)</td>
<td>Orange</td>
<td>ACJC</td>
</tr>
<tr>
<td>Blue (ACJC)</td>
<td>Blue</td>
<td>ACJC</td>
</tr>
</tbody>
</table>

Connect sensor cable drain wire at AutoCal unit to SCN terminal connector – see Fig. 4.4

Table 4.5 Cable connections – 6-core sensor cable / Endura AZ25 AutoCal unit to Endura AZ25 probe

*Cut the screen, screen foil and drain at probe head back and isolate ONLY – do not connect these items at probe

**Connect drain from 6-core cable at AutoCal unit to the AutoCal terminal block INNER SCN connector ONLY
4.3.3 Cable preparation – 14-core cable / Endura AZ25 AutoCal unit to Endura AZ25 remote transmitter

![Diagram](image-url)

*Cut Screen 1, Screen foil 1, blue and brown wires back at both ends of cable and isolate

Fig. 4.5 Cable preparation – 14-core cable / Endura AZ25 AutoCal unit to Endura AZ25 remote transmitter

4.3.4 Cable connections – 14-core cable / Endura AZ25 AutoCal unit to Endura AZ25 remote transmitter

<table>
<thead>
<tr>
<th>Connection at AutoCal unit (outer) removable terminal blocks</th>
<th>Connection at remote transmitter terminal blocks</th>
<th>Cable color</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>White / Yellow</td>
<td>White / Yellow</td>
<td>White / Yellow</td>
<td>PS2 (test gas 2)</td>
</tr>
<tr>
<td>White / Black</td>
<td>White / Black</td>
<td>White / Black</td>
<td>P COM</td>
</tr>
<tr>
<td>White / Orange</td>
<td>White / Orange</td>
<td>White / Orange</td>
<td>PS1 (test gas 1)</td>
</tr>
<tr>
<td>White / Green</td>
<td>White / Green</td>
<td>White / Green</td>
<td>SV2</td>
</tr>
<tr>
<td>White / Red</td>
<td>White / Red</td>
<td>White / Red</td>
<td>SV COM</td>
</tr>
<tr>
<td>White / Blue</td>
<td>White / Blue</td>
<td>White / Blue</td>
<td>SV1</td>
</tr>
<tr>
<td>Red</td>
<td>Red</td>
<td>Red</td>
<td>Cell + (oxygen input)</td>
</tr>
<tr>
<td>Black</td>
<td>Black</td>
<td>Black</td>
<td>Cell – (oxygen input)</td>
</tr>
<tr>
<td>Violet</td>
<td>Violet</td>
<td>Violet</td>
<td>ACJC</td>
</tr>
<tr>
<td>Grey</td>
<td>Grey</td>
<td>Grey</td>
<td>ACJC</td>
</tr>
<tr>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>T/C +</td>
</tr>
<tr>
<td>White</td>
<td>White</td>
<td>White</td>
<td>T/C –</td>
</tr>
<tr>
<td>SCN Screen 2</td>
<td>SCN (not used – drain connected to Tx internal earth stud)</td>
<td>Screen 2 (Screen 1 cut back)</td>
<td>N/A</td>
</tr>
<tr>
<td>Brown (not used)</td>
<td>Brown (not used)</td>
<td>Brown (cut back)</td>
<td>Not used</td>
</tr>
<tr>
<td>Blue (not used)</td>
<td>Blue (not used)</td>
<td>Blue (cut back)</td>
<td>Not used</td>
</tr>
</tbody>
</table>

Table 4.6 Cable connections – 14-core cable / Endura AZ25 AutoCal unit to Endura AZ25 remote transmitter
*Connect drain from 14-core cable at AutoCal unit to the AutoCal terminal block outer SCN connector ONLY

**Connect drain from 14-core cable to the transmitter internal earth stud ONLY – do not connect the drain to the transmitter SCN connector or the transmitter external earth

Fig. 4.6 Cable connections – 14-core cable / Endura AZ25 AutoCal unit to Endura AZ25 remote transmitter
4.4 Test gas and reference air connections
The probe has one test gas inlet and one reference air inlet (continuous supplies required). The AutoCal unit has two test gas inlets and one test gas outlet marked VENT (the Ref. Air connection at the AutoCal unit is not used with the AZ25 probe).

Caution. Only use clean dry instrument air free from hydrocarbons,* or traceable certified bottled test gas mixtures of O_2 / N_2.

