Symphony Plus
S+ Engineering: Composer Harmony
Symphony Plus
S+ Engineering: Composer Harmony

Symphony Plus includes a comprehensive suite of engineering tools. S+ Engineering’s Composer tools provide a visual environment for easy configuration of the control system strategies, global configuration databases, and manage system libraries of reusable software components.

The working environment provided by Composer simplifies the configuration and maintenance of Symphony™ Harmony and Symphony™ Plus systems. Composer is designed to operate on the Microsoft Windows 7 Professional or Server 2008. It is compatible with INFI 90 OPEN system configurations and is capable of importing existing WinTools configurations. Once imported, these configurations can be fully integrated into Composer and utilize all its features.

Additional features

Configuration viewing and monitoring: view and monitor is an add-on Composer option that allows control logic documents (CLDs) to be viewed and monitored from a Web browser in read-only mode. It extends the functionality of Composer by publishing CLDs in SVG format and to populate or create Web sites on an Internet Information Server (IIS) virtual directory for remote viewing via a browser. The capability of publishing CLDs in SVG format is in the base product. Viewing and monitoring is a separately licensed feature that allows the monitoring of live block output values.

Multiuser, client/server architecture: composer applications use client/server technology to support multiple users operating in a networked environment. Configuration information managed by Composer’s configuration server can be accessed simultaneously by multiple users. In addition to interacting with configuration information, users can access online data from a running Symphony Plus, Symphony, or INFI 90 OPEN system by using Composer’s communication server. The Composer architecture supports one configuration server per system and multiple communication servers.

Configuration database: a configuration server can support up to 10 simultaneous client connections and provide users with shared access to a system’s configuration information. Composer’s configuration server manages and stores configuration data in one configuration database per project or system. This configuration database eliminates duplication of data entries, simplifies database management, and automates many configuration tasks. Information can be imported and exported in many formats.

Object exchange: composer introduces a single, system-wide component database called object exchange. Object exchange provides a multiuser repository for all standard symbols, macros, control strategies and control logic templates used to generate control system strategies. Object exchange is a prominent part of Composer client applications. Users are encouraged to use system and project standards when creating automation strategies. In addition to presenting standard system objects, object exchange enables users to add components they have created in object exchange.

Custom C programs: composer’s base client provides the ability to load custom C programs without the need for an additional utility. Examples of custom applications include foreign device interfaces and performance calculations.

Batch data manager: batch data manager (BDM) is a family of engineering tools for creating, editing, managing, downloading and debugging batch, sequential, and user defined function (UDF) code configurations. BDM supersedes and provides migration from all previous batch and UDF tools. Batch 90 for batch sequencing and UDF codes is discussed in more detail in the optional client applications section of this overview.
Composer applications

The base Composer product contains all the functionality necessary to develop and maintain Symphony Plus control system configurations. There are two primary applications: explorer and automation architect.

Explorer
The primary application of Composer is the explorer. Explorer presents the Symphony Plus, Symphony, or INFI 90 OPEN system architecture and provides an intuitive means for organizing, navigating and locating system configuration information. Explorer presents a user with two main windows: system architecture and the object exchange.

System windows
The system architecture window functions similarly to Microsoft’s file explorer. The left pane of the window displays a hierarchical representation of the Symphony Plus system. When a system object is selected, the right pane displays a detailed view for the selected object.

The system window supports two views: the document view (figure 1) and the data browser view (Figure 2). When the system window is in the document view, it will show the configuration documents that are associated with the system object that the user has selected. Configuration documents support long file names and can include control logic documents, human system interface displays, or documents created by other applications such as CAD packages or spreadsheets.

The ability to associate any documents with the system architecture is an important feature. This allows any information, such as piping and instrumentation diagrams (P&IDs), cabinet arrangement drawings or field wiring drawings, to be managed by the configuration server and accessed by Composer client applications. All that is required to edit any of these documents is to double click on the document. Composer’s explorer will automatically launch the appropriate application for the document selected.

