INSTALLATION GUIDE

CoreSense M10
Multi-gas monitoring system
Disclaimer

This guide and any accompanying software are copyrighted and all rights are reserved by ABB Inc. This product, including software and documentation, may not be copied, photocopied, reproduced, translated, or reduced, in whole or in part, to any electronic medium or machine-readable format without prior written consent from ABB.

This document contains product specifications and performance statements that may be in conflict with other ABB published literature, such as product fliers and catalogs. All specifications, product characteristics, and performance statements included in this document are given as indications only. In case of discrepancies between specifications given in this document and specifications given in the official ABB product catalogs, the latter takes precedence.

ABB reserves the right to make changes to the specifications of all equipment and software, and contents of this document, without obligation to notify any person or organization of such changes. Every effort has been made to ensure that the information contained in this document is current and accurate. However, no guarantee is given or implied that the document is error-free or that the information is accurate.

ABB makes no representations or warranties with regard to the product and instructional and reference materials, including, but not limited to, all implied warranties of merchantability and fitness for a particular purpose.

ABB does not warrant, guarantee, or make any representations regarding the use, or the results of the use, of any software or written materials in terms of correctness, accuracy, reliability, currentness, or otherwise. ABB shall not be liable for errors or omissions contained in its software or manuals, any interruptions of service, loss of business or anticipatory profits and/or for incidental or consequential damages in connection with the furnishing, performance or use of these materials, even if ABB has been advised of the possibility of such damages.

All equipment, software, and manuals are sold as is. The entire risk as to the results and performance of the equipment and software is assumed by the user.

The software or hardware described in this document is distributed under a license and may be used, copied, or disclosed only in accordance with the terms of such license.

© ABB, 2019
Table of Contents

1 Safety
 Symbol definitions ... 5
 Personnel safety ... 7
 General lifting and carrying precautions 7
 Handling the analytical unit 8
 Handling the sensor head 8
 Electrical safety .. 8
 INSTALLATION ON ENERGIZED TRANSFORMERS 9
 Cybersecurity .. 9
 Improper use .. 10
 Technical limit values ... 10

2 Introducing the CoreSense M10
 Analytical unit .. 12
 Analytical unit status LEDs 14
 Analytical unit communication ports 14
 Touchscreen .. 15
 Sensor head and communication cable 16
 Sensor head status LEDs 17

3 Preparing for installation
 Considering meteorological conditions 19
 Siting the analytical unit 20
 Clearance requirements 20
 Siting the sensor head 21
 Clearance requirements 22
 Planning your cabling 23
 Planning your communications 24
 Gathering the installation tools 25
 Supplied tools .. 25
 Spare parts ... 25
 Recommended tools (not provided) 25
 Personal protection equipment 25

4 Installing the analytical unit
 Precautions .. 27
 Installing the mounting posts 27
 Installing the shock absorbers 29
 Placing the unit on the shock absorbers 30
 Earthing the analytical unit 32
 Safety .. 32

5 Installing the sensor head
 Precautions .. 35
 Connecting the sensor head 36
 Purging the sensor head 38
 Earthing the sensor head 41

6 Connecting the CoreSense M10
 Safety .. 43
 Routing the sensor head conduit to the analytical unit .. 44
 Connecting the gas lines 46
 Connecting the internal communication cable 47
 Connecting the sensor head DC power cable ... 48
 Connecting the sensor head AC power cable ... 48
 Removing the terminal block cover 48
 Connecting the cable 50
 Connecting the mains AC power cable 52
 Safety .. 52
 Connecting the cable 53
 Powering up the CoreSense M10 56
 Establishing SCADA connections 56
 Establishing RS-485 connections 57
 Establishing analog 4–20 mA connections 58
 Outputs .. 58
 Inputs ... 59
 Installing relays ... 60
 Establishing optical Ethernet connections 61
 Closing the analytical unit door 61

7 Configuring CoreSense M10
 Establishing communications 64
 Modifying default passwords 65
 Setting the date and time 67
 Activating the thermal pump 69

8 Maintenance and troubleshooting
 Closing the analytical unit door 71
 Cleaning the system 71
Troubleshooting ... 71
 Understanding cabinet LEDs 72
 Understanding sensor head LEDs 73
 Exporting the Events log 74
 Giving access to administrative settings on the SCADA port 75
Installing firmware updates 76
 Updating with a web browser 76
 Updating with a USB key 77
Taking an oil sample 79

9 Technical specifications
 Electrical specifications 83
 Output circuits (alarm relays) 83
 Environmental specifications 84
 Mechanical specifications 84
 Measurement specifications 84
 Laser .. 85
 Communication 86

A Physical installation checklist 87

B Connector definitions 89
 Inputs and outputs 89
 Power and relays 91
CHAPTER 1

Safety

This chapter provides an overview of the safety precautions that must be observed when operating the instrument. For personnel and system safety, and to obtain optimum performance, read this manual carefully and thoroughly before installing, using, or maintaining the instrument.

NOTICE
The design of this guide is based on the assumption that the CoreSense™ M10 system is installed on a de-energized transformer. However, it is possible to install the system on an energized transformer, assuming that all necessary safety precautions are heeded. See “INSTALLATION ON ENERGIZED TRANSFORMERS” on page 9 for important information about installation of CoreSense M10 systems on energized transformers.

If you do not fully understand the information contained in this guide, or if the instrument shows any signs of damage, contact ABB. Refer to the back cover of this manual for contact information.

Symbol definitions

This document uses the following symbols to bring attention to key technical and safety-related information.

DANGER—SERIOUS DAMAGE TO HEALTH/RISK TO LIFE
Indicates a hazardous situation that, if not avoided will result in death or serious injury. When this symbol is encountered on the hardware, refer to the documentation for important safety information.

WARNING—DAMAGE TO HEALTH/RISK TO LIFE
Indicates a hazardous situation that, if not avoided could result in death or serious injury. When this symbol is encountered on the hardware, refer to the documentation for important safety information.

CAUTION—DAMAGE TO HEALTH
Indicates a hazardous situation that, if not avoided, could result in minor or moderate injury.

NOTICE
Indicates information considered important, but not hazard related, that could impact things other than personal injury, like property damage.
<table>
<thead>
<tr>
<th>WARNING—HIGH VOLTAGE</th>
<th>Indicates the presence of electrical energy at voltages high enough to inflict harm on living organisms.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING—LASER RADIATION</td>
<td>Indicates the presence of a laser related hazard. It also indicates the type of laser in use, its wavelength and its safety class.</td>
</tr>
<tr>
<td>WARNING—SHARP EDGES</td>
<td>Indicates the presence of sharp edges that could cause personal injury if touched.</td>
</tr>
<tr>
<td>WARNING—HOT SURFACES</td>
<td>Indicates the presence of heat sufficient enough to cause burns.</td>
</tr>
<tr>
<td>ELECTROSTATIC DISCHARGES</td>
<td>Indicates a device or part of a device that is susceptible to electrostatic discharges.</td>
</tr>
<tr>
<td></td>
<td>Identifies any terminal intended for connection to an external conductor for protection against electrical shock in case of a fault, or the terminal of a protective earth (ground) electrode.</td>
</tr>
<tr>
<td></td>
<td>Identifies protective earth conductor terminals.</td>
</tr>
<tr>
<td></td>
<td>Indicates the presence of direct current.</td>
</tr>
</tbody>
</table>
Personnel safety

WARNING
Failing to comply with any of the instructions, precautions or warnings contained in this manual is in direct violation of the standards of design, manufacture, and intended use of the instrument.

ABB assumes no liability for the user’s failure to comply with any of these safety requirements, which may result in personal injuries and/or instrument damages.

- Do not, under any circumstances, remove warning and caution labels. Information must be available at all times for the security of the user.
- If the instrument is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.
- The instrument is intended for field installation by qualified service personnel according to manufacturer’s installation instructions and local/national wiring requirements.
- Operators must strictly observe all applicable national regulations with regards to installation, function tests, repairs, and maintenance of electrical devices.

General lifting and carrying precautions

The use of proper methods for lifting and handling objects protects against injury and makes work easier. Over time, safe lifting technique should become a habit.

The following are essential steps to safe lifting and handling:

- Eyeball the load and check overall conditions. Do not attempt the lift by yourself loads that appear to be too heavy or unwieldy.
- Make sure that there is enough room for movement, and that the footing is secure.
- Be careful with your balance. Feet should be shoulder width apart, with one foot behind the object that is to be lifted and the other just beside it.
- Bend your knees (do not stoop). Keep your back straight (not necessarily vertical) and tuck your chin (it helps straightening your back).
- Grip the load with the palm of your hands and your fingers.
- Push UP with your legs.
- Keep arms and elbows close to your body while lifting.
- Carry the load close to your body. Do not twist your body while carrying the load. To change direction, shift your foot position and turn your whole body.
- To lower the object, again, bend your knees (do not stoop). To deposit the load on a bench or shelf, place it on the edge and push it into position. Make sure your hands and feet are clear when placing the load.
Handling the analytical unit

The CoreSense M10 analytical unit weighs 65 kg (144 lb). It is not designed to be installed by one person. At least two people should be installing this unit.

To avoid personal injuries, make sure to follow the proper lifting and carrying instructions when handling the instrument.

Handling the sensor head

The CoreSense M10 sensor head weighs 8 kg (18 lb). To avoid personal injuries, make sure to the proper lifting and carrying instructions when handling the instrument.

WARNING

Do not grab the sensor head by the mounting threads. Thread edges are sharp and pose a risk of personal injury.

WARNING

The sensor head contains an internal heater. Thus, some parts of the sensor head may be hot when powered, i.e. all parts in contact with hot oil. Always handle the sensor head with caution.

During operation, the brass mounting interface to the transformer valve becomes hot. Avoid touching the surface of the mounting interface.

Electrical safety

WARNING

Failing to comply with any of the instructions, precautions or warnings contained in this manual is in direct violation of the standards of design, manufacture, and intended use of the instrument.

