Modular
 Installation Equipment

System pro M

ABB

When connecting aluminium conductors ensure that the contact surfaces of the conductors are cleaned, brushed and treated with grease. Re-tighten contact terminals after 6 to 8 weeks' time.

We recommend that connector sleeves be used when working with flexible conductors.

Conditions for Delivery and Sale

For domestic business, the Standard Terms for Delivery of Products and Services of the Electrical Industry (ABBForm2292)shall apply inconnection withtheStandard Sale Terms (ABB Form 2327) in their then applicable version. For foreign business, the Standard Terms for Delivery of Products and Services of the Electrical Industry (ABB Form2293 German-English, or ABB-Form 2294 German- French) shall apply in connection with the Standard Sale Terms (ABB-Form 2381 English) in their then applicable version.

Warranty

We assume warranty in accordance with the Standard Sale and Delivery Terms. Complaints shall be made in writing within eight days following receipt of the goods.

Technical information and illustrations are not binding and subject to change without notice.
Contents page
Switches
Switches 16, 25 and 32 A 4
Switches 45, 63, 80, 100 and 125 A 6
Pushbuttons and Indicator lights
Emergency light 9
Pushbuttons, illuminated pushbuttons, indicator lights 10
Colours for pushbuttons and indicator lights and what they mean 12
Alarm indicators 13
Socket outlets and couplers
SCHUKO-style socket outlets 13
Relays
Staircase lighting time-delay switch (t.d.s.) + semi-light module 14
Latching relay (electromechanical + electronic) 16
Installation relays 22
Lamp load tables 19
Priority switches (load shedding relays). 25
Time-delay relay (TDR) 26
Modular bell 30
Bell transformer, safety isolating transformer 31
Mains disconnection relay and accessories 49
Measuring instruments
Fixed instruments + selector switch 32
Time switches and Meter
Elapsed-time meter 29
Time switches (synchronous or crystal-controlled) 35
Programmable electronic time switches (Timer) 36
Modular clock thermostat 39
Light-control equipment
Twilight switch. 40
Light level switch 42
Dimmer 44
High-performance dimmer 47
Accessories
Labelling material 50
Approvals and certifications 51

Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022

```
mounting depth:
mounting width:
colour:
68 mm
single, two, three and four-pole switches \(=17.5 \mathrm{~mm}=1\) module grey, RAL 7035
```


Technical data

switching capacity: short-circuit
withstand capacity: sealable:
climatic resistance:
connection cross section:
positive opening: rated voltage:
$1.25 \mathrm{I}_{\mathrm{n}} ; 1.1 \mathrm{U}_{\mathrm{n}} ; \cos \varphi=0.6$ to DIN VDE 0632, AC 22 to VDE 0660 Part 107, IEC 947-3
3 kA; $400 \mathrm{~V} ; \cos \varphi=0.8$
in the ON / OFF position
constant climate 40/92 DIN 50015
alternating climate SFW DIN 50017
from $1 \times 6 \mathrm{~mm}^{2}$ or $2 \times 2.5 \mathrm{~mm}^{2}$ massive; to $2 \times 1.5 \mathrm{~mm}^{2}$ flexible with connector sleeve or pin-end connector
according to DIN VDE 0113 250/400 V ~

Special features

- safe connection ensured by box terminals
- captive screws of the recessed/slotted head type system Pozidriv size 1
- labels snap-on (see page 50)
- quick fastening easily accessible, detachable from below
protection against electric shock according to DIN VDE 0106 Part 100 (BGV A2)
Terminal assignment

dimension drawing
in mm

SK 0164 Z 91

1W
2W

Two-way switch with two off positions

E 220
DC switching capacity

Selectiontable

type	rated voltage V ~	power loss W	order details type code	ordercode	$\begin{array}{\|l} \text { bbn } \\ 4012233 \\ \text { EAN } \end{array}$	price 1 pc. DM	price group	weight 1 pc . kg	pack. unit pc.

Controlswitch

rated current $=16 \mathrm{~A}$

$\begin{aligned} & 2 \mathrm{NO}+2 \mathrm{NC} \\ & 3 \mathrm{NO}+1 \mathrm{NC} \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 400 \end{aligned}$	$\begin{array}{r} 1.92 \\ 1.92 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|l\|} \text { E 221-22 } \\ \text { E 221-31 } \end{array}$	GH E221 1001 R0006 GH E221 1001 R0007	$\left\lvert\, \begin{array}{l\|l} 002702 \\ 002801 \end{array}\right.$	$\begin{aligned} & 0.070 \\ & 0.070 \end{aligned}$	10
$1 \mathrm{NO}+1 \mathrm{NC}$	250	0.96	E 221-11	GH E221 1001 R0005	002603	0.070	10

rated current $=25 \mathrm{~A}$

$1 \mathrm{NO}+1 \mathrm{NC} \mid 250$	12.26	E 222-11	\|GH E222 1001 R0005	004003		$\mid 0.070$	10

One-way switch

rated current $=16 \mathrm{~A}$

1 NO	250	0.48	E 221-10	GH E221 1001 R0001	002207	0.055	10
2 NO	250	0.96	E 221-20	GH E221 1001 R0002	002306	0.060	
3 NO	400	1.44	E 221-30	GH E221 1001 R0003	002405	0.065	
4 NO	400	1.92	E 221-40	GH E221 1001 R0004	002504	0.070	

rated current $=25 \mathrm{~A}$

1 NO	\| 250	1.13	E 222-10	GH E222 1001 R0001	003600	0.055	10
2 NO	250	2.26	E 222-20	GH E222 1001 R0002	003709	0.060	
3 NO	400	3.39	E 222-30	GH E222 1001 R0003	003808	0.065	
4 NO	400	4.52	E 222-40	GH E222 1001 R0004	003907	0.070	

E 221-10 x

E 221-4
rated current $=32 \mathrm{~A}$

1 NO	250	2.2	E 223-10	GHE223 1001 R0001	$\mathbf{9 6 5 7 0 0}$		0.055	10
2 NO	250	4.4	E 223-20	GHE E223 1001 R0002	$\mathbf{9 6 5 8 0 9}$		0.060	
3 NO	400	6.6	E 223-30	GHE223 1001 R0003	$\mathbf{9 6 5 9 0 8}$		0.065	
4 NO	400	8.8	E 223-40	GHE223 1001 R0004	$\mathbf{9 6 6 0 0 4}$		0.070	

One-way switch with built-in pilot lamp for 230 V ~

rated current $=16 \mathrm{~A}$

Two-way switch
rated current $=16 \mathrm{~A}$

1 W	250	0.48	E 221-6	GH E221 1001 R0008	$\mathbf{0 0 2 9 0 0}$			0.060
2 W	250	0.96	E 221-6/2	GH E221 1001 R0009	$\mathbf{0 0 3 0 0 6}$			0.070

Two-way switch with two off positions (I-O-II, Manual-off-automatic)
rated current $=16 \mathrm{~A}$

single-pole	250	0.48	E 221-4	GH E221 1001 R0014	$\mathbf{0 0 3 4 0 2}$			0.060	10
two-pole	250	0.96	E 221-4/2	GH E221 1001R0015	$\mathbf{0 0 3 5 0 1}$			0.070	10

Modular installation equipment

Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022

dimension drawinger

in mm

mounting depth mounting width: colour:
per pole $=17.5 \mathrm{~mm}=1$ module
casing: grey, RAL 7035
operating lever: rt = red, RAL 3000; gr = dark grey, RAL 7000