4.4.1 Restrictors
Systems can be ordered with or without restrictors – refer to Section 3.5, page 9 for schematics of all configuration options. Where restrictors are not fitted, flowmeters must be fitted to the test gas and reference air lines to restrict / regulate the flow:

- on systems with restrictors:
 - the reference air supply is set to 1 bar (15 psi) which gives 0.3 to 0.5 l / min (0.6 to 1.0 scfh) preset flow
 - the test gas supply is set to 1 bar (15 psi) which gives 1 l / min (2.118 scfh) preset flow
- on systems without restrictors:
 - pressure is still set to 1 bar (15 psi) then flow is restricted by valves on flowmeters

4.4.2 Connection types
Note. Refer to Section 3.5.1, page 9 for pneumatic entry types.

4.4.3 Test gas and reference air connections
Fig. 4.7 shows the test gas and reference air inlets at the probe.

Caution. If the test gas connection is not sealed when not in use, air leaking into the probe via the connection causes measurement errors. In a pressurized flue, gases venting to atmosphere through the connection cause corrosion of, and / or block, the test gas tube. In a negative pressure flue, air leakage causes high O_2 reading errors.

Note. It is preferable to use air (20.95 % O_2) as one of the test gases as this is the sensor’s zero point. Alternative representative gases can be used according to local environmental conditions.

To ensure better accuracy, use 2 test gases that represent the top and bottom limits of the known operating range.

Due to resolution accuracies, do not calibrate the system with gases of less than 1 % O_2.

Refer to Section 3.5, page 9 for schematics of all configuration options

4.4.4 Test gas inlet
The probe test gas (calibration) inlet is provided for in situ probe testing using a test gas.

If AutoCal is not fitted, Test Gas 1 connection is used for Test Gases 1 and 2. The gas connections are switched manually, as requested by the calibration sequencing in the transmitter.

If the probe is connected permanently to the test gas supply pipework:

- fit a high quality, corrosion-resistant (stainless steel), solenoid valve, manually operated valve or non-return valve (that is leak-tight even at zero back-pressure) in the pipework, as close to the test gas inlet valve as possible
- keep the valve closed when the calibration system is not in use

Caution. Only use clean dry instrument air free from hydrocarbons,* or traceable certified bottled test gas mixtures of O_2 / N_2.

4.4.5 Vent (AutoCal unit)
The vent is used to route the test gas(es) from the AutoCal unit to the Test Gas inlet at the probe.

Ensure the vent and the tube from the vent do not become blocked during probe use.
4.4.6 Reference air inlet (probe)
A clean, dry, continuous instrument air supply, free from hydrocarbons is required, (supplied for example, from an ABB pump or filter-regulator – see Appendix B, page 33.

Connect the reference air tubing to the external reference air inlet at the probe – see Fig. 4.8, page 27.

Note.
- The reference air supply must be to instrument air standards – clean, dry and free of oil vapor and particle contamination; see schematics in Section 3.5, page 9.
- ABB recommend using the ABB 5µm / Oil Coalescing Filter Regulator to supply reference air – Appendix B, page 33.
- If oil vapor is suspected, use an ABB Reference Air Pump to supply reference air to the probe – Appendix B, page 33.

4.4.7 Inline shut-off valves
On non-AutoCal systems, if the test gas line is connected permanently and is >10 m (33 ft.) from the supply, fit non-return valves at the probe head to prevent breathing of flue gas in and out of test gas lines– refer to Section 3.5, page 9 for schematics of all configuration options.

4.4.8 Internal test gas and reference air tubes (AutoCal unit)

![Endura AZ25 AutoCal unit diagram](image)

Fig. 4.10 Internal test gas and reference air tubes – AutoCal unit

Fig. 4.9 Reference air inlet at probe

Endura AZ25 probe

External reference air inlet – 0.3 to 0.5 l/min (0.64 to 1.06 scfh) flow required
5 Start-up and operation

5.1 Preparation

1. If the probe is not connected permanently to test gas pipework for automatic calibration purposes, ensure blanking plugs are securely fitted to the test gas inlet connections on the probe.

2. If the probe is connected permanently to test gas pipework for automatic calibration purposes, ensure that the valve installed in the pipework adjacent to the test gas connection is closed.

3. Check the connections on both the probe and the transmitter.
 Test gas connections must be checked for leak-tight joints. Leaks, especially on permanently pressurized AutoCal-fitted probes, can cause errors and drain away expensive bottles of test gas.

4. Adjust the reference air flow to a stable flow rate between 0.3 and 0.5 l/min (0.64 and 1.06 scfh) for probes without restrictors or 1 bar (15 psi) for probes with restrictors.
 - refer to Section 3.5.5 and 3.5.6, page 13 for probes fitted with AutoCal.
 - refer to Section 3.5.7, page 14 for probes without AutoCal.