ABB assumes no liability for the user’s failure to comply with any of these safety requirements, which may result in personal injuries and/or instrument damages.

ONLY qualified personnel may perform the electrical installation of the monitoring system.

In accordance with international safety standards, the monitoring system uses a three-wire power cord or line typically connected to an electrical panel that provides grounding for the monitor chassis.

• CoreSense M10 is an overvoltage category II instrument.

• An external circuit breaker with a 8 A rating or less must be installed on the AC source and labeled in compliance with your country’s national electrical code. Also, if required by this code, a circuit breaker or switch in the building installation, marked as the disconnect switch, shall be in close proximity to the equipment and within easy reach of the operator.

• Before opening the analytical unit cabinet, cut power at the distribution panel circuit breaker.

• Ensure that the equipment, and any device or power cord connected to the analytical unit, is properly grounded.

• Make sure that the analytical unit earth is at the same potential as the transformer earth.
• **ONLY** use power cords equipped with a protective earthing terminal.
• Protective earthing connections (grounding) must be active at all times.

DANGER

The absence of grounding can lead to a potential shock hazard that could result in serious personnel injury.

If an interruption of the protective earthing is suspected, cut the power to the analytical unit at the plant distribution panel and have the electrical circuit tested.

• In accordance with IEC61010-1 edition 3.0, to prevent contamination of the electronics by outside elements, the analytical unit cabinet cover shall be opened only under controlled environmental conditions defined as:
 – **Temperature:** between 5 °C (41 °F) and 40 °C (104 °F)
 – **Maximum relative humidity:** 80% for temperatures up to 31 °C (87 °F), decreasing linearly to 50% relative humidity at 40 °C (104 °F).

• Do not expose sensor head innards to rain or snow.
• Use only fuse(s) specified as appropriate for this equipment (see “Technical specifications” on page 83).

INSTALLATION ON ENERGIZED TRANSFORMERS

DANGER

The installation area **must** be secured. Tape off all limits of approach to the installation area, and ensure that all personnel understand the risks associated with the installation procedure.

• Installation must be performed with **feet on the ground** (no work should be performed off of a ladder or lift of any kind).
• The CoreSense M10 sensor head must be installed near ground level.
• Plan AC power connection to the analytical unit prior to all other work (connection location, needs for additional fuses, etc.)
• De-energize the section of the analytical unit where the AC power cable will be connected. This should be double-checked.
• All work in the analytical unit should be done while the unit is de-energized.
• Communication connections (Ethernet or SCADA) can be performed on energized transformers.

Cybersecurity

This product is designed to be connected to, and communicate information and data via a network interface. It is the user’s sole responsibility to provide, and continuously ensure, a secure connection between the product and the user’s network or any other network (as the case may be).

Users shall establish and maintain any and all appropriate measures (such as, but not limited to, the installation of firewalls, the application of authentication measures, the encryption of data, the installation of anti-virus programs, etc.) to protect the product, the network, its system and the interface against any kind of security breaches, unauthorized accesses, interferences, intrusions, leakages and/or theft of data or information.
ABB and its affiliates are not liable for damages and/or losses related to such security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data or information.

ABB strives to maintain cybersecurity for its products and services. By visiting the web page, you will find notifications about newly found software vulnerabilities and options to download the latest software. It is recommended that you visit this web page regularly:

http://new.abb.com/about/technology/cyber-security

Information about your product is also available on the product page:

http://new.abb.com/products/transformers/service/advanced-services/coresense

Improper use

For configuration purposes, the sensor head can be powered when it does not contain any oil. However, the thermal pump must be turned OFF. This can be done via the web interface (for more information, see “Activating the thermal pump” on page 69). The CoreSense M10 is delivered with the thermal pump turned OFF.

When installation is complete and air has been purged from the sensor head, make sure to enable the thermal pump via the web interface.

![NOTICE]

The thermal pump is designed to operate while immersed in transformer oil. It will fail within minutes if operated in air.

It is prohibited to use the monitoring system for any of the following (including, but not limited to):

- A climbing aid, e.g., for mounting purposes.
- A support for external loads, e.g., as a support for pipes.
- By adding material, e.g., by painting over the name plate, or welding/soldering on parts.
- By removing material from the sensor head, e.g., by drilling the housing.

Repairs, alterations, and enhancements, or the installation of replacement parts, are only permissible as far as these are described in this manual. Approval by ABB must be requested in writing for any activities beyond this scope. Repairs performed by ABB-authorized centers are excluded from this article.

Technical limit values

The instrument is designed for use exclusively within the values stated on the nameplates and within the technical limit values specified on the data sheets.
Introducing the CoreSense M10

CoreSense™ M10 continuously monitors dissolved gas levels in transformer oil to provide early warnings for incipient transformer faults. Additionally, CoreSense M10 can also continuously monitor moisture levels, as moisture can accelerate transformer aging.

Figure 1 Overview of the CoreSense M10 multi-gas monitoring system
Analytical unit

As part of the CoreSense M10 multi-gas monitoring system, the analytical unit is where gases extracted from the transformer are analyzed. Analysis results allow for prevention of incipient transformer faults. It is also the part of the system equipped for external communication and system configuration.

Figure 2 Overview of the CoreSense M10 analytical unit (closed)
Figure 3 Overview of the CoreSense M10 analytical unit (open)
Analytical unit status LEDs

The meanings of the various analytical unit status LEDs are explained in “Maintenance and troubleshooting” on page 71.

—

Figure 4 Analytical unit status LEDs

Analytical unit communication ports

The purpose of each of these ports is explained in more details in “Connecting the CoreSense M10” on page 43 and “Appendix B” on page 89.

—

Figure 5 Analytical unit communication ports
Touchscreen

The touchscreen inside the analytical unit allows you to monitor values and acknowledge events on site.

Figure 6 CoreSense M10 analytical unit touchscreen (Dashboard panel)

Figure 7 CoreSense M10 analytical unit touchscreen (4–20 mA input panel)
Sensor head and communication cable

As part of the CoreSense M10 multi-gas monitoring system, the sensor head extracts gases from the transformer and routes them through its permanently attached conduit for analysis inside the analytical unit. LEDs provide status information about the ongoing processes (see “Maintenance and troubleshooting” on page 71).

Figure 8 CoreSense M10 analytical unit touchscreen (Alarms and events panel)

Figure 9 Overview of the CoreSense M10 sensor head (back)
NOTICE

The length of the conduit attached to the sensor head is 10 meters (33 feet). Make sure that the distance between the sensor head and analytical unit is at most 10 meters.

Sensor head status LEDs

The meanings of the various analysis sensor head status LEDs are explained in “Maintenance and troubleshooting” on page 71.
Preparing for installation

Installing the CoreSense™ M10 monitoring system requires some planning. You need to plan:

- the physical location of the monitoring system analytical unit and sensor head,
- the power supply to the analytical unit cabinet (connection location, need for additional fuses, etc.)
- the necessary cables (see “Electrical specifications” on page 83 and “Communication” on page 86,
- the required tools.

On a transformer, several mounting locations may be available for installing the analytical unit and sensor head (see Figure 12 and Figure 14) (see also “INSTALLATION ON ENERGIZED TRANSFORMERS” on page 9).

Care should be taken to select a mounting location:

- where the analytical unit will have sufficient clearance.
- that will allow for the analytical unit touchscreen to be positioned at eye level.
- where the sensor head will be exposed to maximal oil flow and minimal oil temperature fluctuations.

Considering meteorological conditions

Installation of the CoreSense M10 monitoring system should not be performed under the following meteorological conditions:

- In rain
- In snow
- In highly windy/dusty conditions
- At temperatures below 5 °C (41 °F) or above 40 °C (104 °F)
- If the relative humidity level is above 80%.
 (at temperatures up to 31 °C [87 °F], and decreasing linearly to 50% at 40 °C [104 °F])

NOTICE

The installer may pre-assemble the CoreSense M10 (connecting the sensor head conduit to the open analytical unit cabinet, close the cabinet) in a temperature- and humidity-controlled location (building, back of truck, etc.) that meets the proper environmental standards, and then bring the whole assembly on location where installation can be completed regardless of meteorological conditions.

Also, the installer can build a temperature-controlled temporary shelter at the installation location and proceed to the installation there as long as environmental conditions are met.
Siting the analytical unit

Since the CoreSense M10 analytical unit can be installed on the transformer wall or a wall adjacent to the transformer, there are a few physical limitations to take into account before installing the CoreSense M10 analytical unit.

Clearance requirements

You need to make sure that you have enough room to install the unit. You need enough clearance to be able to install the unit mount properly, and also enough clearance to be able to fully open the unit door. Below are the clearance requirements for the analytical unit.

Figure 12 CoreSense M10 analytical unit dimensions and clearance requirements (in mm)
Siting the sensor head

The CoreSense M10 sensor head can be installed at various locations on the transformer. —

Figure 13 Possible locations for sensor head on a transformer

The following table can be used to help select the best location for the sensor head:

WARNING—ENERGIZED TRANSFORMER

In Figure 13, locations C and D must not be used in case of installation on an energized transformer,
Table 1 Sensor head locations

<table>
<thead>
<tr>
<th>Location</th>
<th>Benefits</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Radiator return)</td>
<td>Good oil flow</td>
<td>Connection flange rarely present</td>
</tr>
<tr>
<td></td>
<td>Low operating temperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Easily accessible</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B (Drain valve)</td>
<td>Low operating temperature</td>
<td>Low oil flow may increase reaction time</td>
</tr>
<tr>
<td></td>
<td>Easily accessible</td>
<td>Sludge could accumulate at this location</td>
</tr>
<tr>
<td></td>
<td>Always available</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (Top tank [fill valve])</td>
<td>Good oil flow from thermal convection</td>
<td>Temperature may exceed 100 °C (212 °F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Difficult to access</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installation requires working at height</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power down of transformer during installation mandatory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT TO BE USED FOR INSTALLATION ON ENERGIZED TRANSFORMERS</td>
</tr>
<tr>
<td>D (Top of radiator)</td>
<td>Good oil flow</td>
<td>Temperature may exceed 100 °C (212 °F)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Difficult to access</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installation requires working at height</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Connection flange rarely present</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power down of transformer during installation mandatory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOT TO BE USED FOR INSTALLATION ON ENERGIZED TRANSFORMERS</td>
</tr>
</tbody>
</table>

Clearance requirements

First, you need to make sure that you have enough room to install the head. Below are the clearance requirements for the unit.