Technical Data

switching capacity:
min. contact rating: positive opening: short-circuit withstand capacity: rated voltage: connection cross sections: climatic resistance according to DIN IEC 68-2-30: storage temperature: ambient temperature range: at daily average: shock safety:
vibration resistance to DIN IEC 68-2-6:
$1.25 \mathrm{I}_{\mathrm{n}} ; 1.1 \mathrm{U} \mathrm{U}_{\mathrm{n}} ; \cos \varphi=0.3$ according to VDE 0632
$\mathrm{E} 240: \mathrm{AC} 21 \mathrm{~A}$ to VDE 0660 Part 107 , DIN EN $60947-3$ and IEC $947-3$
$\mathrm{E} 270: \mathrm{AC} 22 \mathrm{~A}$ to VDE 0660 Part 107, DIN EN $60947-3$ and IEC $947-3$
$6 \mathrm{~V} ; 0.5 \mathrm{~mA} ; 0.03 \mathrm{VA}$
according to DIN VDE 0113
$\mathrm{E} 240=10 \mathrm{KA}_{\text {r.m.s. }}$, E $270=25 \mathrm{KA}_{\text {r.m.s. }}$. in casscade connection with
NH 00100 A gL , as well as main circuit breaker S 700
$240 / 400 / 415 \mathrm{~V} \sim, 50 \mathrm{~Hz}$ (E 240 not for DC use!)
E 240 to $25 \mathrm{~mm}^{2}, \mathrm{E} 270$ to $50 \mathrm{~mm}^{2}$
constant climate $23 / 83,40 / 93,55 / 20[-\mathrm{C} / \mathrm{RH}]$ ©
alternating climate $25 / 95-40 / 93[-\mathrm{C} / \mathrm{RH}]$
$\mathrm{T}_{\max }+70^{\circ} \mathrm{C} / 180^{\circ} \mathrm{F}, \mathrm{T}_{\min }-40^{\circ} \mathrm{C} /-40^{\circ} \mathrm{F}$
$\mathrm{T}_{\max }+55^{\circ} \mathrm{C} / 131^{\circ} \mathrm{F}, \mathrm{T}_{\min }-25^{\circ} \mathrm{C} /-13^{\circ} \mathrm{F}$
$\leq+35^{\circ} \mathrm{C} / 95^{\circ} \mathrm{F}$
30 g, two impacts at least
impact time 13 ms
$5 \mathrm{~g}, 20$ sweep cycles
$5 \ldots 150 \ldots 5 \mathrm{~Hz}$ at $0.9 \cdot \mathrm{I}_{\mathrm{n}}$

Specialfeatures

- combined box terminals allows for simultaneous connection of strands and busbars
- captive screws of the recessed head type Pozidriv system size 2
- labels snap-on (see accessories, page 50)
- quick fastening easily accessible, detachable from below
- protection against electric shock according to DIN VDE 0106 Part 100 (BGV A2)

SK0046Z97
DC switching capacity per pole
(2000 switchovers)
E 271-63 A, E 271-80 A, E 271-100 A; E 271-125 A

Selectiontable

(1) Switches E 273/63 gr, E 274/63 gr, marked \star and 全 comply with the so-called "Technical Power Supply Regulations TAB 7.2 " as well as VDE 0632 and fulfil the short-circuit withstand capacity required therein for use in 10 kA supply systems for equipment located in between the last overcurrent protective device in front of the meter and the subcircuit distribution board.

Locking device for MBC's and one-way switches

providing protection against unauthorised or unsafe actuation of switching levers (VDE 0113/6.2.1.c). By using the adaptor, switching levers can be locked in either the on or the off position by means of a padlock with a shackles diameter of 4 mm max.. In the case of multi-pole devices, it is possible to fit each pole with an individual lock.
The lock adaptor is suitable for one-way switches of series E 220 and E 270 .

lock adaptor	SA 1	GJF110 1903 R0001	587605			0.004	10
padlock with two keys	SA 2	GJF110 1903 R0002	587704			0.020	10
lock adaptor incl. padlock with three keys in a transparent box	SA 3	GJF110 1903 R0003	587803			0.050	10
padlock with identical locking	SA 2 i	GJF110 9999 R0001	969401			0.020	10

label

Series E 240 and E 270 switches may be cross-wired by using KS busbars or PSBN busbar blocks with series S 2 MBC's and series F 3 residual current circuitbreakers (RCCB).

Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022

mounting depth:	68 mm
mounting width:	$44 \mathrm{~mm}=2.5$ modules
colour:	grey, RAL 7035

Technicaldata

switching capacity: connection cross section: positive opening: protection against electric shock: rated voltage:

Special features

- short-circuit withstand capacity: 10 kA, 400 V ~

Switches E 463/3-KB and E463-SL marked by \star and 0 食 comply with the so-called "Technical Power Supply Regulations TAB 7.2" as well as VDE 0632 and fulfil the short-circuit withstand capacity required therein for use in 10 kA supply systems for equipment located in between the last overcurent protective device in front of the meter of the sub-circuit distribution board.

Selectiontable

poles	rated voltage V ~	power loss W	order details type code	order code	bbn 4012233 EAN	price 1 pc. DM	price group pe	weight 1 pc. kg	pack. unit pc.
rated current $=63 \mathrm{~A}$									
3 NO	400	5.4	E 463/3-KB	GH V021 0864 R0001	529803			0.190	1/50

rated current $=63 \mathrm{~A}$ (can be locked with key provided by utiltiy company and is sealbale and lockable with padlock)

rated current $=80 \mathrm{~A}$

Supplementary terminal allows connecting of a supplementary wire of up to $2.5 \mathrm{~mm}^{2}$

$\begin{aligned} & \text { for E 463/3 } \\ & \text { and E 480/3-KB } \end{aligned}$	E 480 ZK	GH V021 1425 R0004	534005	0.005	1

Padlock

(1) bbn no. 4016779

Modular installation equipment
 System pro M
 Pushbutton and indicator lights

DINEN 60 669-1,
VDE 0632 Part 1, DIN VDE 0710

terminal assignment

pushbutton
illuminated pushbutton

Neu 1 NO +1
NC

Comb busbars and labels

Comb busbars, single-phase, for cross-wiring, providing protection against electric shock cross section $6 \mathrm{~mm}^{2}$

| 200 mm | 12×1 | SZ-KS 7/12 | GH V036 0875 R0003 | $\mathbf{5 5 3 4 0 2}$ | 0.038 | | 0.025 | 100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| 990 mm | 56×1 | SZ-KS 7/56 | GHV036 0875 R0004 | $\mathbf{5 5 3 5 0 1}$ | 0.187 | | 0.110 | 50 |

[^0]
Selectiontable

style	power loss W	order deta type code	order code	bbn 4012233 EAN	price 1 pc. DM	price group	weight 1 pc . kg	pack. unit pc.

rated current for pushbutton and illuminated pushbutton $=16 \mathrm{~A}$, rated voltage $=250 \mathrm{~V} \sim$
Pushbutton 1 NO + 1 NC

Pushbutton 1 NO + 1 NC, without button

Illuminated pushbutton 1 NO + 1 NC, with glow lamp E 10/230 V ~

transpar.	1.5	E 227-11 B	\|GH E227 1001 R0011	496506 ③)	\| 0.055	10
red		E 227-11 C	GH E227 1001 R0012	033503 (3)		
green		E 227-11 D	GH E227 1001 R0013	496513 ③)		
yellow		E 227-11 E	GH E227 1001 R0014	496537 ③		
blue		E 227-11 G	GH E227 1001 R0016	496544 (3)		

Illuminated pushbutton 1 NO + NC, without collar, with E 10 holder for pilot lamp max. 2 W

	0.96 (2)	E 227-11 Z	GH E227 1001 R0027	033602 ③	0.045 10

Indicator lights with glow lamp E 10/230 V ~

transpar.	1.03	E 229 - B	GH E229 1001 R0001	005901	0.045	10
red		E 229-C	GH E229 1001 R0002	006007		
green		E 229 - D	GH E229 1001 R0003	006106		
yellow		E 229 - E	GH E229 1001 R0004	006205		
blue		E 229-G	GH E229 1001 R0006	006304		

Indicator lights without collar, with E 10 holder for pilot lamp max. 2 W

Collars, transparent, for illuminated pushbutton E 227

E 220-LZ

Collars, transparent, with lamp symbol for indicator lights E 229

transpar.	-	E 220-B 3	GH E220 0003 R0001	001606	0.002	100
red		E 220-C 3	GH E220 0003 R0002	001705		
green		E 220-D 3	GH E220 0003 R0003	001804		
yellow		E 220-E 3	GH E220 0003 R0004	001903		
blue		E 220-G 3	GH E220 0003 R0006	002009		

Lamps with E 10 holder for illuminated pushbuttons and indicator lights
Filament lamps for AC operation

(1) Filament lamps must not be used above 2 W max.
(2) When calculating the power loss, add the wattage of the filament lamp/glow lamp used
(3) bbn no. 4016779

Modular installation equipment

System pro M Pushbutton and indicator lights
 Colours and what they mean

table 2: What colour codes mean - General Aspects
(extract from VDE 0113 Part 101/DIN EN 61310-1 1996 Safety of machinery Indication, marking and actuation) Part 1: Requirements for visual, auditory and tactile signals

colour		meaning	
	safety of persons	machinery/ process status	position of equipment
red	danger, prohibition	emergency	no general meaning
yellow	caution	abnormal	
green	safety	normal	
blue white grey black	no specific meaning assigned		

table 2: What colour codes mean - General Aspects
(extract from VDE 0199/DIN EN 600731997 Basic and safety principles for man-machine interface, marking)

colour		meaning	
	safety of persons or environmental safety	process status	position of equipment
red	danger	emergency	defective
yellow	warning / caution	abnormal	abnormal
green	safety	normal	normal
blue	no specific meaning assigned		
white grey black			

in mm

socket outlet E 1175

socket outlet E 1175 c
with hinged lid IP3X
in distribution board

dimension drawing

in mm

Alarm indicator

Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022

mounting depth:	68 mm
mounting width:	$17.5 \mathrm{~mm}=1$ module
colour:	grey, RAL 7035

Application

The alarm indicator transmits optical and acoustic signals. Malfunctioning is indicated by a flashing and short beeping signal.
After the indication is detected, press the acknowledgement switch or an external pushbutton to turn off the acoustic signal, the optical signal will then turn into a steady light.
The device is actuated by external contacts of alarm, malfunctioning or warning indicators and via limit switches or auxiliary contacts.

