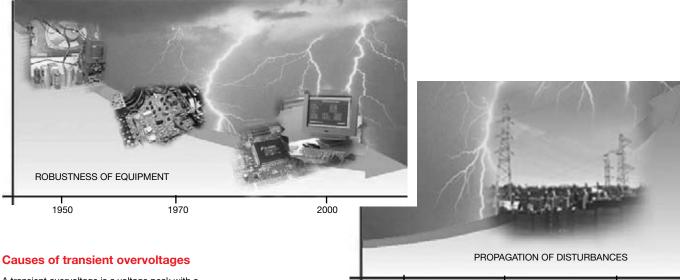

Transient voltage surge suppressors TVSS, OVR range

ŧ

Description

- Compact
- DIN rail mounting
- Broad range
- 1, 2, 3, & 4 pole versions
- Replaceable plug cartridges
- Finger safe
- 15, 40, 65 & 100 kA versions
- Three position visual status indication
- Auxiliary contact for remote signalling
- UL 1449, File # E238957 & E22406


General points on lightning and its risks Causes of transient overvoltages

The most serious consequences of lightning are the death of people and farm animals, and the destruction of equipment: telephone lines, transformers connected to the electrical distribution network, electrical meters, household appliances, etc.

At the same time, the growing amount of equipment incorporating very sensitive electronic devices increases the number of incidences linked to lightning.

Within companies, if office automation equipment or machines (in factories) are put out of action, it nearly always leads to operating losses, the cost of which is much more than that of the damaged equipment.

For example, if a bank's computers are no longer operational, it suffers large operating losses. For the general public, the damage is mainly material: computer, household appliances, home cinema, etc.

1950

A transient overvoltage is a voltage peak with a maximum duration of less than one millisecond. There are two possible causes of overvoltages on electrical networks:

- Natural causes (lightning), 20% external
- Other causes due to equipment or switching devices, 80% internal

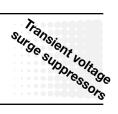
15

Natural overvoltages on low voltage networks are caused by direct lightning strikes. The high level of energy contained in a direct lightning strike on a lightning conductor or an overhead low voltage line leads to considerable damage of the installation. The overvoltage can be over 20 times the nominal voltage.

Operating or switching overvoltages linked to a network's equipment create overvoltages of a lower level (3 to 5 times the nominal voltage) but occur much more frequently, thus causing premature ageing of the equipment.

Three categories of overvoltage propagate on low voltage networks:

- · direct lightning strikes,
- indirect effects of lightning strikes,
- · operating or switching overvoltages.


1970

Propagation of overvoltages by electrical networks (power and low current)

2000

15.92

General points on lightning and its risks Causes of transient overvoltages

Overvoltages due to direct lightning strikes

These can take two forms:

• When lightning strikes a lightning conductor or the roof of a building which is earthed, the lightning current is dissipated into the ground. The impedance of the ground and the current flowing through it create large difference of potential: this is the overvoltage. This overvoltage then propagates throughout the building via the cables, damaging equipment along the way.

• When lightning strikes an overhead low voltage line, the latter conducts high currents which penetrate into the building creating large overvoltages. The damage caused by this type of overvoltage is usually spectacular (e.g. fire in the electrical switchboard causing the destruction of buildings and industrial equipment) and results in explosions.

Direct lightning strike on an overhead line

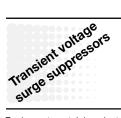
Direct lightning strike on a lightning conductor or the roof of a building

Overvoltages due to the indirect effects of lightning strikes

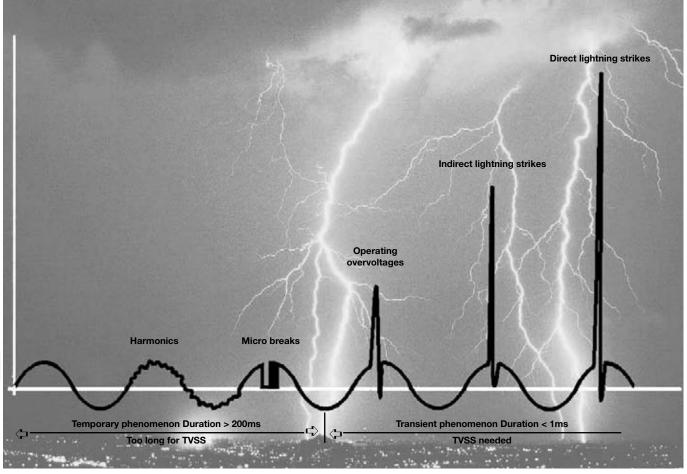
The overvoltages previously mentioned are also found when lightning strikes in the vicinity of a building, due to the increase in potential of the ground at the point of impact. The electromagnetic fields created by the lightning current generate inductive and capacitive coupling, leading to other overvoltages.