Figure 14 CoreSense M10 sensor head dimensions (in millimeters)
Planning your cabling

Select cabling according to your communication needs. Refer to the table below for recommended cable gauge or type.

NOTICE

Table 2 gives a general description of the necessary cables. More detailed information is found in Appendix B on page 89.

Always comply with national codes and electrical standards.

Table 2 Recommended cable gauge and type

<table>
<thead>
<tr>
<th>Cable</th>
<th>Gauge/Type</th>
<th>Maximum length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Copper-only wire (stranded WITH FERRULE or solid)</td>
<td>15 m (50 ft) (AWG #12)</td>
</tr>
<tr>
<td></td>
<td>AWG #18 to AWG #12</td>
<td>10 m (33 ft) (AWG #18)</td>
</tr>
<tr>
<td></td>
<td>90 °C 600V, UL and CSA type</td>
<td></td>
</tr>
<tr>
<td>Ground (earthing)</td>
<td>10 or 6 AWG</td>
<td>15 m (50 ft)</td>
</tr>
<tr>
<td>RS-485</td>
<td>24 AWG</td>
<td>1220 m (4003 ft)</td>
</tr>
<tr>
<td>Alarm relays</td>
<td>16 or 14 AWG</td>
<td>N/A</td>
</tr>
<tr>
<td>4–20 mA</td>
<td>18 AWG</td>
<td>N/A</td>
</tr>
<tr>
<td>SCADA (Ethernet)</td>
<td>Category 5 cable</td>
<td>100 m (328 ft)</td>
</tr>
<tr>
<td>OPTICAL (Ethernet)</td>
<td>ST-ST full duplex 62.5/125 multi-mode fiber</td>
<td>2000 m (6562 ft)</td>
</tr>
<tr>
<td>SERVICE (Ethernet)</td>
<td>Category 5 cable</td>
<td>3 m (10 ft)</td>
</tr>
<tr>
<td>USB (service port)</td>
<td>USB key only</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Planning your communications

The digital protocols supported by the system are Modbus, DNP3, and IEC 61850. Modbus and DNP3 are available on the RS-485 serial interface, the Ethernet SCADA port or the optical Ethernet port. IEC 61850 is available on the Ethernet SCADA port or the optical Ethernet port.

Table 3 below shows the RS-485 serial configuration. These values cannot be modified.

<table>
<thead>
<tr>
<th>Default RS-485 configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud rate</td>
</tr>
<tr>
<td>Data bit</td>
</tr>
<tr>
<td>Stop bits</td>
</tr>
<tr>
<td>Parity</td>
</tr>
<tr>
<td>Flow control</td>
</tr>
</tbody>
</table>

NOTICE
When using Modbus, the slave ID is 1.
When using DNP3, the outstation ID is 1.

Table 4 Summary of communication parameters

<table>
<thead>
<tr>
<th>Port</th>
<th>Default communication setup</th>
<th>Setting options from web page</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-485</td>
<td>Baud rate 9600</td>
<td>n/a</td>
<td>Modbus (point to point only): default slave ID = 1 Default DNP3 outstation ID = 1</td>
</tr>
<tr>
<td></td>
<td>Data bit 8</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stop bit 1</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parity None</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flow control None</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>SCADA (Ethernet)</td>
<td>• Static (IP 10.127.127.127) (if no network connected to port at startup)</td>
<td>Static IP; DHCP client Administrator settings on SCADA port can be enabled or disabled using the web interface. When the fiber optic port is in use, the Ethernet SCADA port must not be used.</td>
<td>Web http port 80/tcp Modbus TCP port 502/tcp DNP3 port 20000/tcp IEC61850 MMS port 102/tcp</td>
</tr>
<tr>
<td>OPTICAL (Ethernet)</td>
<td>• DHCP client if network connected to port at startup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERVICE (Ethernet)</td>
<td>Default static IP address for CoreSense: 10.126.126.126</td>
<td>ABB remote access can be enabled or disabled using the web interface.</td>
<td></td>
</tr>
</tbody>
</table>

NOTICE
For best results it is recommended to configure the Modbus or DNP3 master with a timeout of 10000 ms and 5 retries.
Minimum delay between polls shall be at least 100 ms.
Gathering the installation tools

Once you have finished planning your installation, you need to assemble a set of all the equipment necessary to perform the installation.

Supplied tools

- Metric hex (Allen) key set: 2.5 mm, 4 mm, 5 mm
- SAE open end wrench: ¼ in (6.35 mm), ⅛ in (7.98 mm)

Spare parts

The following is included with the monitoring system:
- Bleeding hose (ID 3.175 mm [⅛ in]): for sampling

Recommended tools (not provided)

- 50.8 mm (2.0 in) wrench, or adjustable wrench
- 13 mm (⅓ in) wrench, or adjustable wrench
- 8 mm (0.3 in) wrench, or adjustable wrench
- 8 × 10 mm (⅜ in) bolts, washers, and lock washers (for mounting post installation)
- Torque wrench
- Flat head screwdriver
- Drill and drill bits
- Bolt inserts
- Roll of Teflon (PTFE) tape
- Bucket and rags
- Level
- Wire stripper and wire cutter
- Laptop with a web browser (for sensor commissioning) (the latest version of Chrome, Firefox, Internet Explorer and Safari is recommended)
- Straight RJ45 Ethernet cable (for sensor commissioning)
- Optical termination equipment (if installing the optional optical Ethernet port)
- Transformer valve adapter (when applicable)

Personal protection equipment

- Hard hat
- Safety shoes
- Gloves
- Protective glasses
Page intentionally left blank
CHAPTER 4

Installing the analytical unit

Once your installation plan is complete and you have gathered all the necessary tools, you can proceed with installation of the CoreSense™ M10 multi-gas monitoring system.

NOTICE
The following procedures are recommendations based on best practices, but final decisions as to the best method of installing the analytical unit belong to the technical person in charge on site.

NOTICE
The analytical unit must be installed on a vertical or near-vertical wall (no more than 2° from vertical).

Precautions

WARNING
Installing the CoreSense M10 multi-gas monitoring system requires at least a team of two.

WARNING
The CoreSense M10 analytical unit weighs over 65 kg (144 lb). It could cause serious injuries or even death if it were to tip over and/or fall on someone.

Installing the mounting posts

Mounting posts are used to fix the analytical unit to a vertical surface (transformer wall or adjacent wall). When installing the mounting posts, keep in mind that, once installed, the analytical unit touchscreen should be at approximately eye level.

Installing the mounting posts is the first step in installing the CoreSense M10 system.

To do so:

1. Position the provided installation template flat on the wall where the analytical unit will be installed.
2. Mark the location of the eight 10 mm (0.375 in) screw holes on the wall. It is recommended that one team member holds the installation template while another proceeds with the markings.
3 With a drill powerful enough, and appropriate drill bits, drill the eight screw holes.
4 Screw in the four mounting posts as shown below (screws, washers and lock washers **not** provided).
Installing the shock absorbers

Once the mounting posts are properly installed, you need to install the shock absorbers that are designed to counter system and environmental vibrations.

To do so:

1. Position a shock absorber on a mounting post.
2. Position the nuts and washers.
3. Tighten the provided M8 screw by hand, and then up to the required torque (21.1 N·m [15.6 lb.ft]).

Figure 17 Screwing in the shock absorbers

4. Repeat steps 1 to 3 for the three remaining shock absorbers.
Placing the unit on the shock absorbers

WARNING
The CoreSense M10 analytical unit weighs over 65 kg (144 lb). It could cause serious injuries or even death if it were to tip over and/or fall on someone.

Once the mounting posts and shock absorbers are properly installed, you need to position the analytical unit.

ABB recommends using a sling and a crane to lift the unit up on to the mounting posts. To this end, slots are designed in the unit mounting frame to help lift up the unit.

Figure 18 Lifting slots on back of unit

However, the following procedure explains how an installation team should install the unit **by hand**. It is important to follow the general lifting and handling precautions given on page 7.

To place the unit on the mounting posts:

1. With one team member on each side of the analytical unit, lift the unit upright.
2. With proper lifting technique, lift up the analytical unit and lower it on the four shock absorbers. Make sure that the top holes on the shock absorbers are properly aligned with the bottom holes in the mounting frame (see Figure 19).
3 Insert the screw through the mounting frame and in the shock absorbers. Shock absorbers minimize the effects of vibrations, shocks, and bumps on the analytical unit, and provide a certain amount of protection against seismic activity (Class 1 of IEC 60255, part 21).

NOTICE
It is **critical** that the two cups maintaining the internal spring aligned do not come in contact with each other, either radially or axially, as this would cancel the protective effects of the shock absorber.

4 Tighten the M8 screw by hand, and then up to the required torque (21.1 N·m [15.6 lb.ft]).

5 Repeat steps 3 and 4 for the three remaining shock absorbers.
Earthing the analytical unit

Safety

ONLY qualified personnel may perform the electrical installation of the monitoring system.

In accordance with international safety standards, the monitoring system uses a three-wire power cord or line typically connected to an electrical panel that provides grounding for the monitor chassis.

- Ensure that the equipment, and any device or power cord connected to the analytical unit, is properly grounded.
- Make sure that the analytical unit earth is at the same potential as the transformer earth.
- **ONLY** use power cords equipped with a protective earthing terminal.
- Protective earthing connections (grounding) must be active at all times.

DANGER

The absence of grounding can lead to a potential shock hazard that could result in serious personnel injury.

If an interruption of the protective earthing is suspected, cut the power to the analytical unit at the plant distribution panel and have the electrical circuit tested.