Technical data

rated voltage:
power loss:

$$
<4 \mathrm{~W}
$$

cycle time:

$$
\text { on/off } 1 \mathrm{~s} / .^{\circ} 10 \%
$$

operating frequency:
sound level:
temperature range:
protection against
electric shock:
connection cross section:

Function

$$
230 \mathrm{~V} \sim 50 \mathrm{~Hz}(120 \mathrm{~V} \sim 60 \mathrm{~Hz})
$$

typ. 3.3 kHz
typ. 60 dB
$-20^{\circ} \mathrm{C} /-4^{\circ} \mathrm{F}$ to $+50^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}$
according to DIN VDE 0106 Part 100 (BGV A2)
up to $1 \times 6 \mathrm{~mm}^{2}$ or $2 \times 2.5 \mathrm{~mm}^{2}$ massive; up to $2 \times 1.5 \mathrm{~mm}^{2}$ flexible with connector sleeve or pin-end connector
wiring diagram

As soon as the alarm indicator is connected to rated voltage via a malfunction indication contact (1), the acoustic signal and the lamp (3) of the alarm indicator go on and off in one-second intervals to indicate malfunctioning.
Press the STOP button of the device (2a) or the external button (2b) (acknowledgement) to cause the alarm indicator to switch off the acoustic signal indicator.
The lamp (3) then turns into a steady light until the malfunctioning is eliminated and, as a consequence, the malfunction indication contact reopens.

Selection table

description	order details type code	ordercode	$\begin{array}{\|l} \text { bbn } \\ 4012233 \\ \text { EAN } \\ \hline \end{array}$	price 1 pc. DM	price group	weight 1 pc. kg	pack. unit pc.
alarm indicator	E 228-WM *	GH E228 1001 R0001	630301			0.070	1/10

*UL approval

SCHUKO-style socket outlet according to DIN VDE 0620

equipment for panel installation on mounting rail (35 mm) according to DIN EN 50022

mounting depth:	68 mm
mounting width:	$44 \mathrm{~mm}=2.5$ modules
colour:	grey, RAL 7035

Technical data

Selectiontable

power loss W L	style	order deta typecode	ordercode	$\begin{array}{\|l} \text { bbn } \\ 8012542 \\ \text { EAN } \\ \hline \end{array}$	price 1 pc. DM	price group	weight 1 pc . kg	pack. unit pc.
0.6	SCHUKO	E 1175	GH E2111175 R0001	334705			0.120	4
0.6	SCHUKO	E 1175 c	GH E2111175 R0002	342502			0.120	4
0.6	Italy	E1173*	GH E2111173 R0001	004103			0.105	4
0.6	France	E1174*	GHE2111174 R0001	006602			0.105	4

Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022

mounting depth:	68 mm
mounting width:	$17.5 \mathrm{~mm}=1$ module
colour:	grey, RAL 7035

Application

As a rule, staircase lighting time-delay switches (t.d.s.) are controlled by pushbuttons fitted with glow lamps. The switches are designed for a continuous load of up to 50 glow lamps and can therefore be used in multi-storey buildings.
T.d.s. E 232 is equipped with an electromechanical timer wound electromechanicalally ensuring a high level of operational reliability in any desired mounting position. The time range is infinitely adjustable up to five minutes.
T.d.s. E 232 E is electronically controlled. Noteworthy features of this device include: high switching capacity, 150 mA ($50 \mathrm{~mA} \mathrm{E} 232 \mathrm{E}-8 / 230$) glow lamp current parallel to the pushbuttons, infinitely adjustable time range of up to 12 minutes (10 minutes E 232 E-8/230) and a low switching noise. The devices can be connected in series and are designed for 3 -wire and 4 -wire circuits. Automatically recognises method of connection. Style E 232 E-8/230 can be used for any control voltages of 8 to 230 V DC/AC so that it can be controlled with extra-low voltage (bell transformer) or system voltage.
The electronic semi-light module HLM is a supplementary device for any t.d.s. semi-light control according to DIN 18015. The device switches filament lamp lighting to half the normal intensity when the time expires. This early indication period is infinitely adjustable from 10-100 seconds. Positions are indicated by led. No influence on glow lamp current which is determined by the t.d.s..

Technical data	E 232	E 232 E-	HLM
rated voltage:	$230 \mathrm{~V} \sim, 50 \mathrm{~Hz}$	$230 \mathrm{~V} \sim, 50 \mathrm{~Hz}$	
rated switching capacity:	16 A, 250 V ~	16 A, 250 V ~	10 A, 250 V ~
filament lamp load:	2300 W	2000 W	2300 W
glow lamps parallel to the 230 V -control buttons:	50 mA	$\begin{aligned} & 150 \mathrm{~mA} \text { (E } 232 \mathrm{E}-230 \text {) } \\ & 50 \mathrm{~mA}^{1} \text { (E } 232 \mathrm{E}-8 / 230 \text {) } \end{aligned}$	-
fluorescent lamp load twin-lamp circuit: inductive or capacitive:	$\begin{aligned} & 3500 \mathrm{~W} \\ & 1300 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1000 \mathrm{~W} \\ & 1000 \mathrm{~W} \end{aligned}$	-
fluorescent lamp load shunt-compensated:	1000 W	500 W	-
electronic control gear:	$\begin{aligned} & 2300 \mathrm{~W} \\ & \left(\mathrm{l}_{\mathrm{in}} \leq 140 \mathrm{~A} / 10 \mathrm{~ms}\right) \end{aligned}$	$\begin{aligned} & 700 \mathrm{~W} \\ & \left(\mathrm{l}_{\mathrm{in}} \leq 70 \mathrm{~A} / 10 \mathrm{~ms}\right) \end{aligned}$	-
inductive load $\cos \varphi=0.6 / 230 \vee \mathrm{AC}$:	1300 W	650 W	-
contact rating at DC:	100 W	100 W	-
minimum contact rating:	$6 \mathrm{~V} \mathrm{AC/50} \mathrm{~mA}$	$4 \mathrm{~V} \mathrm{AC/10} \mathrm{~mA}$	-
contact gap / contact material	$3 \mathrm{~mm} / \mathrm{AgSnO}_{2}$	$0.5 \mathrm{~mm} / \mathrm{AgSnO}_{2}$	-
distance of gate terminals $\mathrm{A} 1-\mathrm{A} 2 /$ contact:	3 mm	3 mm	-
distance of gate terminals C1-C2/contact:	8 mm	8 mm	-
ON duration:	100\%	100\%	100\%
switching safety at rated voltage:	99.9\%	99.9\%	99.9\%
ambient temperature at mounting position:	$-5^{\circ} \mathrm{C} /+23^{\circ} \mathrm{F}$ to $60^{\circ} \mathrm{C} / 140^{\circ} \mathrm{F}$	$-20^{\circ} \mathrm{C} /-4^{\circ} \mathrm{F}$ to $50^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}$	$-20^{\circ} \mathrm{C} /-4^{\circ} \mathrm{F}$ to $50^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}$
control voltage range:	0.9 to $1.1 \times \mathrm{U}_{\mathrm{n}}$	0.9 to $1.1 \times \mathrm{U}_{\mathrm{n}}$	0.9 to $1.1 \times \mathrm{U}_{\mathrm{n}}$
control current at 230 V (after 1 sec .):	$10-15 \mathrm{~ms}, 1 \mathrm{~A} \pm 20 \%$	100 (20) mA $\pm 20 \%$	-
control current at 8 V :	-	$40 \mathrm{~mA} \pm 20 \%$	-
minimum command time:	50 ms	50 ms	-
max. induced voltage at the control inputs (230 V):	120 V	120 V	-
terminal (strain relief clamps):	$12 \mathrm{~mm}{ }^{2}$	$12 \mathrm{~mm}{ }^{2}$	$12 \mathrm{~mm}{ }^{2}$
max. connection cross section of a conductor:	$6 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$
protection against electric shock:	to DIN VDE 0106 Part 100 \& BGV A2	to DIN VDE 0106 Part 100 \& BGV A2	to DIN VDE 0106 Part 100 \& BGV A2
serviceable life if rated load, $\cos \varphi=1$ or filament lamps 1000 W and $103 / \mathrm{h}$:	$>5 \times 10^{4}$	$>10^{7}$	-
serviceable life if nominal stress, $\cos \varphi=0.6$ and $103 / \mathrm{h}$:	$>2 \times 10^{4}$	$>10^{4}$	-
mechanical serviceable life, Switchover at 103/h:	$>5 \times 10^{4}$	$>10^{7}$	-
position indicator/control indicator:	-	LED	LED

${ }^{1}$ Applies to glow lamps with starting voltage > 170 V , for glow lamps with starting voltage < 90 V , ca. $1 / 2$ glow lamp current

Staircase lighting time-delay switches (t.d.s.)
Semi-light module for t.d.s.