When the system window is in the data browser view, the right pane of the system architecture window will display tag information associated with the system object the user has selected. All tag information presented is retrieved from the configuration server database that is managed by the Composer server.

When working in the data browser view, users can view, define and modify tag data for the whole system. This central repository of data is managed by the Composer’s configuration server for all tag data in the entire system. The data for each tag is added to the configuration server database as each tag is defined. This eliminates the need for users to enter the same information more than once. Some notable features of the data browser view are the ability to:

- Edit tag objects in a datasheet or property page view
- Filter the database: filtering makes configuration easier and faster by eliminating unnecessary information from view
- Import and export tag data
- Navigate directly from a tag to its related configuration document
- Perform automatic search and replace operations based on complex queries
Object exchange

The object exchange (object library) window presents the user with a view of the reusable components that can be used to create control system configurations (Figure 3). Objects are organized in folders. Standard system components such as function codes and standard shapes and symbols are organized under the system folder. Users are able to utilize these components, but are not allowed to delete them from the object exchange because they are part of the standard system objects supported by Composer.

Users can define their own folders within object exchange.

User-defined folders can be nested as deeply as the user desires and provide a container for user-defined objects. User-defined objects can include macro logic, shapes, symbols, standard drawings or control logic templates (CLT). In addition, user-defined folders can contain references or shortcuts to system defined objects. This enables users to effectively organize standard system objects to best suit their needs.

To support reuse, the object exchange provides library management features such as cutting, copying, and pasting of objects between different projects. This makes it easy for systems engineers to share objects among projects.

Automation architect

Automation architect provides for visual creation, editing, monitoring and tuning of control logic. High-level control strategies can be created by dragging and dropping function codes from the object exchange to the control logic document.
Control strategies are represented graphically by automation architect. Rather than textually programming strategies, the automation architect represents predefined control strategies as function blocks. By connecting function blocks (figure 4) users are able to specify the signal flow of a control strategy and visually define the control strategy.

Automation architect stores configuration information in control logic documents. Control logic documents support grouping of multiple logic sheets in a single document. This allows users to group sheets of logic together using process partitions. For example, a single control logic document could be used to define the control strategy for a boiler. Each control loop or interlock sheet associated with the boiler could be assigned to the control logic document. Partitioning control logic in this manner is more process object oriented and intuitive to process engineering personnel (figure 5).

The monitoring and tuning capabilities (figure 6) of the automation architect provide the ability to troubleshoot and maintain an operational system using the same information used to create the systems.

By using the monitoring functionality, it is possible to obtain dynamic operating values from the Symphony Plus, Symphony, or INFI 90 OPEN system.

These values are automatically presented on the same control logic documents that were used to configure the module. Composer’s tuning functionality allows the change of logic parameters as allowed by the controller. The control logic document in the Composer application and in the module are dynamically updated when tuning changes are made. This means that documentation for the system accurately reflects the current configuration of the controller.
Control logic templates (figure 7) define reusable standard control strategies that are typically used to develop a process automation system. They can be thought of as blueprints that define the structure of a control strategy. They are maintained by the object exchange and can be used to quickly define control logic documents.

The control logic template linking functionality allows users to define logic that is controlled by the template or can be modified on each configured instance. Any subsequent changes can then be spread to all linked instances. When a template updates its linked instances, it will preserve instance specific configuration. This template management functionality provides efficient maintenance and utilization of reusable standard control logic.

Optional client applications

Bulk engineering

All the controller configuration and tag configuration information is available via the object linking and embedding (OLE) interface client option of Composer. Using the OLE interface, users can access, extract and replace configuration information stored in the Composer configuration server. Any application that is capable of communicating via OLE/COM can access information from the Composer configuration server via the OLE interface. An example of an application that is capable of accessing information via OLE is Microsoft Excel.