To earth the analytical unit cabinet:

1. Attach one end of the earthing wire to an earthing rod in the ground in the vicinity of the transformer (for grounding wire gauge, see Table 2 on page 23).
2. Attach the other end of the earthing wire to the cabinet earthing lug located outside the cabinet, on the left hand side (see Figure 20 on page 33).
Figure 20 Cabinet earthing lug

Cabinet earthing lug with earthing wire

To earthing rod

Earthing lug
CHAPTER 5

Installing the sensor head

Once your installation plan is complete and you have gathered all the necessary tools, you can proceed with installation of the CoreSense™ M10 multi-gas monitoring system.

Precautions

WARNING

Do not grab the sensor head by the mounting threads. Thread edges are sharp and pose a risk of personal injury.

WARNING

Do not handle the sensor head by the attached conduit. This could break the interface between the conduit and the fitting, possibly losing the IP rating and allowing for substance (water) ingress.

NOTICE

Do not expose sensor head innards to rain or snow.

The CoreSense M10 sensor head is delivered with the thermal pump turned OFF. When installation is complete and the sensor head is in contact with oil, make sure to enable the thermal pump (see "Activating the thermal pump" on page 69).

NOTICE

The thermal pump is designed to operate while immersed in transformer oil. It will fail within minutes if operated in air.
Connecting the sensor head

The sensor is designed to be installed on a 1.5 NPT transformer valve.

1. Remove the black rubber cap covering the sensor head male fitting. Make sure that both the sensor head male fitting and the transformer valve female fitting are clean.

 NOTICE

 Do not expose the sensor head innards to rain or snow.

2. Wrap the sensor head fitting thread with Teflon (PTFE) tape.

3. Loosen the eight rotating flange screws with the 5 mm (0.2 in) hex key so that the flange can rotate freely.
4 Connect the sensor head to the transformer valve.

An optional adapter can be used if the valve fitting is not NPT 1.5 (e.g., most North American valves are NPT 2).

5 Tighten the connection with a wrench (50.8 mm [2-in] or adjustable wrench).

6 Once the head-valve connection is fully tightened, make sure that the sensor head is positioned **horizontally** and that its sampling access panel is pointing upwards. Rotate the head as necessary.

NOTICE

Failure to position the CoreSense M10 sensor head horizontally, with the access panel pointing upwards, will cause the thermal pump to malfunction and may result in erroneous readings.
7. Tighten all rotating flange screws by hand.
8. With the 5 mm hex key, tighten the rotating flange screws to 8.1 N·m (6.0 lbf.ft) according to the tightening pattern below.

![Tightening Pattern](image)

NOTICE
The rotating flange screws must be tightened to 8.1 N·m (6.0 lbf.ft) to prevent oil leaking from the rotating flange.
Do not apply excessive torque.

Purging the sensor head

Once the sensor head has been properly installed, you need to purge the air out of the unit. This is performed through the sampling adapter. As indicated by the label on top of the adapter cover (see image below), the sensor head sampling adapter port is delivered in an open state.

ABB

![ABB SAFETY WARNING](image)

Sensor's bleeding valve is OPEN upon delivery

Air bubbles in the tank of an energized transformer pose a serious safety risk. In order to prevent air bubbles entering the transformer during installation:

1. Ensure the bleeding port is open BEFORE opening the transformer valve. Close the bleeding port only after all air in the transformer valve has been properly purged.

2. Ensure the transformer has a positive gauge pressure before opening the transformer valve. Never open the valve of a transformer with negative gauge pressure while the transformer is energized.
To purge the sensor head:

1. Remove the external sampling port cover located on top of the sensor with the 4 mm hex key.

2. Connect the provided bleeding hose (ID 3.18 mm [0.125 in]) to the sampling adapter.

3. Direct the other end of the bleeding hose in an oil container to collect all the purged oil.

4. Slowly open the transformer valve and wait until oil comes out of the sensor (about 20 seconds; this ensures that all air is purged).

NOTICE

Make sure that the transformer is in positive pressure before opening the transformer valve.

Make **ABSOLUTELY SURE** that there are no bubbles left in the bleeding hose.
5 Tighten the bleed screw to a maximum torque of 2.26 N·m (20 lbf.in).

[Image of tightening screw]

NOTICE

Do not apply excessive torque.

6 Wipe excess oil with a clean cloth.

7 Re-install the external sampling port cover and secure it with the 4 mm hex key.
Earthing the sensor head

To earth the sensor head:

1. Attach one end of the earthing wire to an earthing rod in the ground in the vicinity of the sensor head (for grounding wire gauge, see Table 2 on page 23).
2. Attach the other end of the earthing wire to the sensor head earthing lug located underneath the head.

Figure 21 Overview of the CoreSense M10 sensor head (back)
CHAPTER 6

Connecting the CoreSense M10

Once the CoreSense™ M10 analytical unit and sensor head are installed, you have to connect the two via the conduit attached to the sensor head. You also need to supply power to the system.

WARNING

Failing to comply with any of the instructions, precautions or warnings contained herein is in direct violation of the standards of design, manufacture, and intended use of the instrument.

ABB assumes no liability for user failure to comply with any of these safety requirements, which may result in personal injuries and/or instrument damages.

Safety

ONLY qualified personnel may perform the electrical installation of the monitoring system.

In accordance with international safety standards, the monitoring system requires a three-wire power cord or line typically connected to an electrical panel that provides grounding for the analytical unit and sensor head.

- CoreSense M10 is an overvoltage category II instrument.
- An external circuit breaker with a 8 A rating or less must be installed on the AC source and labeled in compliance with your country’s national electrical code. Also, if required by this code, a circuit breaker or switch in the building installation, marked as the disconnect switch, shall be in close proximity to the equipment and within easy reach of the operator.
- Operators must strictly observe all applicable national regulations with regards to installation, function tests, repairs, and maintenance of electrical devices.
- Before opening the analytical unit cabinet, disconnect power at the distribution panel circuit breaker.
- Ensure that the equipment and any device or power cord connected to it is properly grounded.
- Make sure that system and transformer grounds are at the same potential.
- **ONLY** use power cords equipped with a protective grounding terminal.
- Protective grounding connections must be active at all times.

DANGER

The absence of grounding can lead to a potential shock hazard that could result in serious personnel injury.

If an interruption of the protective grounding is suspected, cut the power to the system at the plant distribution panel and have the electrical circuit tested.
• In accordance with IEC61010-1 edition 3.0, to prevent contamination of the electronics by outside elements, the analytical unit cabinet cover shall be opened only under controlled environmental conditions defined as:
 – **Temperature:** between 5 °C (41 °F) and 40 °C (104 °F)
 – **Maximum relative humidity:** 80% for temperatures up to 31 °C (87 °F), decreasing linearly to 50% relative humidity at 40 °C (104 °F).
• Use only fuse(s) specified as appropriate for this equipment (see “Technical specifications” on page 83).

Routing the sensor head conduit to the analytical unit

The sensor head and analytical unit are linked by a single conduit permanently attached to the sensor head. That conduit contains all gas, communication, and power lines necessary for interaction between sensor head and analytical unit during system operation.

To connect the attached conduit to the analytical unit, you first need to access the unit connection ports.

To do so:

1. Open the analytical unit door:
 a. Loosen the screws that hold the five latches over the door.
 b. Slide the latches away from the door.
 c. Open the door.

 WARNING

 Before opening the door, make sure that nothing is sitting on top of the cabinet, as this could fall and cause personnel injuries.

2. Unscrew and remove the cable cover (see Figure 22 on page 44.)

 Figure 22 Removing the internal cable cover
3 Remove the cover from the analytical unit bulkhead fitting.
4 On the attached conduit, remove the cover from over the internal cables.
5 Remove the bulkhead fitting nut and tooth washer from the small plastic bag tie-wrapped near the conduit end.
6 From the attached conduit, route the five internal cables and conduit connector end through the bulkhead fitting.

Figure 23 Cables coming from the attached conduit (once inside the cabinet)

7 Slide the tooth washer over the routed cables so that it comes in contact with the bulkhead.
8 Slide the bulkhead fitting nut over the routed cables and onto the tooth washer.
9 Screw the nut to the sensor head conduit connector head coming through to the analytical unit bulkhead fitting.

NOTICE

To ensure that the analytical unit retains its environmental protection rating, make sure that the cable connector is pressed hard against the fitting gasket.
Connecting the gas lines

Gas lines route gases from the sensor head to the analytical unit. They are made from semi-rigid stainless steel tubing.

NOTICE
You can connect any of the gas lines to any of the two gas connectors inside the unit.

To connect the gas lines:

1. Stretch out the gas line tubing slightly to bring its tip to a gas connector inside the cabinet.

 ![Gas connectors inside the cabinet](Figure 24)

2. Push the tip slowly but firmly into the connector opening until you feel it make contact at the bottom of the opening.

3. Tighten the screw by hand as much as possible.

4. Once tightness has been achieved, apply a final ¼ turn (45° to 90°) with a small torque wrench.

 NOTICE
 Use a second wrench to prevent movement on the fitting body.
 Do not apply excessive torque as this might permanently damage the connection.

 The conduit screw must be properly tightened to prevent gas leaking from the connection point.

5. Repeat steps 1 to 4 for the second gas line.

6. Route the three remaining cables (sensor head AC, sensor head DC, Modbus) immediately to the left of the bulkhead fitting.

7. Put back the cable cover.
Connecting the internal communication cable

The sensor head and analytical unit communicate via a proprietary communication cable.

To connect the communication cable:

1. Of the cables coming from the sensor head conduit, identify the one with the orange and blue internal wires.

 ![Communication cable configuration](image)

 Figure 25 Communication cable configuration

 - TX+
 - TX–
 - RX+
 - RX–
 - GND

2. Connect each of the five wires in the appropriate socket on the HU485 connector (see below).

 ![Analytical unit connection board](image)

 Figure 26 Analytical unit connection board

 - HU485 connector
 - Sensor head DC power connector

NOTICE

For more information on the various communication cables used, see Table 4 on page 24 and “Connector definitions” on page 89.