Latching relay control with any desired number of parallel pushbuttons; acknowledgement of ,,ON" position.

E254-8

3-phase switching of fluorescent lamps (shunt-compensated) with light-current pushbuttons; acknowledgement of position to the control centre.

Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022

mounting depth:	68 mm	
mounting width:	single-pole and two-pole switches: $17.5 \mathrm{~mm}=1$ module hree and four-pole switches: grey, RAL 7035	$35 \mathrm{~mm}=2$ modules

Special features

- hand operation
- position indicator per contact
- long serviceable life
- labels snap-on (see page 50)
- quick fastening snap-on clip easily accessible, detachable from below
- compact design
- captive screws of the recessed/slotted head type system Pozidriv size 1
- cross-wiring of coils and main connections
- safe connection ensured by box terminals
- protection against electric shock according to DIN VDE 0106 Part 100 (BGV A2)

Technical data E 250

rated switching capacity: $\quad 16 \mathrm{~A} / 250 \mathrm{~V} \sim ; 10 \mathrm{~A} / 400 \mathrm{~V} \sim$
filament lamp load:
fluorescent lamp load (twin-lamp circuit):
fluorescent lamp load (shunt-compensated):
fluorescent lamp load inductive or capacitive:
electronic control gear:
inductive load $\cos \varphi=0.6 / 230 \mathrm{~V} \sim$:
contact rating at DC:
minimum contact rating:
power consumption:
hold
pick-up
contact gap / contact material:
mechanical serviceable life, switchover at $10^{3} / \mathrm{h}$:
serviceable life if rated load $\cos \varphi=1$ and $10^{3} / \mathrm{h}$:
serviceable life if filament lamps 1000 W and $10^{3} / \mathrm{h}$:
serviceable life if rated load $\cos \varphi=0.6$ and $10^{3} / \mathrm{h}$:
bounce time:
connections switching circuit:
control circuit:
ON duration at rated voltage single and two-pole ED:
ON duration at rated voltage three and four-pole ED:
max. permanent excitation of the coil
coil voltage range:
switching safety ${ }^{(2)}$:
minimum command time:
permissible ambient temperature:
power loss of coils at AC and DC:
$10 \mathrm{~A}(1300 \mathrm{~W})$
$10 \mathrm{~A}(2300 \mathrm{~W}) ; \mathrm{I}_{\text {in }} \leq 140 \mathrm{~A} / 10 \mathrm{~ms}$
$10 \mathrm{~A}(2300 \mathrm{~W})$; $\mathrm{l}_{\text {in }} \leq 140 \mathrm{~A} / 10 \mathrm{~ms}$
10 A (1300 W)
100 W
6 V AC/50 mA
single, two-pole three, four-pole

VA 10 VA
6.5 VA 13 VA

3 mm / Ag Cd0 15
$>10^{6}$
$>10^{5}$
$>10^{5}$
$>2 \times 10^{4}$
3 ms
strain-relief clamp $12 \mathrm{~mm}^{2}$
clamping screw M 3.5; $2 \times 2.5 \mathrm{~mm}^{2}$
100% (${ }^{(}$
60\% (1)
1 h
0.9 to $1.1 \times \mathrm{U}_{\mathrm{n}}$

99\%
50 ms
$-5^{\circ} \mathrm{C} /+23^{\circ} \mathrm{F}$ to $+50^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}$
single-pole: $5 \mathrm{~W} \pm 20 \%$
two-pole: $6 \mathrm{~W} \pm 20 \%$
three and four-pole: $12 \mathrm{~W} \pm 20 \%$
max. parallel capacitance of individual control lead at $230 \mathrm{~V} \sim$: $0.06 \mu \mathrm{~F}$ (ca. 200 m)
max. glow lamp current

- parallel to 230 V control buttons: 5 mA
- with capacitor $1 \mu \mathrm{~F} / 250 \mathrm{~V} \sim$ parallel to coil: 10 mA
- with capacitor $2.2 \mu \mathrm{~F} / 250 \mathrm{~V} \sim$ parallel to coil: 15 mA
max. induced voltage at control inputs: $0.2 \times \mathrm{U}_{\mathrm{n}}$
(1) If, due to switching requirements, the coil remains energised for a prolonged period of time, e.g. in control units, we recommend to maintain a distance of some 9 mm to neighbouring units (by means of packing block SZ-FST2).
(2) No shunt connection of contacts due to closed time.

Selectiontable

contacts	power loss W (1)	order deta type code	order code	bbn 4016779 EAN	$\begin{array}{\|l\|l} \text { price } \\ 1 \mathrm{pc} . \\ \text { DM } \end{array}$	price group	weight 1 pc . kg	pack. unit pc.

Same potential for local and central control.
Control voltages of 12,24 and 230 VAC as well as any special voltages upon request.
coil voltage $\mathrm{U}_{\mathrm{c}}=12 \mathrm{~V} / 50 \mathrm{~Hz}$

$\begin{aligned} & 1 \mathrm{NO} \\ & 3 \mathrm{NO} \\ & 2 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	$\begin{gathered} 5(7) \\ 12(18) \\ 12(18) \end{gathered}$	$\begin{aligned} & \text { E } 257 \text { C 10-12 } \\ & \text { E } 257 \text { C 30-12* } \\ & \text { E } 257 \text { C 21-12* } \end{aligned}$	GH E257 1001 R1104 GH E257 1001 R1304 GH E257 1001 R1214	$\begin{aligned} & 347600 \\ & 347709 \\ & 347808 \end{aligned}$		$\left\lvert\, \begin{aligned} & 0.100 \\ & 0.200 \\ & 0.200 \end{aligned}\right.$	10 5 5
coil voltage $\mathrm{U}_{\mathrm{c}}=24 \mathrm{~V} / 50 \mathrm{~Hz}$							
$\begin{aligned} & 1 \mathrm{NO} \\ & 3 \mathrm{NO} \\ & 2 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	$\begin{gathered} 5(7) \\ 12(18) \\ 12(18) \end{gathered}$	E 257 C 10-24 E 257 C 30-24 E 257 C 21-24	GH E257 1001 R0101 GH E257 1001 R0301 GH E257 1001 R0211	$\begin{aligned} & 347907 \\ & 348003 \\ & 346801 \end{aligned}$		0.100 0.200 0.200	10 5 5
coil voltage $\mathrm{U}_{\mathrm{c}}=230 \mathrm{~V} / 50 \mathrm{~Hz}$							
$\begin{aligned} & 1 \mathrm{NO} \\ & 3 \mathrm{NO} \\ & 2 \mathrm{NO}+1 \mathrm{NC} \\ & \hline \end{aligned}$	$\begin{gathered} 5(7) \\ 12(18) \\ 12(18) \end{gathered}$	E 257 C 10-230 E 257 C 30-230 E 257 C 21-230	GH E257 1001 R0106 GH E257 1001 R0306 GH E257 1001 R0216	$\begin{array}{r} 346900 \\ 347006 \\ 347105 \\ \hline \end{array}$		$\begin{aligned} & 0.100 \\ & 0.200 \\ & 0.200 \end{aligned}$	10 5 5

Metallically separated control inputs for local and central control with different potentials.
Control voltages $12 / 230$ V AC; $24 / 230$ V AC and $230 / 230$ V AC as well as any special voltages upon request.
coil voltage $\mathrm{U}_{\mathrm{c}}=12 \mathrm{~V} / 50 \mathrm{~Hz}, 230 \mathrm{~V} / 50 \mathrm{~Hz}$

coil voltage $\mathrm{U}_{\mathrm{c}}=230 \mathrm{~V} / 50 \mathrm{~Hz}, 230 \mathrm{~V} / 50 \mathrm{~Hz}$

(1) values in brackets indicate power loss at permanent excitation

* latching relay with 3 contacts in 12 V style only central OFF!

connection examples

E 257 C 10

E 258 C 21/C 30

SK 0071 Z 97
E 257 C 21/C 30

Switching lamp loads

The following table indicates the number of lamps that can be connected per phase at $230 \mathrm{~V} / 50 \mathrm{~Hz}$. Note:
a) increased current consumption of 1.1 x the rated voltage has been taken into account.
b) failure of approx. 5% of the lamps has been taken into account to allow for additional load caused by preheating current generated by non-igniting lamps.