Caution. If the test gas connection is not sealed when not in use, air leaking into the probe via the connection causes measurement errors. In a pressurized flue, gases venting to atmosphere through the connection cause corrosion of, and/or block, the test gas tube. In a negative pressure flue, air leakage causes high O₂ reading errors.

3. Check the connections on both the probe and the transmitter.

5.2 Setting up test gases

This section prepares the system for manual and automatic calibration routines by setting up the test gas flows and pressures to suit different AutoCal / restrictor configurations:

- the required test gas flow is 1 l/min (2.118 scfh) for all configurations
- refer to Section 3.5, page 9 for test gas and reference air supply configurations

Note. The following sections assume the transmitter is energized and the probe at working temperature (above 600 °C), the reference air supply is on and test gases are available.

5.2.1 AutoCal System with restrictors

To set up an AutoCal system with restrictors:

1. Make test gas and reference air connections as detailed in Section 3.5.5, page 12.

2. Turn on Test Gas 1 and set the pressure to a nominal 1 bar (15 psi).

3. At the transmitter, check the Calibrate / AutoCal Hardware / Hardware Type parameter is set to Internal.

4. At the transmitter, open the Test Gas 1 valve by selecting:
 Calibrate / AutoCal Hardware / Valve Manual Control / Test Gas 1 and pressing [] to open the valve.

 A small icon is displayed to indicate the valve is in the Open position:

 ![Valve icon Open position]

5. Fine tune Test Gas 1 pressure to 1 bar (15 psi) – this ensures the correct flow through the restrictors.

6. Turn gas off at the transmitter by pressing [] , then turn Test Gas 1 off at the supply.

7. Repeat steps 2 to 6 for Test Gas 2 (if present).

8. Refer to IM/AZ20E-EN to perform a calibration when required.
5.2.2 AutoCal System without restrictors
To set up an AutoCal system without restrictors:

1. Make test gas and reference air connections as detailed in Section 3.5.5, page 12 (remote transmitter).
2. Turn on Test Gas 1 and set the pressure to a nominal 1 bar (15 psi).
3. At the transmitter, check the Calibrate / AutoCal Hardware / Hardware Type parameter is Internal.
4. At the transmitter, open the ‘Test Gas 1’ valve by selecting: Calibrate / AutoCal Hardware / Valve Manual Control / Test Gas 1 and pressing \(\rightarrow\) to open the valve.
 A small icon is displayed to indicate the valve is in the Open position:

 ![Valve icon 'Open' position]

5. Fine tune Test Gas 1 pressure to 1 bar (15 psi) and set the flow on the flowmeter to 1 l/min (2.118 scfh).
6. Turn gas off at the transmitter by pressing \(\leftarrow\), then turn Test Gas 1 off at the supply.
7. Repeat steps 2 to 6 for Test Gas 2 (if present).
8. Refer to IM/AZ20E-EN to perform a calibration when required.

5.2.3 Non-AutoCal System with restrictors
To set up an Non-AutoCal system with restrictors:

1. Make test gas and reference air connections as detailed in Section 3.5.7, page 14 (remote transmitter).

 ![Note. Test Gas 1 and 2 connections are made to the probe’s external Test Gas 1 (TG1) connection manually – see Section 3.5.7, page 14.]

2. Turn on Test Gas 1 and adjust the pressure to 1 bar (15 psi).
3. Turn Test Gas 1 off at the supply.
4. Repeat steps 2 to 4 for Test Gas 2 (if present), connect the Test Gas 2 line to the probe’s external TG1 connection.
5. Refer to IM/AZ20E-EN to perform a calibration when required.
6 Specification

Physical

Probe insertion lengths
- 556 mm (21.89 in.)
- 701 mm (27.60 in.)
- 801 mm (31.53 in.)
- 901 mm (35.47 in.)
- 956 mm (37.64 in.)
- 1251 mm (49.25 in.)

Process connection
All probe lengths:
- ANSI B16.5 150 lb
- 2, 2.5, 3, 4 in
- DIN2501 Part 1
- 65, 80, 100 mm
- JIS B2238 5K
- 65, 80, 100 mm
- 1 in. NPT
- 1 in. BSP

Probes are also available with other connections:
- ABB pattern heritage flange

Probe body material
- Aluminous Porcelain
- Incoloy 800
- Recrystallized alumina

Mounting angle
- Horizontal to vertically down

Process conditions

Process temperature
- Aluminous Porcelain: 600 to 1250 °C (1112 to 2282 °F)
- Incoloy 800: 600 to 850 °C (1112 to 1562 °F)

Probe mounted horizontally – Incoloy 800:
- 600 to 1000 °C (1112 to 1832 °F)