For more information on configuring the communication protocols, refer to the CoreSense M10 Monitoring System User Guide.
Connecting the sensor head DC power cable

The sensor head DC power cable sends low voltage power to the sensor head for almost every electrical task except the heating element.

1. Of the cables coming from the sensor head conduit, identify the one with the red and black internal wires.

 - Figure 27 Low power cable configuration

 ![Low power cable configuration diagram]

 +15 VDC GND +15 VDC GND GND

2. Connect each of the five wires in the appropriate socket on the sensor head DC power connector (HU DC Power, Figure 26).

Connecting the sensor head AC power cable

To connect the sensor head AC power cable, you first need to access the power entry terminal block. Once the terminal block is accessible, you need to route the power cable as explained in the following pages.

Removing the terminal block cover

To make the terminal block accessible, you first need to remove its cover.

WARNING

Before opening the analytical unit door, make sure that nothing is sitting on top of the unit, as this could fall and cause personnel injuries.
1. Open the analytical unit door:
 a. Loosen the screws that hold the five latches over the door.
 b. Slide the latches away from the door.
 c. Open the door.

2. Loosen the two screws holding the terminal block cover in place (see Figure 28).

3. Slide out the terminal block cover, exposing the terminals.
Connecting the cable

NOTICE
All terminals are properly identified in the instrument itself to simplify installation.

1. Of the cables coming from the sensor head conduit, identify the one with green, blue and brown internal wires. This is the AC power cable.

2. Route the wire under the cable guides found at the bottom and on the left-hand side of the analytical unit cabinet (see Figure 31 on page 50).

3. Remove the protection rail top cover (see Figure 31) and continue routing the wire through the upper protection rail all the way to the appropriate terminal, as illustrated in Figure 32.

NOTICE
Once the installation is complete, it is strongly suggested to use tie wraps (in white on Figure 31) to secure the cables to the cable guides.
4 Connect each wire in the appropriate terminal.

Figure 32 Routing the sensor head AC power cable to the terminal block

Figure 33 Connecting the sensor head AC wires
Connecting the mains AC power cable

Once all internal connections have been completed, you need to bring power to the analytical unit from the power distribution panel.

NOTICE

It is the user’s responsibility to provide a power cord that fits local electrical requirements.

Safety

ONLY qualified personnel may perform the electrical installation of the monitoring system.

In accordance with international safety standards, the monitoring system requires a three-wire power cord or line typically connected to an electrical panel that provides grounding for the analytical unit and sensor head.

- Operators must strictly observe all applicable national regulations with regards to installation, function tests, repairs, and maintenance of electrical devices.
- Ensure that the equipment and any device or power cord connected to it is properly grounded.
- Make sure that the system earth is at the same potential as the transformer earth.
- **ONLY** use power cords equipped with a protective grounding terminal.
- Protective grounding connections must be active at all times.

DANGER

The absence of grounding can lead to a potential shock hazard that could result in serious personnel injury.

If an interruption of the protective grounding is suspected, cut the power to the system at the plant distribution panel and have the electrical circuit tested.

- In accordance with IEC61010-1 edition 3.0, to prevent contamination of the electronics by outside elements, the analytical unit cabinet cover shall be opened only under controlled environmental conditions defined as:
 - **Temperature**: between 5 °C (41 °F) and 40 °C (104 °F)
 - **Maximum relative humidity**: 80% for temperatures up to 31 °C (87 °F), decreasing linearly to 50% relative humidity at 40 °C (104 °F).
- Do not expose the analytical unit innards to rain or snow.
- An external circuit breaker with a 8 A rating or less must be installed on the AC source and labeled in compliance with your country’s national electrical code. Also, if required by this code, a circuit breaker or switch in the building installation, marked as the disconnect switch, shall be in close proximity to the equipment and within easy reach of the operator.

WARNING—ENERGIZED TRANSFORMER

In case of an installation on energized transformers, plan this power connection prior to all other work (connection location, needs for additional fuses, etc.)
Connecting the cable

NOTICE
The mains power cable must be able to withstand a minimal top operating temperature of 90 °C.

Connecting the cable

NOTICE
All terminals are properly identified in the instrument itself to simplify installation.

To connect the cable:

1. Insert the cable through the power entry port and route it under the cable guide found on the left-hand side of the analytical unit cabinet (see Figure 35 on page 53).
NOTICE

Once the installation is complete, it is strongly suggested to use tie wraps (in white on Figure 35) to secure the cables to the cable guides.

Remove the protection rail top cover and continue routing the wire through the upper protection rail all the way to the appropriate terminal, as illustrated in Figure 35.

Figure 36 Routing the mains power cable to the terminal block (sensor head AC cable not shown, for clarity)

![Protection rail top cover](image)

2. Connect each wire in the appropriate terminal, as shown below.

Figure 37 Connecting the mains power AC cable (sensor head AC cable not shown, for clarity)

![Connecting the mains power AC cable](image)
3 Once both AC power cables are properly connected, put back the terminal block cover.

Figure 38 Putting back the terminal block cover

4 Tighten the screws that hold the terminal block cover.

Figure 39 Tightening the two screws holding the terminal block cover
Powering up the CoreSense M10

NOTICE
NEVER try and start the system if the ambient temperature is below –40 °C (–40 °F).

Once all connections are properly set, you can power up the monitoring system. To do so, simply close each breaker switch, as shown in Figure 40.

Figure 40 Pulling the breaker switches to power up the monitoring system

Establishing SCADA connections

ABB recommends using a **Cat5** Ethernet cable.

NOTICE
Do not use the optical Ethernet port when using the copper-based SCADA Ethernet port.
Establishing RS-485 connections

The RS-485 can be used in full- or half-duplex mode (see Figure 41). All signals on RS-485 (J18) are isolated.

The RS-485 interface is intended to be used in point-to-point mode. There is no need to add a 120 Ω termination on the receiver (Rx); the resistor is present on board. The transmitter (Tx) must be terminated at the other end.

Other RS-485 topologies are not supported.

NOTICE

Use only shielded cable for wiring the RS-485 interface.

Figure 41 RS-485 wiring details (full duplex - left, half duplex - right)

NOTICE

For more information on the various communication cables used, see Table 4 on page 24 and “Connector definitions” on page 89.

For more information on configuring the communication protocols, refer to the CoreSense M10 Monitoring System User Guide.
Establishing analog 4–20 mA connections

Outputs

WARNING

Use only shielded cables for wiring the 4–20 mA outputs interface.

Figure 42 Wiring 4–20 mA analog outputs

NOTICE

For more information on the various communication cables used, see Table 4 on page 24 and “Connector definitions” on page 89.

For more information on configuring the communication protocols, refer to the CoreSense M10 Monitoring System User Guide.
Inputs
The 4–20 mA input range can be configured using the web interface.

WARNING
Shielded cable must be used for connecting to the 4–20 mA outputs.

Figure 43 Self-powered analog input wiring

Figure 44 Loop-powered analog input wiring (two-wire - left, three-wire - right)

NOTICE
For more information on the various communication cables used, see Table 4 on page 24 and “Connector definitions” on page 89.

For more information on configuring the communication protocols, refer to the CoreSense M10 Monitoring System User Guide.
Installing relays

This is the diagram to install the communication relays between external sensors and the CoreSense M10. These relays are underneath the terminal box (see Figure 3 on page 13). For more information, see “Power and relays” on page 91.

Figure 45 Relays

Table 5 Relay behavior

<table>
<thead>
<tr>
<th>Relay 1 (Maintenance)</th>
<th>1 if the instrument is functional (blue LED off) 0 if there is a problem with the CoreSense M10 (blue LED lit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 2 (System)</td>
<td>1 if no gas alarm is active (green LED lit) 0 if an alarm is active (warning or alarm). (green LED off)</td>
</tr>
<tr>
<td>Relay 3 (Warning)</td>
<td>1 if one of the elements analyzed by CoreSense M10 is in warning (yellow LED lit) 0 if no warning on analyses (yellow LED off)</td>
</tr>
<tr>
<td>Relay 4 (Alarm)</td>
<td>1 if one of the elements analyzed by CoreSense M10 is in alarm (red LED lit) 0 if no alarm on analyses (red LED off)</td>
</tr>
</tbody>
</table>

Examples of combined relay behavior

1-1-0-0	System OK
0-0-0-0	Internal problems, and gas concentration predictions not possible
1-0-1-0	If a gas concentration is above a threshold but below an alarm
1-0-0-1	In case of excessive gas concentrations
Establishing optical Ethernet connections

Use 62.5/125 μm or 50/125 μm multimode optical fibers to connect to the 100Base-FX optical Ethernet connector. Before connecting the optical transceiver, see “Communication” on page 86 for more information on the optical characteristics. Make sure optical power levels and wavelength are within the specified range.

NOTICE

Do not use the copper-based SCADA Ethernet port when using the optical Ethernet port.

For more information on the various communication cables used, see Table 4 on page 24 and “Connector definitions” on page 89.

For more information on configuring the communication protocols, refer to the CoreSense M10 Monitoring System User Guide.

Closing the analytical unit door

The CoreSense M10 analytical unit complies with the IP66 and NEMA 4X standards.

To ensure that the unit remains compliant when you close the unit door, you must tighten the unit latch screws to **9 N·m (80 lbf.in)** according to the sequence indicated below:

Figure 46 CoreSense M10 door latch tightening sequence

1
2
3
4
5
6
7
8
9
10
Page intentionally left blank
CHAPTER 7

Configuring CoreSense M10

Once the CoreSense™ M10 is properly installed and powered, you must configure basic system parameters at system startup.

NOTICE—CYBERSECURITY

This product is designed to be connected to, and communicate information and data via a network interface. It is the user’s sole responsibility to provide, and continuously ensure, a secure connection between the product and the user’s network or any other network (as the case may be).