For mechanical latching relays and installation relays of series E 250 and E 259

type of lamp	lamp Watt	ata $\mathrm{I}_{\mathrm{n}} / \mathrm{A}$	permissible number of lamps (230 V, 50 Hz)
incandescent lamps and halogen lamps for 230 V$\text { * } P_{\text {per. }}=2300 \mathrm{~W}$	15	0.065	153
	25	0.108	92
	40	0.174	57
	60	0.26	38
	75	0.33	30
	100	0.43	23
	150	0.65	15
	200	0.87	11
	300	1.30	7
	500	2.17	4
fluorescent lamps - uncorrected ${ }^{*} P_{\text {per. }}=1300 \mathrm{~W}$	4	0.17	31
	6	0.16	33
	8	0.145	37
	10	0.17	31
	13	0.165	32
	15	0.33	16
	16	0.20	26
	18	0.37	14
	20	0.37	14
	30	0.365	14
	36	0.43	12
	40	0.43	12
	58	0.67	8
	65	0.67	8
- twin-lamp circuit${ }^{*} P_{\text {per. }}=3500 \mathrm{~W}$	18	0.37	39
	20	0.37	39
	30	0.365	39
	36	0.43	33
	40	0.43	33
	58	0.67	21
	65	0.67	21
- shunt compensation${ }^{*} P_{\text {per. }}=500 \mathrm{~W}$	4	0.09	22
	6	0.08	25
	8	0.07	29
	10	0.09	22
	13	0.08	25
	15	0.17	12
	16	0.10	20
	18	0.19	10
	20	0.19	10
	30	0.18	11
	36	0.22	9
	40	0.22	9
	58	0.34	6
	65	0.34	6
metal halide lamps - uncorrected (type: HQL) ${ }^{*} P_{\text {per. }}=1300 \mathrm{~W}$	35	0.5	10
	70	1.0	5
	150	1.8	2
	250	3.0	1
	400	3.5	1
	1000	9.5	-
	2000	10.3	-

For electronically-controlled latching relays of series E 260

type of lamp	$\begin{array}{l}\text { lamp data } \\ \\ \\ \\ \text { Watt }\end{array}$		$\begin{array}{l}\text { permissible } \\ \text { number } \\ \text { of }\end{array}$
lamps			
(230 V, 50 Hz$)$			

	transformers for x Watt	permissible numberof transformers
transformers	20	20
for halogen	50	8
low-volt lamps	75	5
	100	4
	150	2
	200	2
	300	1

E261-12

E261 C-230

E261 C-12

E266 C-230

E260 C

Important!

The same potential must be present at terminals A1, B1 and C1.

Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022

```
mounting depth: }\quad68\textrm{mm
mounting width: single and two-pole switches: 17.5 mm = 1 module
colour:
grey, RAL 7035
```

Installation instruction: do not install the device in the immediate vicinity of inductive loads.

Specialfeatures

- low switching noise
- long serviceable life
- labels snap-on (see page 50)
- quick fastening as snap-on clip easily accessible, detachable from below
- compact design
- captive screws of the recessed/slotted head type system Pozidriv size 1
- cross-wiring, coils and main connections
- safe connection ensured by box terminals
- protection against electric shock according to DIN VDE 0106 Part 100 (BGV A2)
- control indicator with LED
- position is maintained in the case of a voltage drop

Technical data

rated switching capacity:
filament lamp load:
fluorescent lamp load (twin-lamp circuit):
fluorescent lamp load shunt-compensated:
fluorescent lamp load inductive or capacitive: electronic control gear:
inductive load $\cos \varphi=0.6 / 230 \mathrm{~V} \sim$:
contact rating at DC:
minimum contact rating:
contact gap / contact material:
mechanical serviceable life, switchover at $103 / \mathrm{h}$:
serviceable life if rated load $\cos \varphi=1$ and $10^{3} / \mathrm{h}$:
serviceable life with filament lamps 1000 W and $103 / \mathrm{h}$: serviceable life if rated load $\cos \varphi=0.6$ and $10^{3} / \mathrm{h}$:
max. switching rate:
bounce time:
terminals circuit, control circuit:
ON duration at rated voltage ED:
switching safety (no parallel control):
coil voltage range:
minimum command time/interval between commands: permissible ambient temperature:
control current during local control:
control current during central control:
max. parallel capacitance of the individual control lead at $230 \mathrm{~V} \sim$:
max. parallel capacitance of the control lead at $230 \mathrm{~V} \sim$:
max. glow lamp current

- parallel to 230 V control buttons:
max. induced voltage at the 230 V control inputs:

E 260/E 260 C	E 261 SRV-230
$10 \mathrm{~A} / 250 \mathrm{~V} \sim$	$10 \mathrm{~A} / 250 \mathrm{~V} \sim$
1000 W	1600 W
1000 W	1600 W
500 W	500 W
1000 W	1600 W
700 W (lon $\leq 70 \mathrm{~A} / 10 \mathrm{~ms})$	700 W (lon $\leq 70 \mathrm{~A} / 10 \mathrm{~ms})$
650 W	650 W
100 W	100 W
$4 \mathrm{~V} \mathrm{AC} / 10 \mathrm{~mA}$	$4 \mathrm{~V} \mathrm{AC} \mathrm{/} 10 \mathrm{~mA}$
$0.5 \mathrm{~mm} / \mathrm{Ag} \mathrm{SnO}_{2}$	$0.5 \mathrm{~mm} / \mathrm{Ag} \mathrm{SnO}_{2}$
$>10^{7}$	$>10^{7}$
$>10^{5}$	$>10^{5}$
$>10^{5}$	$>10^{5}$
$>10^{4}$	$>10^{4}$
$10^{3} / \mathrm{h}$	$10^{3} / \mathrm{h}$
3 ms	

strain-relief clamp $12 \mathrm{~mm}^{2}$ strain-relief clamp $12 \mathrm{~mm}^{2}$ 100\% 100\%
99\%
0.9 to $1.1 \mathrm{Un}_{\mathrm{n}} \quad 0.9$ to $1.1 \mathrm{U}_{\mathrm{n}}$
$50 / 800 \mathrm{~ms} \quad 50 \mathrm{~ms}$
$-20^{\circ} \mathrm{C} /-4^{\circ} \mathrm{F}$ to $+50^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}-20^{\circ} \mathrm{C} /-4^{\circ} \mathrm{F}$ to $+50^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}$
$230 \mathrm{~V} \sim 115 \mathrm{~mA}$, after $10 \mathrm{~s} 8 \mathrm{~mA} \pm 20 \%$
24 V UC 140 mA , after $10 \mathrm{~s} 80 \mathrm{~mA} \pm 20 \%$
$230 \mathrm{~V} \sim 8 \mathrm{~mA}$, after $10 \mathrm{~s} 3 \mathrm{~mA} \pm 20 \%$
24 V UC 17 mA (26 mA 2 contacts) $\pm 20 \%$
$2 \mu \mathrm{~F}$ (ca. 6000 m)
$0.33 \mu \mathrm{~F}$ (ca. 1000 m)
$10 \mathrm{~mA} / 30 \mathrm{~mA}(\mathrm{E} 260 \mathrm{C}) 50 \mathrm{~mA}$
$0.2 \mathrm{Un}_{\mathrm{n}} \quad 0.2 \mathrm{U}_{\mathrm{n}}$
table "lamp load" page19

Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022

```
mounting depth:
mounting width: }\quad17.5\textrm{mm}=1\mathrm{ module
colour:
```

```
68 mm
```

68 mm
grey, RAL }703

```
grey, RAL }703
```


Special features

- position indicator per contact
- long serviceable life
- labels snap-on (see page 50)
- quick fastening easily accessible, detachable from below
- compact design
- captive screws of the recessed/slotted head type system Pozidriv size 1
- cross-wiring coils and main connections
- safe connection ensured by box terminals
- protection against electric shock according to DIN VDE 0106 Part 100 (BGV A2)

