Einführung

Der AquaMaster3™ umfasst eine Reihe von leistungsfähigen elektromagnetischen Durchflussmessern zur Messung elektrisch leitfähiger Flüssigkeiten. Die Geräte werden in der Regel werksseitig kalibriert und voreingestellt geliefert.

Diese Anleitung vermittelt dem Anwender nähere Informationen zu den Messumformern AquaMaster 3 für die Anwendung in unmittelbarer Nähe oder als externe Messumformer.

Wenn der Durchflussmesser aus der Lagerung genommen und für die erste Verwendung installiert wird, entfernen Sie das Schutzetikett (falls vorhanden) von der Vorderseite der Einheit, damit das Licht die Einheit aktivieren kann.

Wenn der Durchflussmesser nicht an die Stromversorgung angeschlossen ist, schließen Sie Batterien oder eine externe Stromversorgung wie in der vorliegenden Anleitung beschrieben an das Gerät an.

Eine ausführliche Übersicht über die Publikationen, die für den AquaMaster3 Messumformer angeboten werden, finden Sie im Innendeckel dieser Veröffentlichung. Weblinks, QR-Code und Referenz-nummern sind dort ebenfalls zu finden.
Das Unternehmen
Wir sind ein auf dem Weltmarkt bekanntes und gut eingeführtes Unternehmen für die Entwicklung und Fertigung von mess- und regeltechnischen Ausrüstungen industrieller Prozesse, wie Durchflussmessungen, Analysen von Gasen und Flüssigkeiten und anderer für Umweltbedingungen wichtiger Bestandteile in Luft und Wasser.

Als Teil des ABB-Konzerns, einem weltweit führenden Unternehmen in der Prozessautomatisierung, bieten wir unseren Kunden einen weltweiten Kundendienst und das entsprechende Know-how zu Anwenderapplikationen.

Wir fühlen uns verpflichtet zu konsequenter Teamarbeit, höchster Qualität in der Produktion, richtungsweisender Technologie sowie konkurrenzlos dem Kundendienst.

Qualität, Genauigkeit und Leistung der Produkte beruhen auf mehr als 100jähriger Erfahrung, sowie einem Programm zur Entwicklung neuer Produkte und Ideen unter Verwendung der neuesten Technologien.

Qualitätssicherung
Das UKAS Calibration Laboratory Nr. 0255 ist eines von zehn Durchflusskalibrierwerken, die von unserem Unternehmen geführt werden und unser Engagement für Qualität und Präzision unterstreichen.

UKAS Calibration Laboratory Nr. 0255

Weitere Informationen…
Weitere Dokumente zum Messumformer AquaMaster3 werden kostenlos zum Download angeboten. Klicken Sie dazu auf www.abb.com/flow (siehe Links und Referenznummern unten), oder scannen Sie folgenden Code:

Suchen Sie nach den folgenden Begriffen, oder klicken Sie auf die Links:

Programmierhandbuch
Zusatzanleitung, MODBUS-Tabellen

COI/FET2XX–EN
COI/FET2XX/MOD/TBL–EN
Inhalt

1 Sicherheit .. 3
 1.1 Elektrische Sicherheit ... 3
 1.2 Symbole .. 3
 1.3 Gesundheit und Sicherheit .. 4
 1.3.1 Gefahren, Handling, Transport und Recycling/Entsorgung von Akkus ... 5
 1.4 Elektro- und Elektronik-Altgeräte (WEEE) .. 5

2 Mechanische Installation .. 6
 2.1 Anforderungen an den Installationsort ... 6
 2.2 Anbringen des vandalismusgeschützten Gehäuses (nur integrierte Messumformer) 8
 2.3 Abmessungen .. 9
 2.3.1 Externer Messumformer und Messumformer in Kompaktbauweise ... 9
 2.3.2 Integrierter Messumformer und vandalismusgeschütztes Gehäuse ... 10
 2.3.3 Externer Batterieblock ... 10
 2.4 Messumformer mit GSM ... 11
 2.4.1 Installation GSM-Antenne ... 11
 2.4.2 Anschließen einer externen Antenne .. 13
 2.4.3 Installieren einer SIM-Karte .. 13

3 Elektrische Installation ... 15
 3.1 Erdung ... 15
 3.2 Anschlüsse ... 18
 3.2.1 AquaMaster3, Sensoranschlüsse (nur extern oder direkt montierte) ... 18
 3.2.2 Montage von Dichtungen mit Manipulationserkennung .. 19
 3.3 Eingangs- / Ausgangsanschlüsse ... 20
 3.3.1 Frequenz-ausgänge ... 20
 3.3.2 Alarmschnittstelle .. 20
 3.3.3 Eingangs- / Ausgangsanschlüsse ... 21
 3.3.4 ScanReader-Schnittstelle (Option) ... 22
 3.3.5 RS232-Computeranschluss .. 22
 3.3.6 Druckaufnehmer (Optional) .. 23
 3.3.7 MID-Dichtung / Anti-Manipulationsschutz .. 23
 3.4 MODBUS-Anschluss ... 25
 3.4.1 2-Draht-Anschluss ... 26
 3.4.2 Hostrechnerschnittstelle ... 26
 3.4.3 Pull-up- und Pull-down-Widerstände / Polarisierung ... 26
 3.4.4 Abschlusswiderstand ... 27
 3.4.5 Kabeleigenschaften .. 27
 3.5 Spannungsversorgungsanschlüsse .. 28
 3.5.1 Einbau/Austausch von internen Batterien (nur integrierte Messumformer) ... 28
 3.5.2 Stromversorgung durch externe Batterie ... 30
 3.5.3 Netzstromversorgung .. 30
 3.5.4 Versorgung durch erneuerbare Energie ... 31

4 Inbetriebnahme und Betrieb ... 32
 4.1 Inbetriebnahme ... 32
 4.2 Aktivieren des Displays ... 33
 4.3 Display-Informationen ... 33
 4.4 Warten von Steckern und Buchsen ... 33
 4.4.1 Wartungsintervalle ... 33
 4.4.2 Benötigte Ausrüstung ... 34
 4.4.3 Vorbereitung ... 34
 4.4.4 Abklemmen ... 34
 4.4.5 Behandlungsreihenfolge .. 35
 4.4.6 Schritt 1 – Oxidentfernung und Reinigung .. 35
 4.4.7 Schritt 2 – Oxidationsschutz ... 36
 4.4.8 Abschließende Arbeiten ... 36
5 Technische Daten .. 37

Anhang A Geräte mit GSM-Modulen, Sicherheitsvorkehrungen .. 42

Anhang B Zubehör / Ersatzteilsätze .. 43
B.1 Allgemeines Zubehör .. 43
B.2 Adapterkabel / Nachrüstsätze .. 44
1 Sicherheit

1.1 Elektrische Sicherheit

Wenn das Gerät nicht entsprechend den Herstellerangaben eingesetzt wird, kann der Schutz des Geräts beeinträchtigt werden.