Within a radius up to several miles, the electromagnetic field caused by lightning in clouds can also create sudden increases in voltage.

Although less spectacular than in the previous case, irreparable damage is also caused to so called sensitive equipment such as fax machines, computer power supplies and safety and communication systems.


Increase in ground potential

Magnetic field


Electrostatic field

Different types of surges

Equipment containing electronic switching components is also likely to generate electrical disturbances comparable to overvoltages. The consequences of which on sensitive equipment, albeit not visible, are no less detrimental: premature aging and unpredictable or fleeting breakdowns.

Operating overvoltages are produced when reactive or capacitive equipment is switched on and off. Furthermore, interrupting factory production, lighting or transformers can generate overvoltages which will themselves cause greater damage to nearby electrical equipment.

Representation of the various disturbances on electrical networks

Different type of power supply disturbances

Atmospheric discharges

15

- Industrial interferences
- Switching operations on the power distribution system

Main effects

- Destruction of the equipment
- Premature aging
- Incorrect operations

Main features OVR Range

TVSSs protect installations by limiting transient overvoltages and run-off lightning currents for electric and electronic equipment. They are divided into three families:

• **Type 2 TVSSs** provide protection for equipment against transient overvoltage and they are installed in the Main Switch Board (MSB), or in the Sub-Distribution Board (SDB).

In addition to the standard TVSSs, two options are available: the Safety reserve system and the remote indication (TS), in order to ensure a preventive maintenance of the installation.

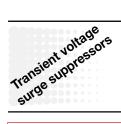
ABB TVSS (OVR range) offer the same "plus" advantages of the other System pro M compact devices, in order to get a perfect compatibility with all the modular range of products.

All these TVSS products comply with the international standard IEC 61643-1 and the European standard EN 61643-11.

They also comply with UL 1449 and CSA C22.2.

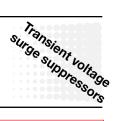
Transient voltage surge suppressors

ABB safety reserve system


Contact for alarm connection

Pluggable unit / replacement modules

DIN rail unit, easy installation and wiring


Technical data

	Technical Features			Туре 2		
Electrical features	Standards Type / test class Poles Types of networks Type of current Nominal voltage Un Max. cont. operating voltage Uc Voltage protection level Up at In Nominal discharge current In (8/20) Maximal discharge current Imax (8/20) Impulse current limp (10/350) Follow current If, Operating current Ic Short circuit withstand Icc Disconnector gG - gL fuse curve C circuit breaker	(L-N / L-PE / N-PE) (L-N / L-PE / N-PE)	V V kA kA kA kA kA kA A A	IEC 61643-1 / EN 61643-11 / UL1449 / CSA T2 / II 1P / 1P+N / 3P / 3P+N / 4P TNS - TT - TNC - IT / Wye / Delta A.C. All US network voltages 150 / 275 / 320 / 440 / 550 / 660 0.6 / 1.2 / 1.4 / 1.8 / 2.5 / 2.9 5 / 15 / 20 / 30 15 / 40 / 65 / 100 / None < 1 50 16 - 25 10 - 40		
Mechanical features	Stocking temperature Operating temperature Degree of protection Fire resistance according to UL 94 Material of Housing Maximal altitude Integrated thermal disconnector State indicator Compatibility with OVR Sign Safety reserve TS remote indicator		°C °C m	-40 to +80 -40 to +80 IP 20 V2 PC grey RAL 7035 2000 Yes Yes Yes Option Option		
Installation	Wire range L/N solid wire stranded wire Stripping length L/N Tightening torque L/N Wire range PE solid wire stranded wire Stripping length PE Tightening torque PE		mm² mm² Mm Nm mm² mm² mm² Mm Nm	2.5 25 2.5 16 12.5 2 2 2.5 25 2.5 16 12.5 2		
Dimensions and weight	Pole dimensions (H x D x W) Pole weight		mm g	85 x 58 x 17.5 120		
Technical Features of the integrated auxiliary contact						
Electrical features	Contact complement Min. load Max. load			1NO (1 make contact), 1NC (1 normally closed contact) 12V D.C 10 mA 250V A.C 1A		
Installation	Connection cross-section		mm ²	1.5		

