5SLG 0600P450300

HiPak DIODE Module

\[V_{RRM} = 4500 \text{ V} \]
\[I_F = 2 \times 600 \text{ A} \]

Ultra low-loss, rugged SPT+ diode

Smooth switching SPT+ diode for good EMC

AlSiC base-plate for high power cycling capability

AlN substrate for low thermal resistance

2 diodes in 1 package

Recognized under UL1557, File E196689

Maximum rated values \(^1\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>min</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>(V_{RRM})</td>
<td>(T_{VJ} \geq 25 \text{ °C})</td>
<td></td>
<td>4500</td>
<td>V</td>
</tr>
<tr>
<td>DC forward current</td>
<td>(I_F)</td>
<td></td>
<td></td>
<td>600</td>
<td>A</td>
</tr>
<tr>
<td>Peak forward current</td>
<td>(I_{F_{PM}})</td>
<td>(t_p = 1 \text{ ms}, \text{ per Diode})</td>
<td></td>
<td>1200</td>
<td>A</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>(P_{tot})</td>
<td>(T_C = 25 \text{ °C}, T_{VJ} = 125 \text{ °C}, \text{ per Diode})</td>
<td></td>
<td>2650</td>
<td>W</td>
</tr>
<tr>
<td>Surge current</td>
<td>(I_{FSM})</td>
<td>(V_R = 0 \text{ V}, T_{VJ} = 125 \text{ °C},) (t_p = 10 \text{ ms}, \text{ half-sine wave, per Diode})</td>
<td></td>
<td>4500</td>
<td>A</td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>(V_{isol})</td>
<td>1 min, (f = 50 \text{ Hz})</td>
<td></td>
<td>10200</td>
<td>V</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>(T_{VJ})</td>
<td></td>
<td></td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Junction operating temperature</td>
<td>(T_{VJ\text{op}})</td>
<td></td>
<td></td>
<td>-50</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>(T_{stg})</td>
<td></td>
<td></td>
<td>-50</td>
<td>°C</td>
</tr>
<tr>
<td>Mounting torques (^2)</td>
<td>(M_s)</td>
<td>Base-heatsink, M6 screws</td>
<td>4</td>
<td>6</td>
<td>Nm</td>
</tr>
<tr>
<td></td>
<td>(M_{mt})</td>
<td>Main terminals, M6 screws</td>
<td>4</td>
<td>6</td>
<td>Nm</td>
</tr>
</tbody>
</table>

\(^1\) Maximum rated values indicate limits beyond which damage to the device may occur per IEC 60747

\(^2\) For detailed mounting instructions refer to Document No. 5SYA 2039
Diode characteristic values ³)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage ⁴)</td>
<td>V_F</td>
<td>$I_F = 600$ A, $T_J = 25 , ^\circ C$</td>
<td>3.2</td>
<td>3.7</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_J = 125 , ^\circ C$</td>
<td>3.5</td>
<td>4.0</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Continuous reverse current</td>
<td>I_R</td>
<td>$V_B = 4500$ V, $T_J = 25 , ^\circ C$</td>
<td>12</td>
<td></td>
<td>23</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_J = 125 , ^\circ C$</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Peak reverse recovery current</td>
<td>I_{RM}</td>
<td>$V_{CC} = 2800$ V, $L = 300$ nH, inductive load, $di/dt = 2.4$ kA/µs Per Diode</td>
<td>515</td>
<td></td>
<td>830</td>
<td>µC</td>
</tr>
<tr>
<td>Recovered charge</td>
<td>Q_r</td>
<td>$I_F = 600$ A, $T_J = 25 , ^\circ C$</td>
<td></td>
<td></td>
<td>515</td>
<td>µC</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr}</td>
<td>$T_J = 25 , ^\circ C$</td>
<td></td>
<td>635</td>
<td>930</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse recovery energy</td>
<td>E_{rec}</td>
<td>$T_J = 25 , ^\circ C$</td>
<td></td>
<td>815</td>
<td>1365</td>
<td>mJ</td>
</tr>
</tbody>
</table>

³) Characteristic values according to IEC 60747 - 2 ⁴) Forward voltage is given at chip level