Probe mounted vertically down – recrystallized alumina:
- 600 to 1400 °C (1112 to 2552 °F)

Process pressure
- 5 kPa (0.7 psi) positive or negative

Operating requirements

Reference air
Regulated supply:
- probes with restrictors:
 reference air supply set to 1 bar (15 psi), gives flow of
 0.3 to 0.5 l / min (0.64 to 1.06 scfh) – flowmeters not required
- probes without restrictors:
 1 bar (15 psi) flowmeters required with flow set to
 0.3 to 0.5 l / min (0.64 to 1.06 scfh)

Pumped supply:
- probes with / without restrictors:
 required preset flow: 0.3 to 0.5 l / min (0.64 to 1.06 scfh)

Test gas
User-selectable, 25 to 0.1 % O2 balance N2 and / or air (air 20.95 % is recommended as one of the test gases)
- AutoCal system with restrictors:
 1 bar (15 psi) – flowmeters not required as restrictors preset flow
 to 1 l/min (2.118 scfh)
- systems without restrictors:
 1 bar (15 psi) flowmeters required, set to 1 l/min (2.118 scfh)

Calibration
Manual, semi-automatic or automatic (controlled by Endura AZ25 transmitter)

Automatic calibration
AutoCal hardware
Optional standalone unit with built-in solenoid valves for
control of test gas flow
Built-in pressure switches to detect presence of test gases

DS/AZ25-EN Rev. E
Appendix A – Electrical connections, Endura AZ25 to heritage ABB products

Refer to the following user Manuals and Fig. A.1 before making for electrical connections between Endura AZ25 products and heritage ABB products:

- Endura AZ25 probe to ZDT transmitter: IM/ZDT/GP
- Endura AZ25 probe to ZMT transmitter: IM/ZDT
- Endura AZ25 transmitter to ZGP2 probe: IM/ZGP2

These manuals can also be downloaded from:
www.abb.com/measurement

Important. If making electrical connections between the Endura AZ25 probe and heritage ABB products, do not make connections to the ACJC terminal block connectors in the Endura AZ25 probe head.

Fig. A.1 ACJC terminals at AZ25 probe head – not used when connecting to heritage ABB products
Appendix B – Accessories and spares

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ200 731</td>
<td>Oil-coalescing filter-regulator:</td>
</tr>
<tr>
<td>AZ200 732</td>
<td>1/4 NPT 5 µm</td>
</tr>
<tr>
<td></td>
<td>1/4 BSP 5 µm</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>AZ200 740</td>
<td>Filter elements for pre-June 2013 regulator:</td>
</tr>
<tr>
<td>AZ200 741</td>
<td>5 µm filter element</td>
</tr>
<tr>
<td>AZ200 742</td>
<td>Oil coalescing filter element</td>
</tr>
<tr>
<td>AZ200 743</td>
<td>Filter elements for post-June 2013 regulator:</td>
</tr>
<tr>
<td></td>
<td>5 µm filter cartridge</td>
</tr>
<tr>
<td></td>
<td>Oil coalescing filter cartridge</td>
</tr>
<tr>
<td>AZ200 770</td>
<td>ABB reference air pump:</td>
</tr>
<tr>
<td>AZ200 771</td>
<td>1/4 BSP (Metric) 230 V AC 50 / 60 Hz</td>
</tr>
<tr>
<td>AZ200 772</td>
<td>1/4 BSP (Metric) 115 V AC 50 / 60 Hz</td>
</tr>
<tr>
<td>AZ200 773</td>
<td>1/4 NPT (Imperial) 230 V AC 50 / 60 Hz</td>
</tr>
<tr>
<td></td>
<td>Application dependent – see Table B.1</td>
</tr>
</tbody>
</table>

Flowmeter Type

<table>
<thead>
<tr>
<th>Flowmeter Type</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 NPT Flowmeter (Reference Air): 0.1 to 0.85 l / min (0.21 to 1.8 scfh) STP</td>
<td>AZ200 786</td>
</tr>
<tr>
<td>1/4 BSP Flowmeter (Reference Air): 0.1 to 0.85 l / min (0.21 to 1.8 scfh) STP</td>
<td>AZ200 787</td>
</tr>
<tr>
<td>1/4 NPT Flowmeter (Test Gas): 0.6 to 4.4 l / min (1.27 to 9.32 scfh) STP</td>
<td>AZ200 788</td>
</tr>
<tr>
<td>1/4 BSP Flowmeter (Test Gas): 0.6 to 4.4 l / min (1.27 to 9.32 scfh) STP</td>
<td>AZ200 789</td>
</tr>
</tbody>
</table>

Table B.1 ABB NPT/BSP Flowmeters