Users shall establish and maintain any and all appropriate measures (such as, but not limited to, the installation of firewalls, the application of authentication measures, the encryption of data, the installation of anti-virus programs, etc.) to protect the product, the network, its system and the interface against any kind of security breaches, unauthorized accesses, interferences, intrusions, leakages and/or theft of data or information.

ABB and its affiliates are not liable for damages and/or losses related to such security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data or information.

ABB strives to maintain cybersecurity for its products and services. By visiting the web page, you will find notifications about newly found software vulnerabilities and options to download the latest software. It is recommended that you visit this web page regularly:

http://new.abb.com/about/technology/cyber-security

Information about your product is also available on the product page:

http://new.abb.com/products/transformers/service/advanced-services/coresense
Establishing communications

To establish communication, you need to connect to the system.

To do so:

1. With a straight RJ45 Ethernet cable, connect your laptop to the SCADA communication port on the analytical unit (see “Analytical unit communication ports” on page 14).
2. Open your web browser and point it to the default IP address http://10.127.127.127
 This address points to the CoreSense M10 dashboard.

Figure 47 CoreSense M10 dashboard
Modifying default passwords

With the CoreSense™ M10 system, parameters and functions are made available depending on the password used to access the system (rather than user names).

For cybersecurity reasons, it is absolutely mandatory to change the default passwords. Not doing so could expose your entire network to cyberattacks.

The default operator and administrator passwords are:

- Operator: Ack
- Administrator: Admin

To modify passwords:

1. From the CoreSense M10 dashboard (see Figure 47), click **Settings**. The Settings page appears.

 - **Figure 48** CoreSense M10 Settings page

2. Click **Administration settings**.
 The first time that you try to access this page, you will be asked to enter a password. Enter the administrator password shown above. The Administration settings page appears.

3. In the **General settings** section, enter passwords for both operators and administrators.

 - **NOTICE**
 Passwords accept letters (including capitals) and numbers, **but not special characters**.
 Passwords cannot be more than 25 characters long.
4. At the bottom of the page (depending on the size of your screen, you might have to scroll down), click **Apply** to save the new passwords that meet the security criteria set by your company, and confirm these.
Setting the date and time

To set the system date and time:

1. From the CoreSense M10 dashboard (see Figure 47), click **Settings**. The Settings page appears.

 ![CoreSense M10 Settings page](image)

 Figure 51 CoreSense M10 Settings page

2. Click **Administration settings** and enter your password (for more information on setting passwords, see page 65).

3. In the **Analyzer settings** section of the Settings page, click the small calendar icon to the right of the **Analyzer date/time** field. A calendar appears where you can select a date and enter the time.

 ![Accessing the analyzer calendar](image)

 Figure 52 Accessing the analyzer calendar
Figure 53 Setting the system date and time

4. Browse to select the appropriate date.
5. From the drop-down menus at the bottom of the calendar, select the appropriate time.
6. At the bottom of the page (depending on the size of your screen, you might have to scroll down), click **Apply** to save the selected date and time.
Activating the thermal pump

NOTICE
The thermal pump is designed to operate while immersed in transformer oil. It will fail *within minutes* if operated in air.

For configuration purposes, the sensor head can be powered when it does not contain any oil. However, **the thermal pump must be turned OFF**.

The CoreSense M10 sensor head is delivered with the thermal pump turned OFF. When installation is complete and the sensor head is in contact with oil, make sure to activate the thermal pump.

To activate the thermal pump:

1. From the CoreSense M10 dashboard (see Figure 47), click **Settings**. The Settings page appears (see page 67).
2. Click **Administration settings** and enter your password (for more information on setting passwords, see Figure 51 on page 67).
3. Scroll down to the **Application settings** section and check the **Enable thermal pump** box.
4. At the bottom of the page, click **Apply** to confirm activation of the thermal pump.

Figure 54 Enabling the thermal pump

![Figure 54 Enabling the thermal pump](image)
Page intentionally left blank
CHAPTER 8

Maintenance and troubleshooting

The CoreSense™ M10 monitoring system does not require regular maintenance and does not contain any field-serviceable parts. Fuses may need replacement if they have been submitted to an unusual voltage event.

- In accordance with IEC61010-1 edition 3.0, to prevent contamination of the electronics by outside elements, the analytical unit cabinet cover shall be opened only under controlled environmental conditions defined as:
 - **Temperature:** between 5 °C (41 °F) and 40 °C (104 °F)
 - **Maximum relative humidity:** 80% for temperatures up to 31 °C (87 °F), decreasing linearly to 50% relative humidity at 40 °C (104 °F).
- Do not expose the cabinet innards to unstable weather events (rain, snow, hail, etc.)
- Use only fuse(s) specified as appropriate for this equipment (see “Technical specifications” on page 83).

Closing the analytical unit door

The CoreSense M10 analytical unit complies with the IP66 and NEMA 4X standards.

Before you close the door, it is important to verify that the screws holding the cable cover on the right-hand side, and the screws holding the terminal block cover are tightened so as not to cause vibrations when the unit is operational.

To ensure that the unit remains standards-compliant when you close the unit door, you must tighten the unit latch screws to **9 N·m (80 lbf.in)** by following the sequence indicated on page 61.

Cleaning the system

In accordance with your company’s procedure:

- Perform a visual inspection of the sensor head and analytical unit, checking for oil leaks, and water, snow or sand accumulations. Wipe off any such accumulation with a clean cloth.
- Make sure that all enclosures and the connecting cable are properly secured.

Troubleshooting

Most problems that could happen within the CoreSense M10 monitoring system will be recorded as events in the Events log. You will be informed of these problems either with alarms or by looking at the LEDs on the system cabinet or sensor head. The meaning of the various LEDs is explained below.
Understanding cabinet LEDs

On the analytical unit cabinet, only one LED at a time can light up, as such:

<table>
<thead>
<tr>
<th>Solid</th>
<th>Blinking</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED</td>
<td>An alarm threshold has been reached by any of the measured gases. For more information on gas alarm thresholds, refer to the CoreSense M10 User Guide.</td>
</tr>
<tr>
<td>ALARM</td>
<td></td>
</tr>
<tr>
<td>YELLOW</td>
<td>A warning threshold has been reached by any of the measured gases. For more information on gas warning thresholds, refer to the CoreSense M10 User Guide.</td>
</tr>
<tr>
<td>WARNING</td>
<td></td>
</tr>
<tr>
<td>GREEN</td>
<td>Normal operating conditions.</td>
</tr>
<tr>
<td>NORMAL</td>
<td></td>
</tr>
<tr>
<td>BLUE</td>
<td>User attention is required as the sensor is either operating outside its nominal specifications or experimenting a fault condition. Consult the event log and contact ABB.</td>
</tr>
<tr>
<td>MAINTENANCE</td>
<td>NOTE: The blinking blue LED can be lit at the same time as other LEDs since the unresponsive source/pump problem can happen independently of other problems.</td>
</tr>
</tbody>
</table>
Understanding sensor head LEDs

Figure 56 Sensor head status LEDs

<table>
<thead>
<tr>
<th>System</th>
<th>Gas</th>
<th>Moisture</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREEN</td>
<td>All gas levels and rate-of-change are below user-configured WARNING thresholds.</td>
<td>Both the moisture level AND the moisture 24-hour rate-of-change are below user-configured WARNING thresholds.</td>
</tr>
<tr>
<td></td>
<td>The sensor is powered up and operating normally.</td>
<td></td>
</tr>
<tr>
<td>BLUE</td>
<td>Gas level of at least one gas OR 24-hour rate-of-change of at least one gas is above user-configured WARNING thresholds.</td>
<td>Moisture levels OR 24-hour rate-of-change are above user-configured WARNING thresholds.</td>
</tr>
<tr>
<td></td>
<td>Solid: User attention is required as the sensor is either operating outside its nominal specifications or experimenting a fault condition. Consult the event log and contact ABB.</td>
<td>For more information on gas warning thresholds, refer to the CoreSense M10 User Guide.</td>
</tr>
<tr>
<td></td>
<td>Blinking: User attention is required as the last working pump or source is being used. An event is created accordingly and a service call should be made.</td>
<td></td>
</tr>
<tr>
<td>YELLOW</td>
<td>Gas level of at least one gas OR 24-hour rate-of-change of at least one gas is above user-configured WARNING thresholds.</td>
<td>Moisture levels OR 24-hour rate-of-change are above user-configured WARNING thresholds.</td>
</tr>
<tr>
<td>WARNING</td>
<td>For more information on gas warning thresholds, refer to the CoreSense M10 User Guide.</td>
<td>For more information on gas warning thresholds, refer to the CoreSense M10 User Guide.</td>
</tr>
<tr>
<td></td>
<td>This indicator light will remain on while the CoreSense M10 is booting up. If the sensor remains in warning mode for more than three minutes, the sensor requires user attention, or the thermal pump is disabled or is being operated outside its nominal specifications.</td>
<td></td>
</tr>
<tr>
<td>RED</td>
<td>Gas level of at least one gas OR 24-hour rate-of-change of at least one gas is above user-configured ALARM thresholds.</td>
<td>Moisture levels OR 24-hour rate-of-change are above user-configured ALARM thresholds.</td>
</tr>
<tr>
<td>ALARM</td>
<td>For more information on gas alarm thresholds, refer to the CoreSense M10 User Guide.</td>
<td>For more information on gas alarm thresholds, refer to the CoreSense M10 User Guide.</td>
</tr>
<tr>
<td></td>
<td>This indicates a sensor fault. Please consult event log and contact ABB.</td>
<td></td>
</tr>
</tbody>
</table>
Exporting the Events log

Should you need to call ABB’s after-sales service (contact information on the back cover of this manual), you will be asked to provide the event log file of your CoreSense M10. To provide this file, you need to export it from the instrument.

To do so:

1. From the CoreSense M10 dashboard screen, click **Events**. The Events page appears.

 ![Events page](image)

2. In the drop-down menu located just above the **DATE** column, select the date range of your export log.
 - **Last day (24 hours)**
 - **Last week (7 days)**
 - **Last month (30 days)**
 - **Last year (12 months)**
 - **All data**
 - **Custom range**

 If you select **Custom range**, the **From** and **To** drop-down menus become active to allow you to select a specific range of dates to include in the log.