1.2 Symbole

Das Gerät ist unter Umständen mit einem oder mehreren der folgenden Symbole gekennzeichnet:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️</td>
<td>Warnung – Befolgen Sie die Anweisungen in der Betriebsanleitung.</td>
</tr>
<tr>
<td>⚠️</td>
<td>Vorsicht – Gefährliche elektrische Spannung</td>
</tr>
<tr>
<td>⚡</td>
<td>Schutzerdungsklemme</td>
</tr>
<tr>
<td>⚡</td>
<td>Erdungsklemme</td>
</tr>
<tr>
<td>⾯</td>
<td>Nur Gleichstrom</td>
</tr>
<tr>
<td>~</td>
<td>Nur Wechselstrom</td>
</tr>
<tr>
<td>~~~</td>
<td>Mischstrom</td>
</tr>
<tr>
<td>□</td>
<td>Das Gerät ist schutzisoliert.</td>
</tr>
</tbody>
</table>
1.3 Gesundheit und Sicherheit

Gesundheit und Sicherheit
Um sicherzustellen, dass unsere Produkte keine Gefahr für Sicherheit und Gesundheit darstellen, sind folgende Punkte zu beachten:

- Die entsprechenden Abschnitte dieser Betriebsanleitung sind vor dem Betrieb sorgfältig zu lesen.
- Warnhinweise auf Verpackungen und Behältern müssen beachtet werden.
- Bei Betriebsbedingungen mit hohem Druck und / oder hohen Temperaturen sind zur Vermeidung von Unfällen, die üblichen Sicherheitsmaßnahmen zu ergreifen.
- Chemikalien dürfen nicht an Stellen gelagert werden, an denen sie hohen Temperaturen ausgesetzt sind. Pulver müssen trocken gelagert werden. Die üblichen Sicherheitsanweisungen sind zu befolgen.
- Bei der Entsorgung von Chemikalien muss darauf geachtet werden, dass unterschiedliche Chemikalien nicht miteinander vermischt werden.

Sicherheitsanweisungen bezüglich des Betriebs der in dieser Bedienungsanleitung beschriebenen Einrichtungen oder relevante Sicherheitsdatenblätter (sofern zutreffend) sowie Reparatur- und Ersatzteillinformationen können unter den auf dem rückseitigen Umschlag angegebenen Kontaktinformationen bezogen werden.

Warnung:
- Installation und Wartung dürfen nur von geschultem und qualifiziertem Personal ausgeführt werden.
- Lesen Sie alle relevanten Abschnitte dieser Anleitung, bevor Sie einen Montageort festlegen.
- Bei der Installation sind die Sicherheitsanforderungen dieses Geräts, der Zubehörausrüstung und des Installationsumfelds zu berücksichtigen.
- Installation und Verwendung dieser Geräte müssen den gültigen Normen im jeweiligen Land und ggf. in der jeweiligen Region entsprechen.
- Für die Verwendung der GSM-Module (Teil der Produktausführung mit GSM) sind spezifische Sicherheitsvorkehrungen zu treffen. Wenn Ihr Gerät GSM-fähig ist, lesen Sie Anhang A auf Seite 42, bevor Sie einen Montageort festlegen.
1.3.1 Gefahren, Handling, Transport und Recycling/Entsorgung von Akkus

Warnung.

Der AquaMaster ist mit einer Auswahl an Akku-Technologien verfügbar: Mangan-Alkali-Akku (Teilenummer WABC2100) oder Lithium-Thionylchlorid-Akku (Teilenummer WABC2101 oder WABC2102 oder D-Zelle). Es müssen die folgenden Warnhinweise beachtet werden:

- Um einen sicheren und korrekten Betrieb zu gewährleisten, verwenden Sie nur die in diesem Handbuch aufgelisteten oder von ABB genehmigten Batterien/Akkus.
- Der unsachgemäße Einsatz oder Betrieb von Batterien/Akkus kann zu einem hohen Unfallrisiko für Personen führen.
- Setzen Sie Batterien/Akkus NICHT Feuer oder Temperaturen über 85 °C (185 °F) aus, und zerdücken oder durchstechen Sie sie NICHT, da sie sonst auslaufen, explodieren oder bersten können.
- Verschicken oder transportieren Sie den AquaMaster 3 als Einheit mit eingebauten Lithium-Zellen NUR dann, wenn die folgenden Anweisungen eingehalten werden:
 - Das Recycling in Europa muss die Richtlinien 91/157/EWG und 93/86/EWG erfüllen.
 - Bei beschädigten, undichten oder überhitzten Batterien muss umgehend ein Spezialist hinzugezogen werden. Evakuieren Sie sofort alle Personen aus der Umgebung und holen Sie professionelle Hilfe.

1.4 Elektro- und Elektronik-Altgeräte (WEEE)

Feste Industrieanlagen sind im Rahmen dieser Recycling-Richtlinie nicht abgedeckt. Zum Zeitpunkt der Lieferung ist der vorgesehene Gebrauch nicht immer bekannt, sodass das WEEE-Symbol auf allen externen WaterMaster Messumformern vorhanden ist.
2 Mechanische Installation

2.1 Anforderungen an den Installationsort

Abb. 2.1 Auswahl des Installationsorts

Abb. 2.2 Innerhalb der Temperaturgrenzwerte

Abb. 2.3 Schatten

Abb. 2.4 Schwingung

Abb. 2.5 Auslaufende Flüssigkeiten
Abb. 2.6 Einhaltung der Umgebungsnennwerte

Abb. 2.7 Zugang zum Messumformer

Abb. 2.8 Druckaufnehmer – vor Frost schützen

Nicht anwendbar auf Installationen mit integrierter GSM-Antenne – siehe Abschnitt 2.4.1, Seite 11
2.2 Anbringen des vandalismusgeschützten Gehäuses (nur integrierte Messumformer)

Erläuterungen zu Abb. 2.9:

1. Schieben Sie die Abdeckung (A) über den Messumformer.
2. Setzen Sie die Bodenplatte (B) ein, und stellen Sie sicher, dass sich die Halteklammern (C) in den Laschen (D) befinden.

Abb. 2.9 Anbringen des vandalismusgeschützten Gehäuses
2.3 Abmessungen

2.3.1 Externer Messumformer und Messumformer in Kompaktbauweise

Abb. 2.10 AquaMaster3, Abmessungen
2.3.2 Integrierter Messumformer und vandalismusgeschütztes Gehäuse

Abb. 2.11 Abmessungen integrierter Messumformer

Abb. 2.12 Abmessungen vandalismusgeschütztes Gehäuse

2.3.3 Externer Batterieblock

Abb. 2.13 Batterieblock AquaMaster3, Abmessungen
2.4 Messumformer mit GSM

2.4.1 Installation GSM-Antenne

Wenn kein Messumformer mit GSM zur Verfügung steht, kann die örtliche Signalstärke auch mit einem am gleichen Mobilfunknetz angemeldeten Mobiltelefon, das möglichst nah in die gewünschte Lage gehalten wird, ermittelt werden. Für GSM-Übertragung und das Herunterladen von Protokollen sollten mindestens zwei „Balken“ angezeigt werden. Für SMS-Texte wird mindestens ein „Balken“ für die Signalstärke empfohlen.

Zusätzlich muss bei der Platzierung der Antenne Folgendes beachtet werden:

- Montieren Sie die Antenne so hoch wie möglich über den Boden, um bestmögliche Ergebnisse zu erhalten.
- Wenn die Antenne unterhalb des Bodens montiert werden muss, lassen sich unter folgenden Bedingungen die besten Ergebnisse erzielen:
 - Am Boden steht eine hohe Signalstärke zur Verfügung.
 - Die Antenne wird 50 mm unterhalb der Schachtabdeckung montiert und muss aus Kunststoff bestehen – siehe Abb. 2.14, Seite 12
- Achten Sie darauf, dass die Antenne nicht unter Wasser gelangt – siehe Abb. 2.14, Seite 12.
- Metallgehäuse schwächen das Signal erheblich ab. Falls ein Gehäuse erforderlich ist, sollte es nicht aus Metall bestehen.
- Montieren Sie die Antenne in einem Abstand von mindestens 50 mm zu jeder Art von Wand oder Oberfläche – siehe Abb. 2.15, Seite 12.
- Montieren Sie die Antenne nicht unter massiven Strukturen (z. B. Metallabdeckungen, Böden oder Decken).
Abb. 2.14 Installation GSM-Antenne

Abb. 2.15 Installation GSM-Antenne
2.4.2 Anschließen einer externen Antenne

Erläuterungen zu Abb. 2.16:

1. Entfernen Sie die Abdeckung (A) von der Buchse oben am Messumformer.
2. Stecken Sie den Antennenstecker (B) vorsichtig in die Buchse, und drehen Sie dann den Schraubring im Uhrzeigersinn, bis er fest sitzt.