15

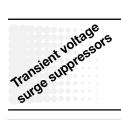
Single pole OVR Range

	Catalog number	kA Rating		Max Voltage		Safety Reserve Dual MOV Option	Auxiliary Contact Option
480VAC	OVR40550	OVR40550	40kA	OVR40550	550V		
Delta	OVR40660P	OVR40660P	40kA	OVR40660P	660V		
	OVR40660SP	OVR40660SP	40kA	OVR40660SP	660V	OVR40660 <mark>S</mark> P	
	OVR40660PTS	OVR40660PTS	40kA	OVR40660PTS	660V		OVR40660PTS
	OVR40660SPTS	OVR40660SPTS	40kA	OVR40660SPTS	660V	OVR40660SPTS	OVR40660SPTS
	OVR65660S	OVR65660S	65kA	OVR65660S	660V	OVR65660 <mark>S</mark>	
480/277VAC	OVR3N40320P	OVR3N40320P	40kA	OVR3N40320P	320V		
Wye	OVR3N40320PTS	OVR3N40320PTS	40kA	OVR3N40320PTS	320V		OVR3N40320PTS
	OVR3N65320SP	OVR3N65320SP	65kA	OVR3N65320SP	320V	OVR3N65320SP	
	OVR3N65320SPTS	OVR3N65320SPTS	65kA	OVR3N65320SPTS	320V	OVR3N65320SPTS	OVR3N65320SPTS
	OVR3N100320SP	OVR3N100320SP	100kA	OVR3N100320SP	320V	OVR3N100320SP	
	OVR3N100320SPTS	OVR3N100320SPTS	100kA	OVR3N100320SPTS	320V	OVR3N100320SPTS	OVR3N100320SPTS
120/240VAC	OVR15275	OVR15275	15kA	OVR15275	275V		
120/208VAC	OVR40275SP	OVR40275SP	40kA	OVR40275SP	275V	OVR40275 <mark>S</mark> P	
	OVR40275SPTS	OVR40275SPTS	40kA	OVR40275SPTS	275V	OVR40275SPTS	OVR40275SPTS
	OVR65275SP	OVR65275SP	65kA	OVR65275SP	275V	OVR65275 <mark>S</mark> P	
	OVR65275SPTS	OVR65275SPTS	65kA	OVR65275SPTS	275V	OVR65275 <mark>S</mark> PTS	OVR65275SPTS
120VAC	OVR15150	OVR15150	15kA	OVR15150	150V		
	OVR40150	OVR40150	40kA	OVR401 <mark>50</mark>	150V		
	OVR40150SP	OVR40150SP	40kA	OVR40150SP	150V	OVR40150SP	
	OVR40150SPTS	OVR40150SPTS	40kA	OVR40150SPTS	150V	OVR40150SPTS	OVR40150SPTS

Replacement MOV Cartridge

480VAC Delta	OVR40660SC	
480/277VAC	OVR40320SC	40kA
Wye	OVR65320SC	65kA
	OVR65320SC (2ea)	100kA
120/240VAC	OVR40275SC	40kA
120/208VAC	OVR65275SC	65kA
120VAC	OVR40150SC	40kA

Signal protection


Neutral Protection OVR65NP

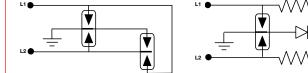
	6V	OVRTC6V
	12V	OVRTC12V
4-20mA signal	24V	OVRTC24V
	48V	OVRTC48V

Consult your local sales representative for any other applications.

Catalog number explanation ①

<u>OVR</u>	<u>3N</u>	<u>40</u>	<u>320</u>	<u>S</u>	<u>P</u>	<u>TS</u>
ABB TVSS	Phases	kA Rating	Max Voltage	ABB Dual MOV Option	Pluggable MOV Option	Aux. Contact Option
	1ph = No Notation	15kA	150V			
	3ph + Neutral = 3N	40kA	275V			
		65kA	320V			
		100kA	550V			
			660V			

Very low voltage transmission lines protection



telephone lines (digital or analog) & current loops. Standards Info:

Transmission line surge arresters (OVR TC) provide protection against transient overvoltages for equipment connected to

Modular low current surge arresters comply with IEC 61643-21 / UL 1449.

Schematic diagrams

W

17.5

OVR TC 200 V in parallel

Dimensions Dimensions (mm)

OVR TC (all models)

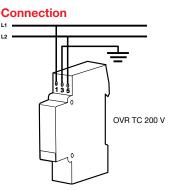
L1 L2

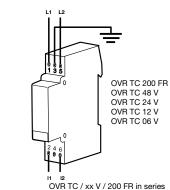
OVR TC / xx V / 200 FR in series

D

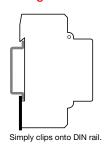
63

н


85

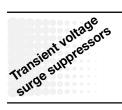


OVR TC 200 FR



OVR TC 200 V in parallel

Fixing


Pratical info:

Telecom and dataline protection surge arresters are installed in electrical switchboards or enclosures using DIN rail.

