Installation and Positioning

The inverter can be commissioned and monitored using the wireless communication channel. The WLAN board handles (sold separately) that it has been correctly positioned.

1. Position the inverter as shown in the figure. The WLAN board must be connected to the inverter (see the instructions in the product manual).

2. Install vertically or horizontally (i.e. with the inverter on its back), with a maximum inclination as indicated in the figure.

3. The mounting bracket is available for vertical (model name: WALL MOUNTING BRACKET; TRIO-50/60-US) or horizontal mounting (DC wiring box models: DCWB-1; DCWB-2; DCWB-3).

4. The technical documentation and the interface and management software for the product are available at the website.

5. Contact your local ABB representative for maintenance operation.

Components included in the mounting bracket kit

- M6 x 16 hex screw (4 for ground connection bracket)
- M6 hex nut to clamp ground cables to ground brackets
- M6 cage nuts
- M5 x 14 countersunk screws for attaching the attachment bracket to the wall
- Horizontal installation bracket (FIG. 4)
- Vertical installation bracket (FIG. 5)
- Ground brackets
- Module connection bracket
- Connection bracket (FIG. 3)
- AC filter board
- DC filter board
- Bonding Conductor
- Phase and Grounding Conductor
- Grounding Conductor (optional) M12 eyebolts
- Grounding Conductor (optional) M6 screw (For GEC on ACWB)
- Grounding Conductor (optional) M6 screw (For GEC on DCWB)
- Front cover for the front cover of AC and DC wiring boxes
- Quick disconnect cover
- Pull off the quick disconnect cover
- Pull the metal locking fork outwards
- Loose handle and open the key locks and clamp handles
- Open the key locks and clamp handles
- Replace the same operation for the other wiring box.
Assembly instructions (continue)

- Give each wire a pull test to confirm the connection is secure.
- 0.50 Vnom ≤ V < 0.88 Vnom (Adjustable)
- Connect the ground cable to the
 J10
in the -B wiring box.
 0.16 (Default)

 Connection of the RS485 line (1) on RJ45 connector

- Torque screws to 3.4Nm (30 in-lb).
- Confirm the DC cables are 12 AWG to 3 AWG.
- GREEN
 0.16 (Default)

 Conduit must be attached using liquid tight fittings to maintain Type 4 enclosure integrity.

- When wiring is complete, close the two green/yellow wire covers (2 screws each).
- Install the conduit bar (supplied) between the two wire covers and the wiring box covers, in the separated areas (19).

- The device can also be installed horizontally (in an invertor/1 installation bracket). Horizontal installation instructions are described in the product manual available at www.abb.com/sitesellite/select (appoint select project country location or website).

- From the moment the grid standard is selected, there will be 24 hours available to make any changes to the grid standard; after this, the inverter will automatically disconnect from the grid and the internal web server will be locked.

- The inverter is equipped with advanced grid support functionality that is useful to support reactive loads and also assist in realistic operation of the utility grid in presence of a large number of distributed energy resources (DER) connected to the grid. The internal web server has been optimized to support grid parameters, such as power factor, which are set by the user.

- The inverter is designed to operate normally without or in order to support a specific grid power. Beyond this programmed delay, the inverter disconnects from the grid in case of an abnormal grid condition.

- The inverter is designed to respond to grid parameters in a pre-defined manner. If the inverter is not able to respond within the specified time, it will be tripped.

- The inverter is designed to respond to grid parameters in a pre-defined manner. If the inverter is not able to respond within the specified time, it will be tripped.

- The inverter is designed to respond to grid parameters in a pre-defined manner. If the inverter is not able to respond within the specified time, it will be tripped.

- The inverter is designed to respond to grid parameters in a pre-defined manner. If the inverter is not able to respond within the specified time, it will be tripped.

- The inverter is designed to respond to grid parameters in a pre-defined manner. If the inverter is not able to respond within the specified time, it will be tripped.

- The inverter is designed to respond to grid parameters in a pre-defined manner. If the inverter is not able to respond within the specified time, it will be tripped.

- The inverter is designed to respond to grid parameters in a pre-defined manner. If the inverter is not able to respond within the specified time, it will be tripped.