![Abb. 2.16 Anschließen einer externen Antenne](image)

2.4.3 Installieren einer SIM-Karte

Erläuterungen zu Abb. 2.17:

Hinweis: Schritt 1 betrifft nur externe Messumformer und Messumformer in Direktmontage.

1. Entfernen Sie den Messumformer aus seiner Einbaurlage.

Hinweis: Schritt 2 betrifft nur integrierte Messumformer.

2. Entfernen Sie die vier 4-mm-Sechskant-Befestigungsschrauben (A) und den Messumformer.
4. Lösen Sie auf der Rückseite des Messumformers die Abdeckung (B) für den SIM-Kartenhalter (C), und entfernen Sie sie.
6. Heben Sie die rechte Kante des Halters (C) vorsichtig an.
7. Schieben Sie die SIM-Karte D mit den Kontakten nach unten und der angeschrägten Kante oben rechts in den Halter C.

9. Schrauben Sie die Abdeckung B fest.

Hinweis: Schritt 10 betrifft nur externe Messumformer und Messumformer in Direktbauweise.

10. Setzen Sie den Messumformer wieder in seine Einbaulage ein.

Hinweis: Schritt 11 betrifft nur integrierte Messumformer.

11. Bringen Sie den Messumformer auf der integrierten Halterung an, und befestigen Sie ihn mit vier 4-mm-Sechskant-Befestigungsschrauben A. Ziehen Sie die Schrauben mit einem Drehmoment von 4 Nm an.

Abb. 2.17 Installieren einer SIM-Karte
3 Elektrische Installation

3.1 Erdung

Hinweis. Die Erdungsanordnungen in Abb. 3.1 bis 3.3 gelten für:
- NUR neue Installationen
- Installationen mit und ohne Kathodenschutz

Abb. 3.1 AquaMaster3 Messumformer, Montage in einem Schacht – Flanschsensor

Abb. 3.2 AquaMaster3 Messumformer, Montage in einem Schaltschrank – Flanschsensor
Abb. 3.3 AquaMaster3 Messumformer, Montage in einem Schaltschrank – Sensor der Meßsonde
Hinweis. Die Erdungsanordnung in Abb. 3.4 gilt nur für:

- Installationen mit Kathodenschutz
- Installationen, bei denen E₂ und E₃ von E₁ verschieden sind

Vorsicht. Eine unsachgemäße Installation führt zu Fehlerströmen im Messgerät und dadurch zu instabilen Messwerten.

Abb. 3.4 Installationen mit Kathodenschutz von Generatoren mit verschiedenem kathodischen Potential
3.2 Anschlüsse

Hinweis: Informationen zum MODBUS-Anschluss finden Sie in Abb. 3.4, Seite 25.

3.2.1 AquaMaster3, Sensoranschlüsse (nur extern oder direkt montierte)

Erläuterungen zu Abb. 3.5:

1. Entfernen Sie die Schraubkappe A am Sensorsteckverbinder.
2. Drücken Sie den Sensorstecker B vorsichtig in die Buchse, und drehen Sie sie, bis sie einrastet. Ziehen Sie dann den Sicherungssperrring fest.

Hinweis: Wenn das Sensorkabel über freie Kabelenden verfügt, erfolgt der Anschluss über die Sensorkabel-Adapterbox (Teilenummer WABC2035, separat erhältlich).

Abb. 3.5 Sensoranschlüsse
3.2.2 Montage von Dichtungen mit Manipulationserkennung
Es ist gesetzliche Vorschrift für MID-konforme Durchflussmesser (siehe Abschnitt 3.3.7, Seite 23), Plomben mit Manipulationserkennung bei einer Installation an den folgenden Anschlüssen zu montieren:

- Anschluss Sensor (Abb. 3.5 Seite 18)
- Druckanschluss, welcher mit einem MID-konformen verkürzten Verbindung ausgestattet wird (siehe Abschnitt 3.3.7, Seite 23)

Erläuterungen zu Abb. 3.6:
1. Stecken Sie den Draht der Dichtung durch das Loch im Sicherungssperrring sowie das entsprechende Loch in der Vorderseite des Messumformers.
2. Schließen Sie die Dichtung.

Abb. 3.6 Verwendung von Dichtungen mit Manipulationserkennung

Sicherheitskennzeichnung / -siegel
3.3 Eingangs- / Ausgangsanschlüsse

Vorsicht:
- Die technischen Daten der Eingänge/Ausgänge finden Sie in Abschnitt 5, Seite 37.
- Um Spannungsschwankungen zu vermeiden, müssen induktive Lasten unterdrückt oder begrenzt werden.
- Die Funktion der Ausgänge ist programmierbar – nähere Informationen sind dem Programmierhandbuch (CO1/FET2XX–EN) zu entnehmen.
- Die Einschaltstromspitze bei kapazitiven Lasten muss begrenzt werden.
- Bei vollständig erdfreien Impulsausgängen können statische Störungen auftreten (z. B. beim Anschluss an ein erdfreies Datenaufzeichnungsgerät), wenn der „COM“-Anschluss nicht innerhalb des galvanischen Trennbereichs (±35 V) von Masse betrieben wird.

3.3.1 Frequenz-ausgänge

Hinweis: Die Ausgänge 1 & 2 sind nicht polaritätssensitiv. Der gemeinsame Anschluss für diese Ausgänge ist mit "COM" bezeichnet.

3.3.2 Alarmschnittstelle

Hinweis: Ausgang 3 ist nicht polaritätssensitiv. Der gemeinsame Anschluss für diese Ausgänge ist mit "COM" bezeichnet.
3.3.3 Eingangs- / Ausgangsanschlüsse

Abb. 3.9 Eingangs- / Ausgangsanschlüsse

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Funktion</th>
<th>Farbe (Ausgangskabel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Nicht belegt</td>
<td>Nicht belegt</td>
<td>Violett</td>
</tr>
<tr>
<td>B</td>
<td>DATEN</td>
<td>ScanReader-Daten</td>
<td>Blau</td>
</tr>
<tr>
<td>C</td>
<td>Ausg. COM</td>
<td>Gemeinsamer Ausgang</td>
<td>Gelb</td>
</tr>
<tr>
<td>D</td>
<td>Ausgang 2</td>
<td>Rückwärtsimpulse oder Richtungsanzeiger</td>
<td>Rot</td>
</tr>
<tr>
<td>E</td>
<td>Ausg.3</td>
<td>Alarmausgang</td>
<td>Braun</td>
</tr>
<tr>
<td>F</td>
<td>Ausgang 1</td>
<td>Vorwärtsimpulse oder Vorwärts- und Rückwärtsimpulse</td>
<td>Orange</td>
</tr>
<tr>
<td>G</td>
<td>0 V</td>
<td>Scanreader 0 V</td>
<td>Bildschirm</td>
</tr>
</tbody>
</table>

Tabelle 3.1 PIN-Belegung der Eingangs- / Ausgangsanschlüsse
3.3.4 ScanReader-Schnittstelle (Option)

Abb. 3.10 ScanReader-Anschlüsse

3.3.5 RS232-Computeranschluss

Abb. 3.11 RS232-Computeranschlüsse

Hinweis:

- Als serieller Anschluss wird derselbe physische Anschluss wie für MODBUS verwendet. Je nach Kabelausführung muss die MODBUS-Verbindung daher möglicherweise vorübergehend getrennt werden, um die Konfiguration des AquaMaster3 durchführen zu können.
3.3.6 Druckaufnehmer (Optional)
Optionale Druckaufnehmerkabel sind für eine Reihe von Druckbereichen und in verschiedenen Kabellängen erhältlich.