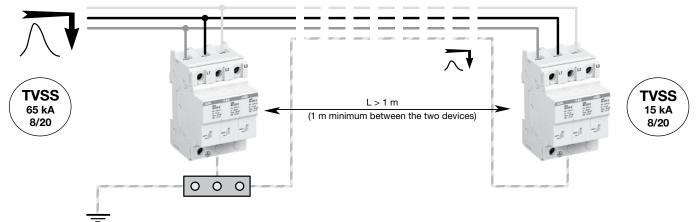
Technical data

S	4	9.6	ns, su	(0)	77					
			74	h.		0	14			
			00	~	7-		'G	2		
					16	0	. 1	G	る	
						2	5			
							9	13	5	

Electrical characteristics	6 V	12 V	24 V	48 V	200 V	200 V
	OVR TC 06 V	OVR TC 12 V	OVR TC 24 V	OVR TC 48 V	OVR TC 200 V	OVR TC 200 FR
Types of network	Communication	Communication	Communication	Communication	Communication	Communicatio
Number of pairs	1	1	1	1	1	1
Type of protection	Series	Series	Series	Series	Parallel	Series
Type of current	Low currents	Low currents	Low currents	Low currents	Low currents	Low currents
Nominal voltage: U	6 V	12 V	24 V	48 V	200 V	200 V
Max cont operating voltage: U	7 V	14 V	27 V	53 V	220 V	220 V
Voltage protection level: U at I	15 V	20 V	35 V	70 V	700 V	300 V
Nominal discharge current: In (8/20)	5 kA	5 kA	5 kA	5 kA	5 kA	5 kA
Maximum discharge current: I max (8/20)	10 kA	10 kA	10 kA	10 kA	10 kA	10 kA
Bandwidth	10 MHz	2 MHz	4 MHz	6 MHz	100 MHz	3 MHz
Operating current: I	140 mA	140 mA	140 mA	140 mA	-	140 mA
Degree of protection	IP 203	IP 203	IP 203	IP 203	IP 203	IP 203
50 Hz withstand (15 mn)	10 A	10 A	10 A	10 A	-	10 A
Vechanical characteristics						
L/N connection terminals:						
– solid wire			0.5 2	2.5 mm ²		
- stranded wire			0.5 2	2.5 mm ²		
PE connection terminal:						
– solid wire			0.5 2	2.5 mm²		
 stranded wire 			0.5 2	2.5 mm²		
Integrated thermal disconnector		Yes			No	Yes
End of life indicator		Yes			No	Yes
Compatibility with OVR Sign		Yes			No	Yes
Viscellaneous characteristics						
Storage temperature			-40 °C t	o +80 °C		
Operating temperature		-40 °C to +80 °C				
Maximum altitude	2000 m					
Case material	PC grey RAL 7032					
Insulating material	UL94 V0 classification					
Reference standard	IEC 61643-21 / UL 1449					
	1					

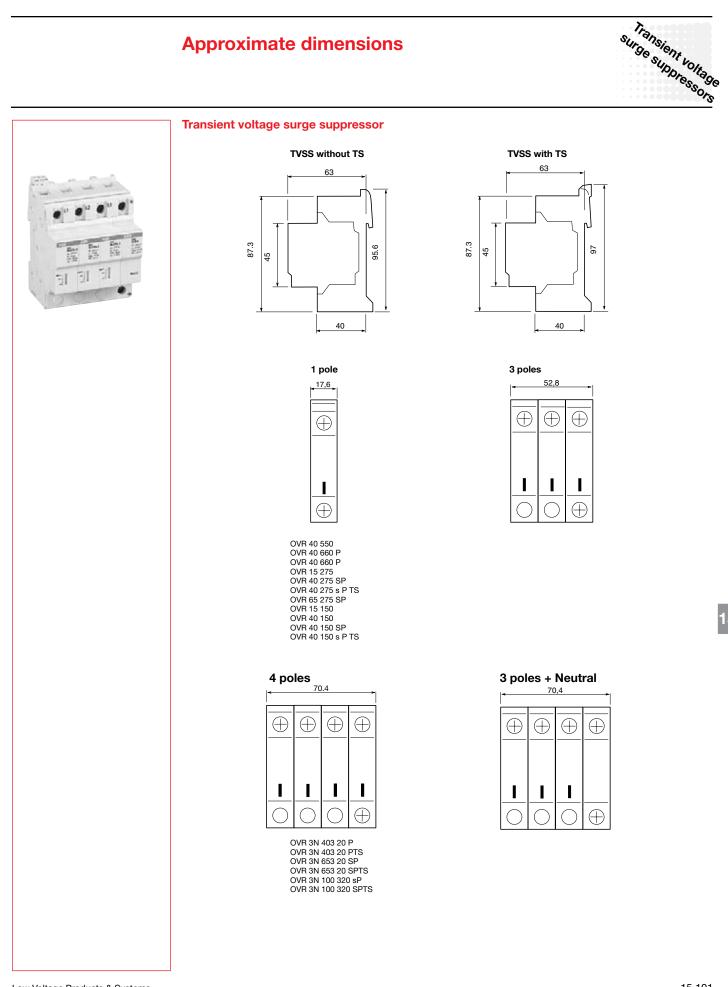
Installation rules Principles of coordination for TVSS