 The event table is updated upon selection of a range (predefined or custom).

3. Click **Export**.

 At this point, you will be asked to specify what you want to do with the resulting .csv file. Regardless of the browser in use, you will have the option to save the .csv file. By default, the file name will be the date range for the event log that you are exporting. You can change it to your liking.

4. From the **Save** file dialog box that appears, select the location where you want to save of the events log file.

 This is the file that you will need to send to the ABB after-sales service.
Giving access to administrative settings on the SCADA port

If you enable access to the administrative settings on the SCADA port, all users logging into the system with an operator password will not have access to the administrative settings.

To enable this feature:

1. From the CoreSense M10 dashboard (see Figure 47 on page 64), click Settings. The Settings page appears (see Figure 51).
2. Click Administration settings and enter your password if necessary (for more information on passwords, see “Modifying default passwords” on page 65).
3. In the Miscellaneous section, check the Enable admin settings on SCADA port.

4. At the bottom of the page, click Apply to save the information that you just entered.

From now on, operators accessing the system with the operator password will not have access to administrative settings.
Installing firmware updates

At some point in the future, you might be asked by ABB service representatives to update your system firmware. This can be done with a web browser (remotely or locally) or a USB key (locally).

Before performing any firmware update, it is strongly recommended to export your system logs and history files (refer to the LWT300 User Guide for more information on these procedures).

Updating with a web browser

To update the firmware via a web browser:

1. Skip to step 2 if you are working remotely. Otherwise, open the CoreSense M10 cabinet and connect your laptop to an Ethernet communication port (SCADA or SERVICE) of the analytical unit with a straight RJ45 Ethernet cable.

2. Open your web browser and point it to the required IP address:
 - if connected to the SCADA port: the static IP address (http://10.127.127.127) or the address indicated on the local HMI;
 - if connected to the SERVICE port: http://10.126.126.126.
 This address points to the CoreSense M10 dashboard.

3. From the CoreSense M10 dashboard, click Settings. The Settings page appears.

4. Click Update firmware and enter your password (if necessary). The firmware update page appears.

5. Click Choose File.

6. In the Open window that appears, locate and select the firmware file (.zip) sent to you by the ABB service representative.

7. Click Open. You return to the firmware update page. The name of the file that you selected appears next to the Choose File button and the Update button is now active.

8. Click Update.
 The file is uploaded to your system and the firmware update takes place.

NOTICE
Do not exit the browser during the firmware update process.
Your system reboots once the firmware is updated.

9 After the system has been automatically rebooted, return to the web page and click About Coresense™ M10 to make sure that the application version is the one given to you by the ABB service representative.

Updating with a USB key

NOTICE

If the update process do not seem to work on your first try, try it again with a different brand of USB key or update remotely (see “Updating with a web browser” on page 76).

1 From your computer, extract the zip file sent to you by the ABB service representative at the root level of a USB key.

2 Open the CoreSense M10 cabinet.

3 Shutdown the instrument using the main power switch.

4 Insert the USB key on the USB port of the CoreSense M10 cabinet.
5 Turn on the instrument using the main power switch (see Figure 4). The update process will start automatically and take a few minutes. Messages will appear on the local screen during the update process. Also, the instrument may reboot two or three times depending on the required updates for your system. The update process is complete once a message appears indicating to remove the USB key and reboot.

6 When this message appears, remove the USB key.

7 Power off the system for a few seconds and power it on again.

You may be asked to calibrate the screen by touching the 4 crosses displayed on the screen.

The system firmware is considered complete after this last step. Wait until the Dashboard page is displayed for at least 4 minutes (after the reboot, the Dashboard page might be empty for the first 20 minutes).
Taking an oil sample

Occasionally, you might need to take an oil sample from the transformer to send to laboratories for analysis. Oils samples are gathered from the sensor head.

To do take an oil sample:

1. Remove the external sampling port cover located on top of the sensor with the 4 mm hex key.

2. Connect the provided bleeding hose (ID 3.18 mm [0.125 in]) to the sampling adapter.

3. Direct the other end of the bleeding hose in an oil container to collect the sample.
4 Loosen the bleed screw with the 4 mm hex key and wait until oil comes out of the sensor.

5 Once you have gathered enough sample oil, tighten the bleed screw to a maximum torque of 2.26 N·m (20 lbf.in).

NOTICE
Do not apply excessive torque.

6 Wipe excess oil with a clean cloth.
7 Re-install the external sampling port cover and secure it with the 4 mm hex key.
Technical specifications

The following pages indicate the CoreSense™ M10 technical specifications.

NOTICE

While the initial (cold start) accuracy of the sensor is likely to be within specifications, a settling period of approximately 12 hours is strongly recommended to allow electronic components to fully warm up and the internal temperature to stabilize.

Electrical specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage input</td>
<td>100 to 240 V AC, single phase, 50 to 60 Hz</td>
</tr>
<tr>
<td>Line voltage fluctuation</td>
<td>Not to exceed 10% of the nominal line voltage</td>
</tr>
<tr>
<td>Power consumption</td>
<td>600 VA</td>
</tr>
<tr>
<td>Maximum current</td>
<td>5.0 A</td>
</tr>
<tr>
<td>Fuse type</td>
<td></td>
</tr>
<tr>
<td>Sensor head</td>
<td>1 × 2.0 A/250 V (5 × 20 mm), slow-blow</td>
</tr>
<tr>
<td>Analytical unit</td>
<td>1 × 3.15 A/250 V (5 × 20 mm), slow-blow</td>
</tr>
</tbody>
</table>

Output circuits (alarm relays)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kind of output</td>
<td>1 c/o (SPDT)</td>
</tr>
<tr>
<td>Rated operational voltage U_2</td>
<td>250 V AC</td>
</tr>
<tr>
<td>(IEC/EN 60947-01)</td>
<td></td>
</tr>
<tr>
<td>Minimum switching voltage</td>
<td>5 V at 100 mA</td>
</tr>
<tr>
<td>Maximum switching voltage</td>
<td>400 V AC/250 V DC</td>
</tr>
<tr>
<td>Minimum switching current</td>
<td>10 mA at 10 V</td>
</tr>
<tr>
<td>Rated operational current I_{op}</td>
<td></td>
</tr>
<tr>
<td>(IEC/EN 60947-5-1)</td>
<td></td>
</tr>
<tr>
<td>AC12 (resistive)</td>
<td>6 A</td>
</tr>
<tr>
<td>AC15 (inductive)</td>
<td>1.5 A</td>
</tr>
<tr>
<td>AC15 (inductive)</td>
<td>3 A</td>
</tr>
<tr>
<td>DC12 (resistive)</td>
<td>6 A</td>
</tr>
<tr>
<td>DC13 (inductive)</td>
<td>1 A</td>
</tr>
<tr>
<td>DC13 (inductive)</td>
<td>0.22 A</td>
</tr>
<tr>
<td>DC13 (inductive)</td>
<td>0.11 A</td>
</tr>
<tr>
<td>Maximum making (inrush) current</td>
<td>15 A, 240 V AC</td>
</tr>
<tr>
<td>Minimum switching power</td>
<td>10 mA at 10 V (AgSnO₂)</td>
</tr>
</tbody>
</table>
Installation Guide

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum switching (breaking) power</td>
<td>1500 VA, 250 V AC</td>
</tr>
<tr>
<td>(AC1 [resistive])</td>
<td></td>
</tr>
<tr>
<td>Contact resistance</td>
<td>100 mΩ (at 1 A/6 V DC)</td>
</tr>
<tr>
<td>Rated insulation voltage</td>
<td>250 V AC</td>
</tr>
<tr>
<td>Rated impulse withstand voltage</td>
<td></td>
</tr>
<tr>
<td>between coil and contacts</td>
<td>4 kV 1 min</td>
</tr>
<tr>
<td>between open contacts</td>
<td>1 kV 1 min</td>
</tr>
</tbody>
</table>

Environmental specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating ambient temperature</td>
<td>–50 °C to 55 °C (–58 °F to 131 °F)</td>
</tr>
<tr>
<td>Operating ambient humidity</td>
<td>5% to 95% RH, non-condensing</td>
</tr>
<tr>
<td>Shipping/storage temperature</td>
<td>–40 °C to 70 °C (–40 °F to 158 °F)</td>
</tr>
<tr>
<td>Pollution degree</td>
<td>4 (outdoor use), 2 (internal)</td>
</tr>
<tr>
<td>Operating altitude</td>
<td>–610 m to 2000 m (~2001 ft to 6562 ft)</td>
</tr>
<tr>
<td>Oil temperature at valve</td>
<td>–20 °C to 120 °C (–4 °F to 248 °F)</td>
</tr>
<tr>
<td>Oil pressure at valve</td>
<td>0 to 1000 kPa/0 to 10 bar/0 to 145 psi</td>
</tr>
</tbody>
</table>

Mechanical specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor head</td>
<td></td>
</tr>
<tr>
<td>Dimensions (L × W ×H)</td>
<td>392 × 264 × 158 mm (15.43 × 10.39 × 6.22 in)</td>
</tr>
<tr>
<td>Weight</td>
<td>8.0 kg (17.6 lb)</td>
</tr>
<tr>
<td>Interface to transformer</td>
<td>1.5 NPT, male thread</td>
</tr>
<tr>
<td>Enclosure</td>
<td>IP67/NEMA 4X/C4</td>
</tr>
<tr>
<td>Analytical unit</td>
<td></td>
</tr>
<tr>
<td>Dimensions (with mount) (L × W ×H)</td>
<td>685 × 863 × 292 mm (26.76 × 33.97 × 11.49 in)</td>
</tr>
<tr>
<td>Weight</td>
<td>64.9 kg (143.3 lb)</td>
</tr>
<tr>
<td>Enclosure</td>
<td>IP66/NEMA 4X</td>
</tr>
</tbody>
</table>