Abb. 3.12 Optionaler Druckaufnehmer-Steckverbinder

3.3.7 MID-Dichtung / Anti-Manipulationsschutz
Für Durchflussmesser, die mit der Messgeräterichtlinien (MID)-Option / -Variante bestellt werden, ist es gesetzlich vorgeschrieben, bei Abschluss der Installation den Durchflussmesser zu versiegeln, um nicht autorisierte Änderungen an den Zählerinstellungen und in der Konfiguration zu verhindern. Es wird ein Schreibschutzschalter / eine Schreibschutzverbindung verwendet (siehe Abb. 3.13, Seite 24), um Anmeldungen über jegliche Kommunikationsmittel und Änderungen an Parametern im AquaMaster3 zu verhindern. MID-Durchflussmesser müssen entweder mit WEBC2054 oder WEBC2025-Anschlüssen ausgerüstet werden. Dieser Anschluss muss mit einem geeigneten Anti-Manipulationssiegel (siehe Abschnitt 3.2.2, Seite 19) ausgerüstet werden, um im Falle einer nicht autorisierten Manipulation eindeutig erkennen zu können, dass die eichpflichtigen Siegel gebrochen wurden.

Bei Typen eines MID-Fernbedienungssensor-Durchflussmessers ist es auch wichtig und gesetzlich vorgeschrieben, ein geeignetes Anti-Manipulationssiegel, wie in Abschnitt 3.2.2 dargestellt, am Sensoranschluss, wie in Abb. 3.5, Seite 18 dargestellt, zu befestigen.
AquaMaster 3 FET200
Elektromagnetischer Durchflussmesser Messumformer

24 OI/FET200–DE Rev. M

Abb. 3.13 Anschlüsse des Schreibschutzschalters

Hinweis: Für MID-Installationen muss der Durchflussmesser mit der MID-Kalibrierungsoption bestellt werden.

Um den Messumformer in den Schreibschutzzustand zu versetzen, sind die Anschlüsse E und F zu überbrücken* bzw. die unten abgebildeten Adapter anzubringen.

* ABB bietet einen Stecker mit entsprechender Brücke an – Teilenummer WEBC2054 (5er-Packung)

Wenn ein Druckaufnehmer erforderlich ist, kann ein Adapterkabel (Teilenummer WEBC2025) verwendet werden.
3.4 MODBUS-Anschluss

In diesem Abschnitt wird die serielle MODBUS-Datenkommunikation mit dem AquaMaster3 beschrieben. Diese Informationen müssen zusammen mit folgenden Publikationen verwendet werden:

- MODBUS Tables Supplement (COI/FET2XX/MOD/TBL–EN)
- Programmierhandbuch (COI/FET2XX–EN)

Ausführliche technische Daten und Empfehlungen zur Verwendung und Implementierung der MODBUS-Kommunikation sind in den folgenden externen Publikationen zu finden:

Hinweis: Bei Verwendung des WEBC2100 ist ein Treiber für das USB-Kommunikationskabel erforderlich. Dieser ist per Download erhältlich unter www.ftdichip.com/FTDrivers.htm
3.4.1 2-Draht-Anschluss
AquaMaster3 MODBUS RS485 verwendet eine 2-adrige serielle Schnittstelle gemäß der Norm EIA/TIA-485 – siehe Abb. 3.15.

![Diagramm der 2-Draht-Topologie](image)

Abb. 3.15 Allgemeine 2-Draht-Topologie

3.4.2 Hostrechnerschnittstelle
Auf dem Hostrechner muss ein Treiber für die RS485-Kommunikation installiert werden. Es wird dringend empfohlen, eine Schnittstelle mit galvanischer Trennung zu verwenden, um den Rechner vor Blitzschäden zu bewahren und die Signal-Rauschstörsicherheit zu erhöhen, wenn die Daten über größere Entfernungen übertragen werden sollen.

3.4.3 Pull-up- und Pull-down-Widerstände / Polarisation
Um Fehlauslösungen von Slaves bei inaktivem Master (Hostrechner) zu verhindern, müssen Pull-up- und Pull-down-Widerstände an die RS485-Schnittstelle des Hostrechners angeschlossen werden. Siehe Abb. 3.16.

![Diagramm der Hostrechnerschnittstelle](image)

Abb. 3.16 Hostrechnerschnittstelle
3.4.4 Abschlusswiderstand

3.4.5 Kabeleigenschaften

Die Gesamtlänge der Hauptleitung ist begrenzt. Die maximal zulässige Länge ist von der Baudrate, dem Kabel (Durchmesser, Kapazität, Wellenwiderstand), der Anzahl der Lasten in der Gerätekette und der Netzwerkkonfiguration (2- oder 4-adrig) abhängig.

Bei einer Baudrate von 9600 und einem Leiterquerschnitt von mindestens 0,14 mm beträgt die maximale Länge 1000 m. Bei Verwendung eines 4-adrigen-Kabels als 2-Draht-Verkabelung muss die maximale Länge halbiert werden.

Die Stichleitungen müssen kurz sein (maximal 20 m). Bei Verwendung eines Verteilers mit n Anschlüssen darf jede Abzweigung eine maximale Länge von 40 m geteilt durch n aufweisen.

Bei RS485-Systemen beträgt die maximale Länge der seriellen Datenübertragungsleitung 1200 m. Die maximale Kabellänge hängt vom Typ des verwendeten Kabels ab. Es gelten folgende Richtwerte:

- Bis zu 6 m: Kabel mit Standardabschirmung oder Twisted-Pair-Kabel
- Bis zu 300 m: doppeltes Twisted-Pair-Kabel mit Gesamtfolienabschirmung und integrierter Masseleitung. Beispiel: Belden 9502 oder gleichwertiges Kabel.
- Bis zu 1200 m: doppeltes Twisted-Pair-Kabel mit Einzelfolienabschirmungen und integrierten Masseleitungen. Beispiel: Belden 9729 oder gleichwertiges Kabel.

Kabel der Kategorie 5 können für RS485-MODBUS bis zu einer maximalen Länge von 600 m verwendet werden.

Für die symmetrischen Paare in RS485-Systemen wird ein Wellenwiderstand von mehr als 100 Ω bevorzugt, insbesondere bei einer Baudrate von 19200 und mehr.
3.5 Spannungsversorgungsanschlüsse
Der AquaMaster 3 besitzt vier Möglichkeiten zur Spannungsversorgung:

- Integrierte Batterien (nur integrierte Messumformer) – siehe Abschnitt 3.5.1
- Externer Batterieblock – siehe Abschnitt 3.5.2, Seite 30
- Netzstrom – siehe Abschnitt 3.5.3, Seite 30
- Erneuerbare Energie – siehe Abschnitt 3.5.4, Seite 31

Warnung:
- Trennen Sie die Spannungsversorgung aller am Messumformer angeschlossenen Kabel.
- Die elektrische Installation und die Erdung (Masse) müssen den gültigen Landesnormen und den Vorschriften vor Ort entsprechen.

3.5.1 Einbau/Austausch von internen Batterien (nur integrierte Messumformer)

Vorsicht:
- Beachten Sie alle Warnhinweise in Abschnitt 1.3.1 auf Seite 5.
- Entfernen Sie niemals den Deckel, wenn der Wasserstand um den Durchflussmesser nahe an den Gehäusedeckel reicht.
- Verwenden Sie nur 3,6-V-Lithium-Zellen
- Achten Sie auf die richtige Polarität (alle Zellen müssen nach oben zeigen).
- Mischen Sie keine alten und neuen Zellen.
- Verwenden Sie Zellen vom gleichen Hersteller.
- Achten Sie darauf, dass Sie die richtigen Batterien verwenden. Diese sind in Anhang B.1, Seite 43 aufgeführt.