Technical data

rated switching capacity: $\quad 16 \mathrm{~A} / 250 \mathrm{~V} \sim, 10 \mathrm{~A} / 400 \mathrm{~V} \sim$
rated insulation voltage according to DIN VDE 0110:
400 V ~
filament lamp load:
10 A (2300 W)
fluorescent lamp load (twin-lamp circuit):
16 A (3500 W)
fluorescent lamp load inductive or capacitive:
10 A (1300 W)
electronic control gear:
10 A (2300 W) max. inrush current $\leq 140 \mathrm{~A} / 10 \mathrm{~ms}$
fluorescent lamp load (shunt-compensated):
4 A (500 W)
inductive load, $\cos \varphi=0.6 / 230 \mathrm{~V}$:
10 A (1300 W)
contact rating at DC:
100 W
minimum contact rating:
6 V AC/50 mA
power consumption:
hold: $2 \mathrm{~W} / 3.5 \mathrm{VA}$
pickup: 3.2 W/6 VA
power loss of coils $A C+D C$:
single and two-pole 1.9 W
ON duration (ED):
100% (1)
coil voltage range:
0.9 to $1.1 \times \mathrm{U}_{\mathrm{n}}$
switching safety at rated voltage:
99\%
contact gap / contact material:
closed time:
$3 \mathrm{~mm} / \mathrm{Ag} \mathrm{SnO} 2$
$10-20 \mathrm{~ms}$
time to contact:
5-15 ms
bounce time:
3 ms
mechanical serviceable life:
$>10^{6}$ switchovers
serviceable life if rated load $\cos \varphi=1$ and $10^{3} / \mathrm{h}$: $\quad>10^{5}$ switchovers
$\cos \varphi=0.6$ and $10^{3} / \mathrm{h}: \quad>2 \times 10^{4}$ switchovers
serviceable life if filament lamps 1000 W and $10^{3} / \mathrm{h}: \quad>10^{5}$ switchovers
max. switchovers:
permis. temperatur at mounting position:
$10^{3} / \mathrm{h}$
glow lamps parallel to control buttons:
$-5^{\circ} \mathrm{C} /+23^{\circ} \mathrm{F}$ to $+50^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}$
with capacitator $1 \mu \mathrm{~F} / 250 \mathrm{~V} \sim$, parallel to coil:
with capacitator $2.2 \mu \mathrm{~F} / 250 \mathrm{~V} \sim$, parallel to coil:
5 mA
10 mA
max. induced voltage at the control inputs:
max. parallel capacitance of control lead (length):
connections - switching circuit: M 3.5

- control circuit: M 3.5

15 mA
$0.2 \times U_{n}$
$0.06 \mu \mathrm{~F}$ (ca. 200 m)
strain-relief clamp $12 \mathrm{~mm}^{2}$
strain-relief clamp $12 \mathrm{~mm}^{2}$
(1) In the case of permanent excitation of several series-connected installation relays, provide for adequate ventilation according to power loss calucluation DIN VDE 0660 Part 500 . We recommend to maintain a distance of some 9 mm to neighbouring units (by means of packing block SZ-FST2).

Selectiontable

contacts W	power loss type code	order details order code	EAN	bbn 4012233 DM	price 1 pc .	price group kg	weight 1 pc . pc.	pack. unit
coil voltage $\mathrm{U}_{\mathrm{c}}=8 \mathrm{~V} / 50 \mathrm{~Hz}$								
$\begin{aligned} & 1 \mathrm{NO} \\ & 1 \mathrm{NO}+1 \mathrm{NC} \\ & 2 \mathrm{NO} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 6 \end{aligned}$	$\begin{array}{\|l\|l} \text { E } 259 \text { R10-8 } \\ \text { E } 259 \\ \text { E } 259 \text { R20-8 } \end{array}$	GHE 2591001 R1101 GHE 2591001 R1111 GHE 2591001 R1201	009206 009404 009602			0.107 0.114 0.114	$\left\lvert\, \begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}\right.$

coil voltage $\mathrm{U}_{\mathrm{c}}=12 \mathrm{~V} / 50 \mathrm{~Hz}$

1 NO	4	E 259 R10-12	GHE 2591001 R1104	009305	0.107	10
$1 \mathrm{NO}+1 \mathrm{NC}$	4	E 259 R11-12	GHE 2591001 R1114	009503	0.114	10
2 NO	6	E 259 R20-12	GHE 2591001 R1204	009701	0.114	10

coil voltage $\mathrm{U}_{\mathrm{c}}=24 \mathrm{~V} / 50 \mathrm{~Hz}$

1 NO	4	E 259 R10-24	GHE 2591001 R0101	008605	0.107	10
$1 \mathrm{NO}+1 \mathrm{NC}$	4	E 259 R11-24	GHE 2591001 R0111	008803	0.114	10
2 NO	6	E 259 R20-24	GHE 2591001 R0201	009008	0.114	10

coil voltage $\mathrm{U}_{\mathrm{c}}=230 \mathrm{~V} / 50 \mathrm{~Hz}$

1 NO	4	E 259 R10-230
1 NO +1 NC	4	E 259 R11-230
2 NO	6	E 259 R20-230

|GHE 2591001 R0106

008704 008902

 009107| 0.099 | 10 |
| :--- | :--- |
| 0.105 | 10 |
| 0.105 | 10 |

coil voltage DC

1 NO + 1 NC	1.9 (4)	E 259 R11- 24 DC	GHE 259 1002 R0111
	$1.9(4)$	E 259 R11- 48 DC	GHE 259 1002 R0113
	$1.9(4)$	E 259 R11- 60 DC	GHE 259 1002 R2112
	$1.9(4)$	E 259 R11-110 DC	GHE 259 1002 R0114
	$1.9(4)$	E 259 R11-220 DC	GHE 259 1002 R0116

403405						
403603						
47040	7					
403702						
40380	1	$	\quad	$	0.118	10
:---	:---					
0.118	10					
0.118	10					
0.118	10					
0.118	10					

$$
\begin{aligned}
\text { special voltages: } & 4,6,36,42,48,60,110,127,180,240 \text { and } 400 \mathrm{~V} / 50 \mathrm{~Hz} \\
\text { as well as } & 8,24,42,110,115,127,220,240 \text { and } 380 \mathrm{~V} / 60 \mathrm{~Hz} \\
\text { or } & 4,6,8,12,24,36,42,48,60,110 \text { and } 220 \mathrm{~V} \mathrm{DC}
\end{aligned}
$$

For special voltages and frequencies, the following surcharges apply:
$\left.\begin{array}{l|c|c|c|c}\text { up to } 400 \mathrm{VAC} \\ 40 \ldots 60 \mathrm{~Hz}\end{array} \quad \begin{array}{c}\text { surcharge } \\ 1-9 \mathrm{pc} .\end{array}\right)$
terminal assignment

E 259 R 10-

E 259 R11-

E 259 R20-

SK 0020 Z 92

Equipment for panel installation on mounting rail (35 mm) according to DIN EN 50 022, or on a flat surface with screws.
mounting depth: 68 mm
mounting width: $\quad 17.5 \mathrm{~mm}=1$ module
colour: grey, RAL 7035

Application

The priority switch is used in wiring systems where existing lead cross-sections or the design of the service connection do not allow for simultaneous operation of two powerful consumers (e.g. storage heating and flowtype heater).
The priority switch disconnects the long-term consumer (storage heating) for as long as the short-term consumer (flow-type heater) is switched on.

The coil of the priority switch is connected in series to the short-term consumer. When switching on this consumer, the NC contact disconnects the heating system contactor.

Technical data

Selectiontable

for pneumatically controlled flow-type heaters

rated current range	power loss W	order details type code	order code	$\begin{aligned} & \text { bbn } \\ & 4016779 \\ & \text { EAN } \end{aligned}$	price 1 pc. DM	price group	weight 1 pc. kg	pack. unit pc.
6.7 ... 39 A	2.4	E 451-5.7 A	GH V021 0451 R0013	415903			0.1	10
18 ... 55 A	2.4	E 451-15 A	GH V021 0451 R0012	150309			0.1	10

for electronically controlled flow-type heaters

$6.7 \ldots 39 \mathrm{~A}$	2.4	E 452-5.7 A	GH V021 0452 R0012	209502			0.1

System pro M Time-delay relay (TDR)

Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022
mounting depth: system 68 mm mounting width: $\quad 17.5 \mathrm{~mm}=1$ module colour: grey, RAL 7035

Application

In commercial and industrial electrical installations, in schools, hospitals and public buildings to control automatic time schedules of machinery, lighting, heating, air-conditioning, turnstiles, gates, and tools.