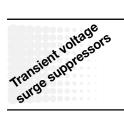
The first surge arrester does not provide effective protection for the whole installation by itself. Certain electrical phenomena can double the protection's residual voltage if cable lengths exceed 10m. Surge arresters must be coordinated when they are installed refer to the tables below.


Coordination required if:

The first surge arrester does not reach the protection voltage (U_p) by itself. The first surge arrester is more than 10m away from the equipment to be protected.

The first surge arrester diverts most of the current to the ground and the remaining surge current is diverted to the ground by the second surge arrester.


The value of this remaining surge current gets lower as the distance between both surge arresters gets longer. The lower is the current going through the last surge arrester, the lower is the voltage protection level applied to the downstream equipment.


Coordination between Type 2 TVSS units

15

Approximate dimensions

Technical details Installation rules for TVSS choice of associated breaking devices (fuse/circuit breaker)

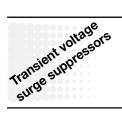
Choice of disconnector

Surge arresters must be associated with upstream short-circuit protection and residual current protection against indirect contact (usually already present in the installation)

	Function	Application
Ϋ́ς	Protection against fault currents	The breaking device associated with the surge arrester can be either a circuit breaker or a fuse. Its rating should take into consideration the surge arrester's characteristics and the short-circuit current of the installation.
and a second sec	Thermal protection	Thermal protection is integrated into the surge arrester.


General points on lightning and its risks Diagram of an installation protected against lightning and its indirect effects

The 100KA or 65KA surge arrester (depending on the lightning risk) fitted in the installation's main incoming electrical switchboard, is capable of deviating the energy of a direct lightning strike. This is the first stage of the electrical network's protection.


The behavior of the cables, subjected to a transient signal, limits the effectiveness of a surge arrester to 10 m of cable. It is therefore necessary to use one or more surge arresters in the installation in order to obtain the required level of protection for the equipment.

Here, a 40KA or 15KA surge arrester (depending on the lightning risk) should be used in coordination with the incoming surge arrester. This is the second stage of the protection.

Finally, if there is a risk of overvoltage on the electrical network, this risk also exists for the auxiliary wiring network. The appropriate protection is a surge arrester designed to protect telephone or data transmission lines (**OVR TC**). This is fitted in series on the network.

Transient voltage surge suppressors

Terminology of electrical characteristics

Surge arrester:

Device designed to limit transient overvoltages and run-off lightning currents. It consists of at least one non-linear component. It must comply with European standard EN 61643-11.

1.2/50 wave:

Standardized overvoltage waveform created on networks and which adds to the network's voltage.

8/20 wave:

Current waveform which passes through equipment when subjected to an overvoltage.

Type 2 surge arrester:

Surge arrester designed to run-off energy caused by an overvoltage comparable to that of an indirect lightning strike or an operating overvoltage. It has successfully passed testing to the standard with the 8/20 wave (class II test).

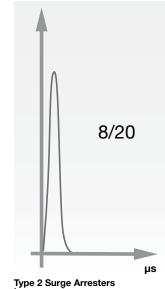
U :

Voltage protection level / Let through voltage

Parameter characterising surge arrester operation by the level of voltage limitation between its terminals and which is selected from the list of preferred values in the standard. This value is greater than the highest value obtained during voltage limitation measurements (at In).

Ľ

Nominal discharge current.


Peak current value of an 8/20 waveform (15 times) flowing in the surge arrester. It is used to determine the \mathbf{U}_{n} value of the surge arrester.

Maximum discharge current for class II testing.

Peak current value of an 8/20 waveform flowing in the surge arrester with an amplitude complying with the class II operating test sequence. I_{max} is greater than I_{n} .

U_:

Nominal AC voltage of the network : nominal voltage between phase 15 and neutral (AC rms value).

Type 2 Surge Arresters I_{max}: current wave