Package properties ⁵)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode thermal resistance junction to case</td>
<td>$R_{th(j-c)DIODE}$</td>
<td>Per Diode</td>
<td>0.038</td>
<td></td>
<td></td>
<td>K/W</td>
</tr>
<tr>
<td>Diode thermal resistance case to heatsink</td>
<td>$R_{th(c-s)DIODE}$</td>
<td>Per Diode, λ grease = 1 W/m x K</td>
<td>0.036</td>
<td></td>
<td></td>
<td>K/W</td>
</tr>
<tr>
<td>Partial discharge extinction voltage</td>
<td>V_e</td>
<td>$f = 50$ Hz, $Q_{PD} \leq 10$ pC (acc. To IEC 61287)</td>
<td>5100</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Comparative tracking index</td>
<td>CTI</td>
<td></td>
<td>> 600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module stray inductance</td>
<td>L_{AC}</td>
<td>between C1 - A2</td>
<td>125</td>
<td></td>
<td></td>
<td>nH</td>
</tr>
<tr>
<td>Resistance, terminal-chip</td>
<td>$R_{AAC'CC'}$</td>
<td>Per Diode</td>
<td>0.25</td>
<td></td>
<td></td>
<td>mΩ</td>
</tr>
</tbody>
</table>

²) For detailed mounting instructions refer to ABB Document No. 5SYA 2039

Mechanical properties ⁵)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>$L \times W \times H$</td>
<td>Typical</td>
<td>73 x 140 x 38</td>
<td></td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>Clearance distance in air</td>
<td>d_a</td>
<td>according to IEC 60664-1 and EN 50124-1</td>
<td>35</td>
<td></td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>Surface creepage distance</td>
<td>d_s</td>
<td>according to IEC 60664-1 and EN 50124-1</td>
<td>64</td>
<td></td>
<td></td>
<td>mm</td>
</tr>
</tbody>
</table>

⁵) Package and mechanical properties according to IEC 60747 - 15
Electrical configuration

Outline drawing

Note: all dimensions are shown in millimeters
1) For detailed mounting instructions refer to ABB Document No. 5SYA 2039

This is an electrostatic sensitive device, please observe the international standard IEC 60747-1, chap. IX. This product has been designed and qualified for Industrial Level.
Fig. 1 Typical reverse recovery characteristics vs. forward current

Fig. 2 Typical reverse recovery characteristics vs. di/dt

Fig. 3 Typical diode forward characteristics chip level

Fig. 4 Safe operating area diode (SOA)
Analytical function for transient thermal impedance:

\[Z_{th} (j-c) (t) = \sum_{i=1}^{n} R_i (1 - e^{-t/\tau_i}) \]

<table>
<thead>
<tr>
<th>DIODE</th>
<th>Ri(K/kW)</th>
<th>(\tau_i)(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zth(j-c) Diode</td>
<td>24.9</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>8.75</td>
<td>22.6</td>
</tr>
<tr>
<td></td>
<td>4.31</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Fig. 5 Thermal impedance vs. time

Related documents:
- 5SYA 2042 Failure rates of HiPak modules due to cosmic rays
- 5SYA 2043 Load-cycle capability of HiPaks
- 5SYA 2045 Thermal runaway during blocking
- 5SYA 2053 Applying IGBT
- 5SYA 2058 Surge currents for IGBT diodes
- 5SYA 2093 Thermal design of IGBT modules
- 5SYA 2098 Paralleling of IGBT modules
- 5SZK 9111 Specification of environmental class for HiPak Storage
- 5SZK 9112 Specification of environmental class for HiPak Transportation
- 5SZK 9113 Specification of environmental class for HiPak Operation (Industry)
- 5SZK 9120 Specification of environmental class for HiPak

ABB Power Grids Switzerland Ltd, Semiconductors
A Hitachi ABB Joint Venture
Fabrikstrasse 3
CH-5600 Lenzburg
Switzerland
www.hitachiabb-powergrids.com/semiconductors

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents - in whole or in parts - is forbidden without prior written consent. Copyright 2020 Hitachi Powergrids.
All rights reserved.