Measurement specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen (H₂)</td>
<td></td>
</tr>
<tr>
<td>Range (ppm)</td>
<td>25 to 5,000</td>
</tr>
<tr>
<td>Accuracy (ppm)</td>
<td>±25 (or ±20%, whichever is higher)</td>
</tr>
<tr>
<td>Repeatability H₂ (ppm)</td>
<td>±15 (or ±10%, whichever is higher)</td>
</tr>
<tr>
<td>Response time</td>
<td>T90 typical 30 minutes, T90 max 60 minutes</td>
</tr>
<tr>
<td>Moisture (H₂O)</td>
<td></td>
</tr>
<tr>
<td>Measurement range (aw)</td>
<td>0 to 1 (0 to 100% RH)</td>
</tr>
<tr>
<td>Measurement accuracy (aw)</td>
<td>±0.02 (±2% RH)</td>
</tr>
<tr>
<td>Range (ppm)</td>
<td>0 to 60 @ 25 °C (77 °F) or 0 to 180 @ 55 °C (131 °F) ±3%</td>
</tr>
<tr>
<td>Temperature measurement accuracy</td>
<td>±0.2 °C (±0.4 °F)</td>
</tr>
<tr>
<td>Gas Type</td>
<td>Range (ppm)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>2 to 5,000</td>
</tr>
<tr>
<td>Carbon Dioxide (CO₂)</td>
<td>5 to 20,000</td>
</tr>
<tr>
<td>Methane (CH₄)</td>
<td>1 to 10,000</td>
</tr>
<tr>
<td>Acetylene (C₂H₂)</td>
<td>0.5 to 10,000</td>
</tr>
<tr>
<td>Ethylene (C₂H₄)</td>
<td>2 to 10,000</td>
</tr>
<tr>
<td>Ethane (C₂H₆)</td>
<td>2 to 10,000</td>
</tr>
<tr>
<td>Propene (C₃H₆)</td>
<td>20 to 10,000</td>
</tr>
<tr>
<td>Propane (C₃H₈)</td>
<td>10 to 10,000</td>
</tr>
</tbody>
</table>

Laser

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Solid state VCSEL</td>
</tr>
<tr>
<td>Wavelength</td>
<td>763 nm</td>
</tr>
<tr>
<td>Output</td>
<td>3 mW</td>
</tr>
<tr>
<td>Class</td>
<td>1</td>
</tr>
</tbody>
</table>
Communication

<table>
<thead>
<tr>
<th>Digital interfaces</th>
<th>RS-485 serial port</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 × RJ45 100Base-T Ethernet ports</td>
</tr>
<tr>
<td></td>
<td>100base-FX fiber optic Ethernet port</td>
</tr>
<tr>
<td></td>
<td>USB port</td>
</tr>
<tr>
<td>Protocols</td>
<td>Modbus RTU over RS-485 and Modbus TCP over Ethernet</td>
</tr>
<tr>
<td></td>
<td>DNP3 over RS-485 and Ethernet</td>
</tr>
<tr>
<td></td>
<td>IEC 61850 over Ethernet</td>
</tr>
<tr>
<td>Analog interfaces</td>
<td>4 dry-contact relays for alarms</td>
</tr>
<tr>
<td></td>
<td>8 analog 4–20 mA outputs for publishing values</td>
</tr>
<tr>
<td></td>
<td>4 analog 4–20 mA inputs for reading external sensors</td>
</tr>
</tbody>
</table>
APPENDIX A

Physical installation checklist

- The system date is set properly using the CoreSense™ M10 web interface.
- The thermal pump is enabled (see “Activating the thermal pump” on page 69). While the thermal pump is disabled, the SYSTEM LED is yellow.
- Visual inspection of the installation (oil leaks).
- Cable glands are tight and secure.
- The sensor head and analytical unit are properly grounded.
- Teflon (PTFE) tape was applied on the 1.5 NPT fitting, as per “Installing the sensor head” on page 35?
- The proper torque was applied to secure the eight bolts on the sensor head rotating flange, as described in “Installing the sensor head” on page 35.
- The two bolts for the sensor head external sampling cover are secure.
- The five retaining screws of the CoreSense enclosure are properly secured.
- The SYSTEM, GAS, and MOISTURE LEDs are green at the back of the sensor head.
- The green LED is lit on the analysis unit.
- Dispose of any collected oil according to company regulations and local laws.
Page intentionally left blank
APPENDIX B

Connector definitions

Inputs and outputs

NOTICE

You must use copper wires only. Using other types of conductors could damage the instrument AND void the warranty.

Figure 65 Analytical unit communication ports

<table>
<thead>
<tr>
<th>Connector</th>
<th>Connection</th>
<th>Type</th>
<th>Wire</th>
<th>Max. length</th>
<th>Screwdriver</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OPTICAL</td>
<td>Optical Ethernet</td>
<td>ST-ST full duplex</td>
<td>62.5/125 multi-mode</td>
<td>1220 m (4003 ft)</td>
</tr>
<tr>
<td>2</td>
<td>SERVICE</td>
<td>Ethernet</td>
<td>Category 5</td>
<td>Straight</td>
<td>3 m (10 ft)</td>
</tr>
<tr>
<td>3</td>
<td>SCADA</td>
<td>Ethernet</td>
<td>Category 5</td>
<td>Straight</td>
<td>100 m (328 ft)</td>
</tr>
<tr>
<td>4</td>
<td>USB</td>
<td>USB 2.0</td>
<td>A</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>5</td>
<td>CASE</td>
<td>1. CASE</td>
<td>Shield</td>
<td>Stranded AWG #24 to AWG #16 WITH FERRULE</td>
<td>n/a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connector</th>
<th>Connection</th>
<th>Type</th>
<th>Wire</th>
<th>Max. length</th>
<th>Screwdriver</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS485 (SCADA)</td>
<td></td>
<td>1. TX+</td>
<td>RS-485</td>
<td>1220 m (4003 ft)</td>
<td>Flat Ø 3.5 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. TX–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. RX–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. RX+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. RET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HU485</td>
<td></td>
<td>1. TX+</td>
<td>RS-485</td>
<td>10 m (33 ft)</td>
<td>Flat Ø 2.5 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. TX–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. RET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. RX–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. RX+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HU DC</td>
<td></td>
<td>1. +15V</td>
<td>+15 V power supply</td>
<td>10 m (33 ft)</td>
<td>Flat Ø 3.5 mm</td>
</tr>
<tr>
<td>POWER</td>
<td></td>
<td>2. +15V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. +15V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. RET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. RET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. RET</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4–20mA</td>
<td>A08–, OUT8–</td>
<td>4–20 mA 24 V max.</td>
<td>Stranded AWG #24 to AWG #16 WITH FERRULE</td>
<td>n/a</td>
<td>Flat Ø 3.5 mm</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>A08+, OUT8+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A07–, OUT7–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A07+, OUT7+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A06–, OUT6–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A06+, OUT6+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A05–, OUT5–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A05+, OUT5+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4–20mA</td>
<td>A04–, OUT4–</td>
<td>4–20 mA 24 V max.</td>
<td>Stranded AWG #24 to AWG #16 WITH FERRULE</td>
<td>n/a</td>
<td>Flat Ø 3.5 mm</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>A04+, OUT4+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A03–, OUT3–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A03+, OUT3+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A02–, OUT2–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A02+, OUT2+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A01–, OUT1–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A01+, OUT1+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4–20mA</td>
<td>1. IN4–</td>
<td>4–20 mA 24 V max.</td>
<td>Stranded AWG #24 to AWG #16 WITH FERRULE</td>
<td>n/a</td>
<td>Flat Ø 3.5 mm</td>
</tr>
<tr>
<td>INPUT</td>
<td>2. IN4+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. +24V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. IN3–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. IN3+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. +24V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. IN2+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. IN2–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. +24V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. IN1–</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. IN1+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12. +24V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Power and relays

Figure 66 Power and relay connections (front view)

<table>
<thead>
<tr>
<th>Connector</th>
<th>Connection</th>
<th>Type</th>
<th>Wire</th>
<th>Screwdriver</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Alarm 1 Maintenance</td>
<td>14 - NO</td>
<td>11 - COM</td>
<td>12 - NC</td>
</tr>
<tr>
<td>B</td>
<td>Alarm 2 System</td>
<td>14 - NO</td>
<td>11 - COM</td>
<td>12 - NC</td>
</tr>
<tr>
<td>C</td>
<td>Alarm 3 Warning</td>
<td>14 - NO</td>
<td>11 - COM</td>
<td>12 - NC</td>
</tr>
<tr>
<td>D</td>
<td>Alarm 4 Alarm</td>
<td>14 - NO</td>
<td>11 - COM</td>
<td>12 - NC</td>
</tr>
<tr>
<td>Connector</td>
<td>Connection</td>
<td>Type</td>
<td>Wire</td>
<td>Screwdriver</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>---------------</td>
<td>-----------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>E</td>
<td>HU AC live</td>
<td>120–240 V AC</td>
<td>Copper only wire</td>
<td>Flat screwdriver Ø 3.5 mm</td>
</tr>
<tr>
<td>F</td>
<td>HU AC neutral</td>
<td>50/60 Hz</td>
<td>Stranded AWG #18 WITH FERRULE</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>HU AC earth</td>
<td>3.15 A max.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>AC earth</td>
<td>120–240 V AC</td>
<td>Copper only wire</td>
<td>Flat screwdriver Ø 3.5 mm</td>
</tr>
<tr>
<td>I</td>
<td>AC live</td>
<td>50/60 Hz</td>
<td>Stranded AWG #18 to AWG #12 WITH</td>
<td>Flat screwdriver Ø 6 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 A max.</td>
<td>FERRULE OR Solid AWG #18 to</td>
<td>or Phillips #2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AWG #12</td>
<td></td>
</tr>
</tbody>
</table>

NOTICE

All terminals are properly identified in the instrument itself to simplify installation.
We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents—in whole or in parts—is forbidden without prior written consent from ABB.

© ABB, 2019