The primary advantage of accessing data via Composer’s OLE interface is that it allows users to extend the capabilities of Composer with custom scripts or add-on applications. At the same time, users are able to rely upon the extensive data concordance rules provided by the Composer configuration server. This provides the user with the capability for performing bulk configuration editing within Excel and importing it into Composer’s configuration server.
Batch data manager

Batch data manager (BDM) is a family of engineering tools for creating, editing, managing, downloading and debugging batch, sequential and user defined function code configurations.

The heart of BDM is the Batch 90 programming language. Batch 90 enables the engineer to create batch and sequential control applications using clear, concise, natural syntax control statements. Batch 90 is layered on top of regulatory and discrete device control function code logic. Batch 90 programs can be used to change controller set points, turn discrete devices on and off, change modes and perform a host of other supervisory operations. In effect, function codes execute base regulatory and discrete device control while the Batch 90 program performs supervisory control and process operation.

A Batch 90 program is comprised of all the phases that can be run on a specific class of equipment. A phase is the smallest element of control that can accomplish a process-oriented task on a specific class of equipment.

A Batch 90 phase provides a structured, modular approach to batch design by including distinct logic sections for:

- Normal logic which executes standard sequential control
- Continuous control logic which continuously executes a set of interlocks
- Fault logic which executes if a stop command is issued or if a fault is detected in normal logic or continuous control logic
- Hold logic which executes if a hold command is issued
- Restart logic which executes return-to-normal logic from the held or stopped states

Batch 90 supports parallel execution of up to 32 phases; unit relative programming that allows Batch 90 programs to be written for classes of equipment, abort logic specific to each class of equipment, and synchronization between batch programs running in different areas of a plant.

Recipes are used to determine the procedure and formulation of the batch. A procedure determines the order in which the Batch 90 phases are executed. Formulation is the set of data that defines the requirements for a specific product. For example, formulation may include target flow rates, quantities, temperatures and times.

BDM applications reference their configurations in projects. This is similar to the Composer concept of a project, but BDM projects are managed separately from Composer ones. A BDM project can be located on the computer local to the user, or it can be accessed remotely over a network to a mapped drive if a file server is used. A project typically encompasses a process area. A user-defined function (UDF) project includes the required UDF programs for a process area. A batch project references a class library that includes a class for each type of equipment in a process area. Each class contains the Batch 90 program associated with the class of equipment plus the unit definition files if unit relative programming is implemented. If the unit procedure editor or master recipe editor is used, recipes are created and managed in a separate window of the same project.
BDM is comprised of:

Batch tools for batch sequencing

Batch tools for batch sequencing include a full-featured text editor to create and compile Batch 90 programs that are downloaded to the batch sequence (BSEQ) function code (figure 8).

Also included are the unit procedure editor (figure 9) and the master recipe editor, which are used respectively to create unit procedures and master recipes in a graphical format.

Creation of master recipes is optional; they provide a method for linking unit procedures for a specific production train. In this batch execution model, recipes are created using BDM and downloaded to the controller in their entirety before the batch begins. This execution model provides high system integrity, as all the information needed to execute the batch is self-contained in the controller. It is especially useful where a limited number of products is produced or for sequence control applications where the sequence is rarely modified.

User defined function codes

User defined function (UDF) codes includes a full-featured text editor to create and compile UDF programs using natural syntax control statements similar to Batch 90. UDF programs can be downloaded to UDF specific function codes (figure 10) and incorporated into control strategies in the same manner as any other function code. The UDF program does not require a recipe or an operator input; it begins executing when the controller begins executing. This product is especially useful for users who need to create function codes unique to their process or for sequence control applications that execute continuously and do not require a recipe.
The dynamic debugger, the primary troubleshooting tool for Batch 90 and UDF programs, is used with programming languages. The dynamic debugger (figure 11) enables engineers to:

- Observe process data such as variables and set points, as well as intermediate computational values from the program including timers, ramps and integrators
- Override normal operation of pumps, valves and control loops, and direct their activities from the debugger
- Stop normal program operation and single-step the program to analyze data without affecting other programs or function block execution
- Assign breakpoints. The program can be designed to run to a certain point and then stop execution, allowing engineers to systematically analyze logic
- Perform online recipe parameter editing when used with the unit procedure editor or the master recipe editor

System architectures

Composer software consists of three main components: configuration server, communications server and client applications. The configuration server software manages the INFI 90 OPEN, Symphony or Symphony Plus system definition within a Composer project database. System definition includes specification of the system architecture according to: control networks, console nodes, process control unit or PCU nodes and controllers. All composer system definition files along with linked third party documents (eg, Excel spreadsheets, AutoCAD drawings, etc) are managed within the Composer project database. The communications server software connects to the INFI-NET control network via a computer interface unit (CIU). The communications server manages the physical connection to a CIU and provides composer client applications access to runtime communications. Details of the physical connection (eg, CIU type, Ethernet TCP/IP address, etc.) are defined by a “Logical ICI”. Composer client applications such as Monitor/Tune (Automation Architect), or Save/Load/Verify (Explorer) require access to runtime communications. These and other functions access runtime communications by selecting an appropriate “Logical ICI” from the list of up to 20 total Logical ICIs in the system.
Composer supports INFI 90 OPEN, Symphony and Symphony Plus systems of all sizes. For small systems, as shown in figure 12, Composer’s configuration server, communications server and client applications are all loaded on to a single engineering workstation PC. The software components communicate with each other using inter-process communications within the engineering workstation PC.

For larger systems, Composer’s software supports client/server architecture over an Ethernet TCP/IP network. Figure 13 shows how the Composer software components may be distributed over a client/server network to provide a multi-user engineering environment. The configuration server (project database) can be loaded on any fileserver within the Ethernet network that client workstations can access. The project database is critical to the maintenance of the INFI 90 OPEN, Symphony or Symphony Plus system, and it should therefore be backed-up routinely.

Communications servers support up to 10 client workstation connections. The new “Ethernet CIU” comprises a NIS21 network interface module and IET800 INFI-Net to Ethernet transfer module. The Ethernet CIU functionally replaces the combination of a SCSI CIU and PC running communications server software. The Ethernet CIU provides secure network communications via SSL encryption, and also supports up to 10 client workstation connections.
International language support

Base Composer applications have been developed to support international languages. Configuration documents developed using Composer applications will accept and preserve user inputs in any language supported by Windows 7 or Windows Server 2008 (Figure 14). When a user creates a project, Composer’s configuration server sets the default language for the project to match the default language of the user creating the project. Once the project is created, users can enter text into the documents and database records presented by Composer client applications. While Composer supports any of the languages supported by Windows 7 or Server 2008, users that require international language support should consult their regional ABB office to ensure that the specific products they want to configure supports a given language.

Online documentation

Composer provides users with standard Windows help. In addition to this, all Composer documentation is provided in electronic form (Figure 15). The instruction manuals for Composer are provided on the Symphony Plus software DVD disk in Adobe® PDF format along with an enhanced version of Adobe Acrobat® reader that supports a sophisticated search engine.
Contact us

ABB Inc.
Power Generation
Wickliffe, Ohio, USA
Phone: +1 440 585 3087
E-Mail: powergeneration@us.abb.com

ABB AG
Power Generation
Mannheim, Germany
Phone: +49 621 381 3000
E-Mail: powergeneration@de.abb.com

ABB Pte. Ltd.
Power Generation
Singapore
Phone: +65 6776 5711
E-Mail: powergeneration@sg.abb.com

www.abb.com/powergeneration

© Copyright 2011 ABB
All rights reserved. Specifications subject to change without notice. Pictures, schematics, and other graphics contained herein are published for illustration purposes only and do not represent product configurations or functionality. User documentation accompanying the product is the exclusive source for functionality descriptions. Symphony is a registered or pending trademark of ABB S.p.A.