Erläuterungen zu Abb. 3.18:
1. Entfernen Sie den Gehäusedeckel (A).
2. Entfernen und entsorgen Sie den Silikatgelbeutel.
3. Trennen Sie den Batteriestecker (B).
4. Entfernen Sie den Batterieblock (C) vorsichtig vom Gehäuse.
5. Entfernen Sie der Reihe nach vorsichtig 3 Zellen (D) von der Oberseite des Blocks.
7. Bringen Sie 3 neue Zellen an der Unterseite des Blocks an, und achten Sie dabei auf die richtige Polarität, wie in Abb. 3.18, Seite 29 gezeigt.
8. Bringen Sie 3 neue Zellen an der Oberseite des Blocks an.
9. Setzen Sie den Batterieblock (C) vorsichtig wieder in das Gehäuse ein.
10. Schließen Sie den Batteriestecker (B) wieder an.
12. Bringen Sie den Gehäusedeckel (A) wieder an, und ziehen Sie ihn handfest an. Stellen Sie dabei sicher, dass die O-Ring-Dichtung und die O-Ring-Nut sauber sind.
Abb. 3.18 Interner Batterieblock (nur integrierte Messumformer)
3.5.2 Stromversorgung durch externe Batterie

Hinweis: Überprüfen Sie vor dem Anschließen des Kabels nochmals anhand des Typenschilds die Anforderungen an die Spannungsversorgung. Der AquaMaster3 kann mittels Explorer-Batterieblöcken betrieben werden. Diese sind mit einem MIL-Stopfen (Kunststoffausführung) ausgestattet. Die Kapazität der Explorer-Batterie beträgt 6/7 der angegebenen Lebensdauer.

Der AquaMaster3 ist mit einem optionalen Batterieblock lieferbar.

![Abb. 3.19 Anschließen an die Batteriestromversorgung](image)

3.5.3 Netzstromversorgung

Hinweis: Überprüfen Sie vor dem Anschließen des Kabels nochmals anhand des Typenschilds die Anforderungen an die Spannungsversorgung.

Anforderungen an den Netzstrom:

- 110 bis 240 VAC, 50 / 60 Hz bei < 3 VA
- Kabellänge 3 m
- Schutz durch abgesicherten Trennschalter; Nennwerte: Netz, Schutz gegen Überspannung, 3 A

Die Anschlüsse sind gemäß Abb. 3.20 zu verbinden.

![Abb. 3.20 Anschließen an das Stromnetz](image)
3.5.4 Versorgung durch erneuerbare Energie

Hinweis:
- Überprüfen Sie vor dem Anschließen des Kabels nochmals anhand des Typenschilds die Anforderungen an die Spannungsversorgung.
- Auf die Ausgangsregelung kann verzichtet werden, wenn die Ausgangsruhespannung kleiner ist als die maximale Eingangsspannung.

Anforderungen bei der Versorgung durch erneuerbare Energie:
- Eingang: 12 V (Nennspannung)
- Max. Eingangsspannung: 22 VDC
- Min. Eingangsspannung: 6 VDC
- Solarzelle oder Windgenerator mind. 5 W

![Abb. 3.21 Anschließen einer Stromversorgung mit erneuerbarer Energie](image-url)
4 Inbetriebnahme und Betrieb

Warnung:

- Beachten Sie alle Warnhinweise für Batterien und andere Warnhinweise in Abschnitt 1.3 auf Seite 4.
- Betrieb bei extremen Temperaturen kann die Leistung und Lebensdauer der Batterien deutlich beeinträchtigen – siehe Spezifikationen, Seite 37.

4.1 Inbetriebnahme

Gehen Sie bei der erstmaligen Inbetriebnahme des AquaMaster3 folgendermaßen vor:

2. Entfernen Sie den Transportaufkleber.
3. Decken Sie den Anzeigebereich einige Sekunden lang ab.
 Wenn die Verbindung erfolgreich aufgebaut werden konnte, wird im Display die Meldung „Pass“ angezeigt, und der Durchflussmesser nimmt seinen normalen Betrieb auf.

Hinweise:

- Wenn im Display "Err 1" angezeigt wird, prüfen Sie die Verdrahtung des Sensors. Nach Beheben des Fehlers führt der Messumformer automatisch einen Neustart durch.
- Wenden Sie sich bitte an ABB, wenn im Display „Err 2“ oder „Err 3“ angezeigt wird.
4.2 Aktivieren des Displays

So aktivieren Sie das Display während des Normalbetriebs:

1. Decken Sie den Anzeigebereich einige Sekunden lang ab.
2. Entfernen Sie die Abdeckung vom Anzeigebereich. Das Display wird aktiviert, und der AquaMaster 3 durchläuft die voreingestellten Displayanzeigebereiche.

Hinweis: Informationen über die Verwendung der internen oder externen seriellen Kommunikation, die Konfiguration der angezeigten Maßeinheiten und die Einrichtung des Messgeräts finden Sie im Programmierhandbuch COI/FET2XX–EN.

4.3 Display-Informationen

4.4 Warten von Steckern und Buchsen

Um einen lang anhaltenden und zuverlässigen Betrieb der Stecker und Buchsen der AquaMaster 3 Durchfluss-Messumformer zu gewährleisten, empfiehlt ABB eine regelmäßige Behandlung der vergoldeten Kontaktstifte.

4.4.1 Wartungsintervalle

Behandlung aller Steckverbinder:

- alle 3 Jahre
- wenn der Batterieblock gewechselt wird
- wenn die Anlage aus anderen Gründen inspiziert wird (z. B. CalMaster 2–Überprüfung)
4.4.2 Benötigte Ausrüstung
Reinigungsmittel erhalten Sie bei Ihrer örtlichen ABB-Niederlassung. Besuchen Sie bitte die folgende Website, um Teile direkt zu bestellen oder Details zu Ihrem örtlichen Vertrieb zu erfahren:
http://store.caig.com/
Materialdetails:

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Teilenummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeoxIT® – Kontaktreiniger und Regenerierungsmittel</td>
<td>D5MS–15</td>
</tr>
<tr>
<td>DeoxIT® – Mini-Spray, 5-%-Lösung, Spülung, 14 g</td>
<td></td>
</tr>
<tr>
<td>(etwa 150 Anwendungen)</td>
<td></td>
</tr>
<tr>
<td>DeoxIT® GOLD – Kontaktverbesserer und Kontaktschutz</td>
<td>G5MS–S</td>
</tr>
<tr>
<td>DeoxIT® GOLD G5 – Mini-Spray, 5-%-Lösung, 14 g, Spülung, für Kunststoffe geeignet</td>
<td></td>
</tr>
<tr>
<td>(etwa 150 Anwendungen)</td>
<td></td>
</tr>
</tbody>
</table>

4.4.3 Vorbereitung

<table>
<thead>
<tr>
<th>Punkt</th>
<th>Vorsichtsmaßnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echtzeituhr</td>
<td>Die Durchführung dieses Verfahrens kann zu einem Verlust der Echtzeit führen.</td>
</tr>
<tr>
<td></td>
<td>Prüfen Sie nach der Behandlung die Echtzeituhr und das Datum, und führen Sie ggf. eine Neuprogrammierung durch – siehe Abschnitt 4.4.8, Seite 36.</td>
</tr>
<tr>
<td>Messumformer mit Datenprotokollierung</td>
<td>Dieses Verfahren kann bei Messumformern mit Datenprotokollierung zu einem Verlust der Protokolle führen.</td>
</tr>
<tr>
<td></td>
<td>Laden Sie vor der Behandlung der Kontaktstifte die Protokolldaten herunter, um einen Datenverlust zu verhindern.</td>
</tr>
</tbody>
</table>

4.4.4 Abklemmen
Vor der DeoxIT-Behandlung sind ALLE Kabel in der folgenden Reihenfolge abzuklemmen:
1. Batterieblock / Netzstrom
2. Sensor
3. Druckaufnehmer (falls vorhanden)
4. Ausgänge
5. Kommunikationskabel (falls angeschlossen)

Entfernen Sie die Kappen von ungenutzten Steckverbindern.
4.4.5 Behandlungsreihenfolge
Um störende Effekte durch das wiederholte Aus- und Einschalten zu minimieren, muss bei der Behandlung die folgende Reihenfolge eingehalten werden. Für jede Steckverbindung sind die Prozesse Schritt 1 und Schritt 2 anzuwenden:

1. Sensorstecker und -kabel behandeln (die Batterie muss zu diesem Zeitpunkt abgeklemmt sein).
2. Batteriestecker und -kabel behandeln (der Sensor muss zu diesem Zeitpunkt abgeklemmt sein).
3. Alle anderen Peripherieanschlüsse und -kabel behandeln.