Special features

- control voltages of 12 to 230 V DC and $\mathrm{AC} ; 50 / 60 \mathrm{~Hz}$ time periods of 0.1 seconds up to 40 hours in one device.
- latching rotary switch to select time base, multiplier and operating mode of the multi-function time-delay relay (TDR).
- E 234-MFR offers full operational functionality:
functions: ON delay $\begin{array}{ll}\text { returning time } & \text { RV } \\ \text { clock generator pulse-starting } & \text { TI } \\ \text { clock generator starting with space } & \text { TP }\end{array}$ passing break contact with space AW
passing make contact
ON delay and returning time
permanent ON
permanent OFF
impulse-controlled pick-up delay

EW ARV ON OFF IA

- protection against electric shock according to DIN VDE 0106 Part 100 (BGV A2).
- floating changeover contact 1 W .
- sealable cover.

Technical data

rated switching capacity:
10 A/250 V AC
filament and fluorescent lamps inductive and capacitive: 1000 W
fluorescent lamps (twin-lamp circuit):
fluorescent lamps shunt-compensated:
electronic control gear:
inductive load $\cos \varphi=0.6 / 230 \mathrm{VAC}$:
contact rating at DC:
minimum contact rating:
supply voltage:
control voltage:
voltage tolerance:
ON duration ED:
ambient temperature:
mechanical serviceable life, switchover at $10^{3} / \mathrm{h}$:
serviceable life if rated load, $\cos \varphi=1$
and filament lamps 1000 W bei $103 / \mathrm{h}$:
serviceable life if rated load, $\cos \varphi=0.6$ bei $10^{3} / \mathrm{h}$:
repeat accuracy at $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$:
setting accuracy (after one minute):
control voltage dependency between 0.8 to $1.1 \times U_{n}$:
power failure bridging time (followed by overall reset):
control current:
power consumption:
glow lamps \& shunt-compensated fluorescent lamps parallel to control pushbuttons:
max. parallel capacitance (length) of control lead:
connections - switching circuit: M 3.5

- control circuit: M 3.5

1000 W
500 W
700 W ($\left.\mathrm{I}_{\mathrm{on}} \leq 70 \mathrm{~A} / 10 \mathrm{~ms}\right)$
650 W
100 W
$4 \mathrm{~V} \mathrm{AC/10} \mathrm{~mA}$
12 ... 230 V DC/AC $50 / 60 \mathrm{~Hz}$
12 ... 230 V DC/AC $50 / 60 \mathrm{~Hz}$
$\pm 10 \%$
100\%
$-20^{\circ} \mathrm{C} /-4^{\circ} \mathrm{F} \ldots+50^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}$
$>10^{7}$
$>10^{5}$
$>10^{4}$
$\pm 0.1 \%$
$\pm 0.2 \%$
none
$\geq 0.2 \mathrm{~s}$
6-25mA $\pm 20 \%$ (1)
0.2-2.5 W
not permissible
$0.2 \mu \mathrm{~F}$ (ca. 200 m)
strain-relief clamp $12 \mathrm{~mm}^{2}$ strain-relief clamp $12 \mathrm{~mm}^{2}$
(1) Time-delay relays (TDR) are clocked internally at the supply circuit. For a few seconds currents of up to 1A will ensue.

E 234-MFR

x T2

E 234-ARV
E 234-TI 2

contact	power	orderdetails		bbn	price	price	weight	pack.
	loss		order code	4012233	1 pc.	group	1 pc.	unit
W	typecode	EAN	DM		kg	pc.		

Multifunction time-delay relay (TDR) selectable functions by rotary switch T :
$\mathrm{AV}, \mathrm{RV}, \mathrm{ARV}, \mathrm{TI}, \mathrm{TP}, \mathrm{EW}, \mathrm{AW}, \mathrm{IA}$, as well as $\mathrm{ON}=$ permanent ON and $\mathrm{OFF}=$ permanent OFF

1 W	2.5	E 234-MFR	\|GH E234 5001 R0007	748204	0.090	1/10

Time-delay relay (TDR) pick-up delayed

Time-delay relay (TDR) time-delayed after deenergization

Clock-pulse generator pulse-starting (2 non-related time settings can be selected, same time base, different multipliers)

Time-delay relay (TDR) passing break contact

1 W	2.5	E 234-AW	GH E234 5001 R0004	748501	0.085	1/10

Time-delay relay (TDR) passing make contact

Time-delay relay (TDR) pick-up delayed and time-delayed after deenergization
(2 non-related time settings can be selected, same time base, different multipliers)

time base: set by T switch
basic values $0.1 \mathrm{~s} ; 0.5 \mathrm{~s} ; 2 \mathrm{~s} ; 5 \mathrm{~s} ; 1 \mathrm{~min}$.; 5 min .; $1 \mathrm{~h} ; 2 \mathrm{~h} ; 4 \mathrm{~h}$.
multiplier: \quad set by xT switch in the range between 1 and 10 .
time base \times multiplier is the time set.
LED: \quad flashes when the time is running if the make contact is in its normal position (15-16 closed), and is constantly lit if the make contact $15-18$ is closed.

wiring diagram

terminal assignment:

$$
\begin{aligned}
\mathrm{B} 1-\mathrm{A} 2(\mathrm{~N})= & \text { supply voltage } \\
& 12 \ldots 230 \mathrm{~V} \text { DC } / \mathrm{AC}(50 / 60 \mathrm{~Hz}) \\
\mathrm{A} 1-\mathrm{A} 2(\mathrm{~N})= & \text { control input } 12 \ldots 230 \mathrm{~V} \\
& \mathrm{DC} / \mathrm{AC}(50 / 60 \mathrm{~Hz}) \\
& \mathrm{A} 1 / \mathrm{B} 1=\mathrm{DC}+\text { and } \mathrm{L}, \mathrm{~A} 2=\mathrm{DC}-\text { and } \mathrm{N}
\end{aligned}
$$

$15=$ make contact input
$16=$ make contact output NC contact
18 = make contact output NO contact
The control input is isolated so that parallel operation is possible. The make contacts are potential-free. The rated insulation voltage with respect to the power supply and the control input is 250 V .
Glow lamps parallel to the control buttons and shunt-compensated fluorescent lamps are not permitted.
Caution: Different control and supply voltages may only be drawn from one single voltage source.

Individual functions of time-delay relay (TDR) E 234

When applying the control voltage, the make contact changes from $15-16$ to 15-18. When interrupting the control voltage, the time sequence commences, and when it ends it returns to its normal position 15-16.
Can be connected in series during a time sequence.

$A V=O N$ delay

When applying the control voltage, the time sequence commences and when it ends the make contact switches from 15-16 to 15-18. The time sequence starts again after a break.

TI = clock-pulse generator with pulse starting (flasher relay)

For as long as the control voltage is applied, the make contact switches from 15-16 to 15-18 and back. In the case of E 234 MFR, the switch-over time is the same for both directions and conforms to the time set. In the case of E 234-TI2 both timings can be set independently (same time base, but additional multiplier). When applying the control voltage, the make contact switches immediately to 15-18.

TP = clock-pulse generator starting with clock-pulse space

Offers same functions as TI, except that, when applying the control voltage, the contact does not switch to 15-18, but remains at 15-16 for the time being.
$\mathrm{IA}=$ impulse-controlled pickup delay

As from a control pulse of 20 ms , time sequence t 1 commences, when it ends, the make contact switches for 1 second from 15-16 to 15-18 (e.g. for an automatic door opener).
$E W$ = passing make relay

When applying the control voltage, the make contact switches from 15-16 to 15-18 and returns to its normal position after the impulse time has expired. When interrupting the control voltage during the inpulse time, the contact returns to 15-16 immeditely and the remaining time is reset.

When the control voltage is interrrupted, the make contact switches from 15-16 to 15-18 and, after the impulse time, returns to its normal position. When applying control voltage during the impulse time, the make contact returns to 15-16 immediately and the remaining time is reset.

ARV = ON delay and returning time

When applying the control voltage, the time sequence commences, and when it ends the make contact switches from 15-16 to 15-18. If the control voltage is subsequently interrupted, a new time sequence commeces, and when it ends, the make contact returns to its normal position15-16. The returning time of E 234-MFR lasts for as long as the ON delay does, separate settings are possible in the case of E 234ARV (same time base, but additional multiplier). The time sequence starts again after the pickup delay has been interrupted.