4.4.6 Schritt 1 – Oxidentfernung und Reinigung
So entfernen Sie Oxidschichten und reinigen die Stifte:

1. Besprühen Sie die Metallflächen der Steckverbinder und die vergoldeten Kontaktstifte kurz (ca. 0,5 s lang) mit DeoxIT DN5-Spray.
2. Stecken Sie fünfmal einen passenden Steckverbinder auf den gereinigten Steckverbinder.
3. Warten Sie 10 Sekunden.
4. Besprühen Sie die Metallflächen erneut kurz (ca. 0,5 s) mit DeoxIT DN5-Spray.
5. Lassen Sie alle Rückstände aus dem Steckverbinder laufen.

Abb. 4.3 Reinigen der vergoldeten Kontaktstifte

Hinweis: Die Oberfläche erscheint danach nicht völlig trocken, da nach der Verflüchtigung der Trägerflüssigkeit eine Schutzschicht verbleibt.
4.4.7 Schritt 2 – Oxidationsschutz
So vermeiden Sie erneute Oxidation:

2. Warten Sie 10 Sekunden.
3. Besprühen Sie die Metallflächen erneut sehr kurz (maximal 0,5 Sekunden lang) mit DeoxIT Gold GN5-Spray.
4. Lassen Sie alle Rückstände aus dem Steckverbinder laufen.
5. Lassen Sie das Mittel 30 Sekunden lang trocknen.

Hinweis: Die Oberfläche erscheint danach nicht völlig trocken, da nach der Verflüchtigung der Trägerflüssigkeit eine Schutzschicht verbleibt.

4.4.8 Abschließende Arbeiten
Abschließen der Wartung von Steckern und Buchsen:

1. Die Peripheriegeräte sind in folgender Reihenfolge wieder anzuschließen:
 a. Sensor
 b. Druckaufnehmer (falls vorhanden)
 c. Ausgänge
 d. Kommunikation
 e. Batterieblock / Netzstrom

2. Setzen Sie die Schutzkappen wieder auf die ungenutzten Anschlussbuchsen.
5 Technische Daten

AquaMaster3-Messumformer

Einbau
In Sensor integriert (integrierte Montage)
oder
Extern bis zu 200 m

Gehäuse
IP68 (NEMA 6P), < 2 m
Edelstahlgehäuse mit Außenabdeckung aus thermoplastischem Kunststoff mit Fenster, mit Harz auf Polyurethan-Basis vergossen

Elektrische Anschlüsse
IP68-Steckverbindungen, Netzkabel

Sensorkabel
ABB-Kabel gehört zum Lieferumfang
SWA-Kabel auf Anfrage lieferbar (über Adapterbox)

Strom-versorgung
85 bis 265 VAC bei < 3 VA
Anschlusskabel: ca. 3 m
Überbrückungszeit bei Netzausfall: Standard, ca. 5 Tage ab internem Superkondensator.
Optional, bis zu 5 Jahre mit Netzkabeloption AS und externer Batterieoption AD.

Erneuerbare Energie
Solar- oder Windanlage
Eingangsspannung: 6 bis 22 VDC bei < 5 W

Max. Stromstärke: 200 mA
Stromüberbrückungszeit: bis zu 3 Wochen (je nach Betriebsbedingungen)
Externer Batterieblock
IP68 (NEMA 6P)

Standard
Mangan-Alkali-Akkublock mit einer Nennbetriebsdauer von 5 Jahren bei 0 bis 45 °C (32 bis 113 °F)*

Optionales
Lithium-Thionylchlorid 9-Zellen-Akku mit einer Nennlebensdauer von 10 Jahren*
Lithium-Thionylchlorid 4-Zellen-Akku mit einer Nennlebensdauer von 5 Jahren*

Interne Batterie (nur integrierte Ausführung)
IP68 (NEMA 6P) Sensor integriertes Gehäuse

Standard
Lithium-Thionylchlorid 3,6-V-D-Zelle (6-fach) mit einer Nennbetriebsdauer von 6 Jahren bei -20 bis 60 °C (-4 bis 140 °F)*

 Geeignete Batterien, ohne Lötaschschluss (nicht mitgeliefert):
- SAFT LS36600 / Tadiran TL-5930 / Varta ER D / Tekcell SB-D02

Backupzeit bei Batteriewechsel
Etwa 2 Minuten

Impuls- und Alarmausgänge
Drei bidirektionale kontaktlose Schalter mit gemeinsamer Masse
±35 VDC, 50 mA
Ausgang 1: nur Vorwärts- oder Vorwärts- und Rückwärtsimpulse
Ausgang 2: Rückwärtsimpulse oder Richtungsanzeiger
Ausgang 3: Alarm weist auf Probleme bei der Messung bzw. mit der Stromversorgung hin
Impulsausgang: maximal 50 Hz, 50 % relative Nenneinschaltdauer

Kommunikationsoptionen
Serielle Datenkommunikation
Lokaler RS232-Anschluss

RS485 MODBUS
MODBUS RTU Slave
Baudraten:
1200, 2400, 4800, 9600 oder 19200
RS485:
2-Draht + Massesignal
Stromsparmodus nach 10 Sekunden Inaktivität

*Bei GSM-Nutzung ist die Batterielebensdauer je nach Häufigkeit und Länge der Nutzung kürzer. Wenn z. B. die im 15-Minuten-Takt aufgezeichneten Daten einmal täglich über automatische SMS-Nachrichten verschickt werden, verkürzt sich die Lebensdauer einer Batterie üblicherweise um 6 %. Bei extremen Temperaturen verkürzt sich die Batterielebensdauer.
Die Batterielebensdauer des FEV DN200 beträgt 50 % der typischen Lebensdauer.
Die Batterielebensdauer der WITS-GPRS-Version hängt von den konfigurierten Verbindungszeitplan ab.
Codiergerät-Schnittstelle / ScanCoder / ScanReader (nur bei Modellen ohne Protokollierung)

Funktion – Fernablesung des Zählers und der Seriennummer

- Anschlüsse
 - 2-Draht bei induktiven Pads (max. Kabelänge 80 m)
 - 3-Leiter bei AMR

- Kompatible Lesegeräte
 - Severn Trent Services Smart-Lesegerät
 - ABB oder Elster SR100 und SR50
 - Logicon Versaprobe
 - Itron ERT

- Kompatible induktive Pads
 - Starpad

Telemetrieanwendungen (Option)

GSM- / SMS-Modem

Befestigung:
- Intern

Frequenzbänder:
- Quad-Band: 850 / 900 / 1800 / 1900 MHz

Funktionen:
- Automatische SMS-Berichte mit Durchfluss- und (optional) Druckprotokolldaten (typischer Mittelwert: 1 s oder 1 min.)
- Häufigkeit von SMS-Berichten: i. d. R. täglich
- Alarmmeldungen per SMS zum Zeitpunkt des Ereignisses (z. B. Stromausfall), beschränkt auf 1 Alarm pro Tag
- SMS-Konfiguration des Durchflussmessers
- SMS-Diagnose des Durchflussmessers
- Autom. Bericht über Gesamt-SMS und Tarife
- WITS-/DNP3-Version 1.1, 1.2 und 1.3 über TCP/IP-GPRS

GSM-Antenne (Option)

Quad-Band-Betrieb:
- 850 / 900 / 1800 / 1900 MHz

Befestigung:
- Integriert im Messumformer oder abgesetzt

Schutzart der Antenne:
- IP66 (NEMA4) Schutz gegen starkes Strahlwasser (Überflutung)

Hinweis: Unter Wasser funktioniert die integrierte Antenne des GSM-Systems nicht.

Es wird empfohlen, die Antenne so hoch wie möglich, außerhalb metallischer Einfassungen und nicht tiefer als auf Bodenhöhe zu montieren.
Temperaturbereiche

<table>
<thead>
<tr>
<th>Lagerung</th>
<th>Umgebungstemperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10 °C</td>
<td>-20 °C</td>
</tr>
<tr>
<td>70 °C</td>
<td>60 °C</td>
</tr>
</tbody>
</table>

Batteriekapazität und Lebensdauer verkürzen sich bei Betrieb außerhalb des Temperaturbereichs:
- Mangan-Alkali 0 bis 45 °C
- Lithium-Thionylchlorid 0 bis 60 °C

Reaktionszeit (programmierbar)

Minimum
- 1 s (Netzbetrieb)
- 15 s (Betrieb mit Batterie oder erneuerbarer Energie)

Sprachen des Geräts

Englisch, Französisch, Deutsch, Spanisch, Italienisch, Niederländisch
(für die WITS-Version nur in englischer Sprache)

Drucksystem – Externer Messumformer (Option)

Druckbereich
- 16 bar (abs.)

Anschluss
- Standardmäßiger Schnellstecker für Sondenanschluss über Adapterkabel

Betriebstemperaturbereich
- -20 (Umgebung) bis 70 °C
 Probe und Messumformer vor Minusgraden schützen.

Genauigkeit (Normalwert)
- ±0,4 % des Messbereichs

Thermisches Fehlerband Toleranzband (Normalwert 100 °C)
- ±1,5 % des Messbereichs

Kabellänge
- 5, 10 oder 20 m
Detailldaten zur Protokolliereinheit (Option)

<table>
<thead>
<tr>
<th>Protokolliereinheit</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenloggerfunktion</td>
<td>Durchfluss und Druck</td>
<td>Durchfluss und Druck</td>
<td>Vorlauf-, Rücklauf-, Tarif- und Netto-Durchflusssummen</td>
</tr>
<tr>
<td>Anzahl der Datensätze</td>
<td>8831</td>
<td>11361</td>
<td>732</td>
</tr>
<tr>
<td>Speichertakt</td>
<td>15 bis 65.500 s (einstellbar)</td>
<td>24 h (fest)</td>
<td></td>
</tr>
<tr>
<td>Typische Kapazität</td>
<td>3 Monate bei 15 Minuten</td>
<td>7 Tage (etwa) bei 1 Minute</td>
<td>2 Jahre</td>
</tr>
</tbody>
</table>

WITS Logger

<table>
<thead>
<tr>
<th>Hochgeschwindigkeits-Probendaten</th>
<th>Archivprotokoll</th>
<th>Loggerkapazität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loggerfunktion</td>
<td>Durchfluss und Druck</td>
<td>Durchfluss und Druck</td>
</tr>
<tr>
<td>Speichertakt</td>
<td>60 s</td>
<td>15 Min. (konfigurierbar)</td>
</tr>
<tr>
<td></td>
<td>90 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>180 s</td>
<td></td>
</tr>
</tbody>
</table>

Verfügbare Software

<table>
<thead>
<tr>
<th>Software</th>
<th>Direct RS232</th>
<th>SMS (Text)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABB AC800M</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>ABB Generic (z. B. LogMaster)</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Areal (Topkapi)</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>MasterVue (I&P AutoChart)</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>EcoTech</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>HydroComp</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>Mobiltelefontext</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>OSI PI Database oder Capula</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>QTech</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>Zeepaard</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>Agua Ambiente Servicios Integrales SA</td>
<td>x</td>
<td>✓</td>
</tr>
</tbody>
</table>

DS/FEF200/FEF200/FEV200-DE Rev. O
Anhang A Geräte mit GSM-Modulen, Sicherheitsvorkehrungen

Hinweis: Mobiltelefonen oder -telefonen arbeiten mit Funksignalen, und die Mobilnetze sind nicht unter allen Bedingungen garantiert erreichbar. Deshalb sollten Sie sich bei lebenswichtiger Kommunikation (z. B. Notrufe) niemals auf drahtlose Geräte verlassen.

Um Anrufe zu erhalten oder zu tätigen, muss das Mobilterminal oder -telefon eingeschaltet sein und sich in einem Bereich mit ausreichender Netzsignalstärke befinden.
Anhang B Zubehör / Ersatzteilsätze

B.1 Allgemeines Zubehör

<table>
<thead>
<tr>
<th>Artikelnummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRBX9969</td>
<td>Montagesatz für Kompaktausführung</td>
</tr>
<tr>
<td>WEB21000/10</td>
<td>Satz externe GSM-Antenne, 10 m</td>
</tr>
<tr>
<td>WEB2110/01</td>
<td>AquaMaster3, Satz externe GSM-Quad-Band-Antenne</td>
</tr>
<tr>
<td>WEB2110/05</td>
<td>1 m</td>
</tr>
<tr>
<td>WEB2110/10</td>
<td>5 m</td>
</tr>
<tr>
<td></td>
<td>10 m</td>
</tr>
<tr>
<td>B20433</td>
<td>MIL-Anschluss:</td>
</tr>
<tr>
<td></td>
<td>4-poliger MIL-Steckverbinder – Anschluss für erneuerbare Energie</td>
</tr>
<tr>
<td>B20434</td>
<td>7-poliger MIL-Steckverbinder – RS485 MODBUS und RS232-Anschluss</td>
</tr>
<tr>
<td>WEB2100</td>
<td>Batterien / Ersatz</td>
</tr>
<tr>
<td></td>
<td>Externe Batterie (MnO2)</td>
</tr>
<tr>
<td>WEB2101</td>
<td>Fern-Akku (LiSOCl2) – 4 Zellen</td>
</tr>
<tr>
<td>WEB2102</td>
<td>Fern-Akku (LiSOCl2) – 9 Zellen</td>
</tr>
<tr>
<td>WEB2110</td>
<td>Integrierter Batterieträger (Ersatzträger)</td>
</tr>
<tr>
<td></td>
<td>3,6 V Lithiumthionylchlorid, Größe D</td>
</tr>
<tr>
<td></td>
<td>Empfohlene Ersatzteilnummern der Hersteller:</td>
</tr>
<tr>
<td></td>
<td>SAFT LS 33600 / Tadiran TL-5930 / Varta ER D / Tekcell SB-D02</td>
</tr>
<tr>
<td>WABC2010</td>
<td>Sensorsenkabel</td>
</tr>
<tr>
<td></td>
<td>0,5 m, für integrierte / Kompaktausführung</td>
</tr>
<tr>
<td>WABC2010/01</td>
<td>1 m, für externe Ausführung</td>
</tr>
<tr>
<td>WABC2010/05</td>
<td>5 m, für ext.</td>
</tr>
<tr>
<td>WABC2010/10</td>
<td>10 m, für ext.</td>
</tr>
<tr>
<td>WABC2010/20</td>
<td>20 m, für ext.</td>
</tr>
<tr>
<td>WABC2010/30</td>
<td>30 m, für ext.</td>
</tr>
<tr>
<td>WABC2010/40</td>
<td>40 m, für ext.</td>
</tr>
<tr>
<td>WABC2010/50</td>
<td>50 m, für ext.</td>
</tr>
<tr>
<td>WABC2010/60</td>
<td>60 m, für ext.</td>
</tr>
<tr>
<td>WABC2010/70</td>
<td>70 m, für ext.</td>
</tr>
<tr>
<td>WABC2010/80</td>
<td>80 m, für ext.</td>
</tr>
<tr>
<td>WABC2010/01</td>
<td>Ausgangskabel</td>
</tr>
<tr>
<td></td>
<td>1 m mit Kabelenden</td>
</tr>
<tr>
<td>WEB2111/M</td>
<td>für Technolog Cello (MIL)</td>
</tr>
<tr>
<td>WEB2112/M</td>
<td>für Technolog Cello (Brad Harrson)</td>
</tr>
<tr>
<td>WEB2113/M</td>
<td>für RADCOM Multilog</td>
</tr>
<tr>
<td>WEB2114/M</td>
<td>für Primayer Xilog</td>
</tr>
<tr>
<td>WEB2006/M</td>
<td>2 x 19-polig MIL</td>
</tr>
<tr>
<td>WEB2024</td>
<td>Sicherungssperre für Steckverbinder – 5er-Packung</td>
</tr>
<tr>
<td>WEB2100</td>
<td>Kommunikationskabel</td>
</tr>
<tr>
<td>WEB2101</td>
<td>RS232 zu USB</td>
</tr>
<tr>
<td>WEB2102</td>
<td>RS485 zu USB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Artikelnummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEB2000/05</td>
<td>Druckkabel</td>
</tr>
<tr>
<td>WEB2000/10</td>
<td>16 bar, 5 m</td>
</tr>
<tr>
<td>WEB2000/10</td>
<td>16 bar, 10 m</td>
</tr>
</tbody>
</table>
B.2 Adapterkabel / Nachrüstsätze

<table>
<thead>
<tr>
<th>WABC2036</th>
<th>Druckadapter:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M16 Kunststoff auf MIL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WABC2022/M</th>
<th>Sensor-Nachrüstsatz:</th>
</tr>
</thead>
<tbody>
<tr>
<td>WABC2023/M</td>
<td>M20 Kunststoff auf MIL</td>
</tr>
<tr>
<td>WABC2024/M</td>
<td>M20 Bewehrung auf MIL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WABC2035</th>
<th>Sensoradapter:</th>
</tr>
</thead>
<tbody>
<tr>
<td>WABC2024/M</td>
<td>M16 Kunststoff auf MIL</td>
</tr>
<tr>
<td>WABC2025/M</td>
<td>M20 Kunststoff auf MIL</td>
</tr>
<tr>
<td>WABC2026/M</td>
<td>M20 Bewehrung auf MIL</td>
</tr>
<tr>
<td>WABC2026/M</td>
<td>½" NPT Adapter auf MIL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WABC2104/05</th>
<th>Scanreader-Kabel:</th>
</tr>
</thead>
<tbody>
<tr>
<td>WABC2104/10</td>
<td>5 m</td>
</tr>
<tr>
<td>WABC2104/20</td>
<td>10 m</td>
</tr>
<tr>
<td>WABC2104/30</td>
<td>20 m</td>
</tr>
<tr>
<td>WABC2104/30</td>
<td>30 m</td>
</tr>
</tbody>
</table>
Produkte und Dienstleistungen

Automatisierungssysteme
Für folgende Industriezweige:
— Chemische & pharmazeutische Industrie
— Nahrungs- und Genussmittel
— Fertigung
— Metalle und Minerale
— Öl, Gas & Petrochemie
— Papier und Zellstoff

Antriebe und Motoren
— AC- und DC-Antriebe, AC- und DC-Maschinen, AC-Motoren bis 1 kV
— Antriebssysteme
— Kraftmesstechnik
— Servoantriebssysteme

Regler und Schreiber
— Einkanal- und Mehrkanalregler
— Kreisblattschreiber, Papierschreiber und Bildschirmschreiber
— Bildschirmschreiber
— Prozessanzeiger

Flexible Automation
— Industrieroboter und Robotersysteme

Durchflussmessung
— Elektromagnetische Durchflussmesser
— Massendurchflussmesser
— Turbinenraddurchflussmesser
— Wedge-Durchflusselemente

Schiffssysteme und Turbolader
— Elektrische Systeme
— Schiffsaufrüstung
— Offshore-Nachrüstung und Ersatzteile

Prozessanalytik
— Prozessgasanalyse
— Systemintegration

Messumformer
— Druck
— Temperatur
— Füllstand
— Schnittstellenmodule

Ventile, Betätigungselemente und Stellglieder
— Regelventile
— Stellglieder
— Positioniervorrichtungen

Instrumentierungen für Wasser, Gas und industrielle Analyse
— Messumformer und Sensoren für pH, Leitfähigkeit und Gelöstsaustoff
— Analysatoren für Ammoniak, Nitrat, Phosphat, Silikat, Natrium, Chlorid, Fluorid, Gelöstsaustoff und Hydrazin
— Zirconia-Sauerstoffanalysatoren, Katharometer, Wasser-stoffreinheits- und Entleergas-Monitore, Wärmeleitfähigkeit

Dienstleistungen
Wir bieten einen welweiten Service an. Einzelheiten und Adressen zu den nächstgelegenen Kundendienststellen erhalten sie von:

Deutschland
ABB Automation Products GmbH
Tel.: +49 800 1 11 44 11
Fax: +49 800 1 11 44 22

Großbritannien
ABB Limited
Tel.: +44 (0)1453 826661
Fax: +44 (0)1453 829671

Kundengewährleistung
Die Lagerung muss staubfrei und trocken erfolgen. Bei längerer Lagerung muss in periodischen Abständen der einwandfreie Zustand überprüft werden. Sollte eine Störung während der Garantiezeit auftreten, sind die nachstehenden Dokumente als Nachweis zu liefern:
— Eine Auflistung, die Prozessbetrieb und Alarmprotokolle zur Zeit des Ausfalls ausweist.
— Kopien aller Speicher-, Installations-, Betriebs- und Wartungsaufzeichnungen zur defekten Einheit.
Setzen Sie sich mit uns in Verbindung

ABB Automation Products GmbH
Process Automation
Borsigstr. 2
63755 Alzenau
Deutschland
Tel.: +49 800 1 11 44 11
Fax: +49 800 1 11 44 22

ABB Limited
Process Automation
Oldends Lane
Stonehouse
Gloucestershire GL10 3TA
UK
Tel.: +44 1453 826 661
Fax: +44 1453 829 671

www.abb.com/flow

Hinweis
Wir behalten uns das Recht vor, ohne vorherige Ankündigung technische Änderungen vorzunehmen oder den Inhalt dieses Dokuments zu ändern. Für Bestellungen gelten die vereinbarten näheren Einzelheiten. ABB übernimmt keinerlei Haftung für eventuelle Fehler oder möglicherweise fehlende Informationen in diesem Dokument.

Copyright© 2016 ABB
Alle Rechte vorbehalten.

3KXF208204R4203

Capula© unterliegt dem Urheberrecht der Capula Limited 2010.
EcoTech™ ist eine eingetragene Marke von EcoTech Pty Ltd.
HydroComp unterliegt dem Urheberrecht der HydroComp Inc 2010.
MeterVue® unterliegt dem Urheberrecht der Information and Performance Services (I&P).
Microsoft Excel™ und Windows™ sind eingetragene Marken der Microsoft Corp.
MODBUS™ ist eine eingetragene Marke der MODBUS Corporation.
OSI™ ist eine eingetragene Marke von WADIS.
PMAC™ ist eine eingetragene Marke von Technolog.
Primeware™ und Xilog™ sind eingetragene Marken von Primayer.
QTech™ ist eine eingetragene Marke der QTech Data Systems Limited.
Topkapi™ ist eine eingetragene Marke von AREAL.
Vodafone PAKNET™ und Vodafone Radiopad™ sind eingetragene Marken von Vodafone.