System pro M

Elapsed-time meter

Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022
mounting depth: $\quad 68 \mathrm{~mm}$
mounting width: $\quad 17.5 \mathrm{~mm}=1$ module
colour: grey, RAL 7035

Application

Elapsed-time meters are used to record operating times as well as to determine idle times and off times of commercial, industrial and household plant and equipment.

Technical data

	AC equipment	DC equipment
rated voltage:	$\begin{aligned} & 50 \mathrm{~Hz}: 24 \mathrm{~V}, 230 \mathrm{~V} \\ & 60 \mathrm{~Hz}: 24 \mathrm{~V}, 120 \mathrm{~V}, 240 \mathrm{~V} \end{aligned}$	DC 12 V ... 48 V
voltage tolerance:	+6\% - 10\%	$\pm 10 \%$
powerconsumption:	1.5 VA	ca. 20 mW
ambient temperature:	$-15^{\circ} \mathrm{C} /+5^{\circ} \mathrm{F} \ldots+50^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}$	$-10^{\circ} \mathrm{C} /+23^{\circ} \mathrm{F} \ldots+50^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}$
counting capacity:	100000 h	100000 h
reading accuracy:	0.01 h	0.1 h
operation display:	fast running	LED display
protectionagainst electric shock:	according to DIN VDE 0106 Part 100 (BGV A2)	according to DIN VDE 0106 Part 100 (BGV A2)
connection cross section:	up to $10 \mathrm{~mm}^{2}$	up to $10 \mathrm{~mm}^{2}$

Selectiontable

rated voltage	order details type code	order code	bbn 4012233 EAN	price 1 pc. DM	price group	weight 1 pc. kg	pack. unit pc.
AC $230 \mathrm{~V} / 50 \mathrm{~Hz}$	E 233-230	GH E233 1001 R0006	630004			0.050	10
AC $24 \mathrm{~V} / 50 \mathrm{~Hz}$	E 233-24	GH E233 1001 R0001	630103			0.050	10
DC $12 \mathrm{~V} \ldots 48 \mathrm{~V}$	E233-12/48	GH E233 1001 R0004	630202			0.050	10

other rated voltages on request

rated voltage	order details type code	order code	$\left\lvert\, \begin{aligned} & \text { bbn } \\ & 4016779 \end{aligned}\right.$ EAN	price 1 pc. DM	price group	weight 1 pc. kg	pack. unit pc.
AC $240 \mathrm{~V} / 60 \mathrm{~Hz}$	E 233-240/60 Hz *	GH E233 1001 R6005	365901			0.050	10
AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$	E 233-120/60 Hz *	GH E233 1001 R5005	366007			0.050	10
AC $24 \mathrm{~V} / 60 \mathrm{~Hz}$	E 233-24/60 Hz *	GH E233 1001 R5001	366106			0.050	10

*UL approval
dimension drawing
in mm

wiring diagram

System pro M Modular bell

dimension drawing
in mm

SM1
SK 0186 Z 99

Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022

mounting depth:	68 mm
mounting width:	$17.5 \mathrm{~mm}=1$ module
colour:	grey, RAL 7035

Application

The modular bell gives acoustic signals in building installations.

Technical data

rated voltage:	$12 \mathrm{~V} \sim$ and $230 \mathrm{~V} \sim 50 \mathrm{~Hz}$
sound level:	ca. 80 dB A
protection against electric shock:	according to DIN VDE 0106 Part 100 (BGV A2)
connection cross section:	up to $1 \times 6 \mathrm{~mm}^{2}$ or $2 \times 2.5 \mathrm{~mm}^{2}$

Selectiontable

description	\| power loss W	order detail type code	order code	bbn 8012542 EAN	price 1 pc. DM	price group	$\begin{aligned} & \text { weight } \\ & 1 \mathrm{pc} . \\ & \mathrm{kg} . \\ & \hline \end{aligned}$	pack. unit pc.
modular bell 230 V *	5.5	SM 1/230	GH V021 4166 R0001	007104			0.125	6
modular bell 12 V *	3.6	SM 1/12	GH V021 4158 R0001	007203			0.125	6

* not suitable for permanent operation

Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022
mounting depth: $\quad 68 \mathrm{~mm}$
mounting width: $\quad 8 / 16 \mathrm{VA}: \quad 35 \mathrm{~mm}=2$ modules
$24 \mathrm{VA}: \quad 52 \mathrm{~mm}=3$ modules
grey, RAL 7035

Application

For the supply of bell, chime, intercom, buzzer and door opener systems as well as for alarm and signalling systems with protective extra-low voltage. Bell transformers are designed for short-term loads.

Technical data

rated input voltage: rated output voltage:
rated output power:
rated output current: class of protection:
degree of protection:
protection against electric shock:
rated /
ambient temperature:
connection cross section:
power loss:
Selection table

dimension drawings

in mm

EN 50 081-1,

Technical data	measuring instruments with analog display VLM and AMT	measuring instruments with digital display VLM-D1, AMT-D1 and FRZ-D1
measuring element : accuracy: overrange: power consumption	moving iron class 1.5 20% in relation to rated current and rated voltage voltmeter $300 \mathrm{~V}: 1.5 \mathrm{VA}$ $500 \mathrm{~V}: 4 \mathrm{VA}$ ammeter $5 \mathrm{~A}: 0.3 \mathrm{VA}$ $10 \mathrm{~A}: 0.6 \mathrm{VA}$ $25 \mathrm{~A}: 1.0 \mathrm{VA}$ $30 \mathrm{~A}: 1.2 \mathrm{VA}$	electronic class 0.5 - $<2 \mathrm{VA}$
supply voltage: frequency response range: test voltage: operating temperature:	$\begin{aligned} & 50 \ldots 60 \mathrm{~Hz} \\ & 2000 \mathrm{~V} \end{aligned}$ within the accuracy class: $20^{\circ} \mathrm{C} / 68^{\circ} \mathrm{F} \pm 10{ }^{\circ} \mathrm{C}$ otherwise : $-25^{\circ} \mathrm{C} /-13^{\circ} \mathrm{F}$ to $+75^{\circ} \mathrm{C} / 167^{\circ} \mathrm{F}$	$\begin{aligned} & 230 \mathrm{~V} \sim \\ & 50 \ldots 60 \mathrm{~Hz} \\ & 2000 \mathrm{~V} \\ & -10^{\circ} \mathrm{C} /+14^{\circ} \mathrm{F} \text { to }+55^{\circ} \mathrm{C} / 131^{\circ} \mathrm{F} \end{aligned}$
degree of protection: protection against electric shock: casing material :	IP 20 according to DIN VDE 0106 Part 100 (BGV A2) plastic, self-extinguishing (class VO according to UL 94)	$\text { IP } 20$ according to DIN VDE 0106 Part 100 (BGV A2) plastic, self-extinguishing (class VO according to UL 94)
colour: mounting position: terminals:	grey, RAL 7035 vertical box terminals up to $10 \mathrm{~mm}^{2}$	grey, RAL 7035 vertical or horizontal box terminals up to $10 \mathrm{~mm}^{2}$
effective ranges: voltage current frequency for transformer connection	$300 \mathrm{~V}, 500 \mathrm{~V} \sim$ (direct measurement) 5-10-15-20-25 and 30 A (direct measurement) $\begin{array}{\|l} \ldots / 5 \mathrm{~A} \\ 5-10-20-30-50-75-80-100-150-200-250-300- \\ 400-500-600-800-1000-1250 \text { and 1500 A } \end{array}$	```VLM-D1: 600 V AC (direct measurement) FRZ-D1: 40 ... 80 Hz ... / 5 A, codable: AMT-D1: 15-20-25-40-60-99, 9-150-200-250- 400-600 and 999 A```
scales: division and needle:	upper range values according to DIN 43701 according to DIN 43802	

dimension drawings, in mm

wiring diagrams

electric connection of analog voltmeter VLM with changeover switch MCV 4

electric connection of ditigal voltmeter VLM 1-D1 with changeover switch MCV 7

electric connection of analog ammeter AMT for tranformer measurement with changeover switch MCA4

electric connection of digital ammeter AMT-D1 for transformer measurement with changeover switch MCA4

AMT ${ }^{1 /}$

MCV 7

Selectiontable

| effective | power
 range | loss |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0-\ldots$ | W | |

Measuring instruments with analog display, class 1.5

moving-iron measuring instruments for alternating currents (transformer measurement)

transformer connection 5 A	AMT 1/A1	GH V022 0580 R0001	000608		0.100	1

exchangeable scales for ammeter AMT 1/A1

Measuring instruments with digital display, class 0.5

measuring instrument for alternating voltage (direct measurement)

| 600 V | 2.0 | VLM-D1 | GH V022 4087 R0001 | 358701 | | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

measuring instrument for alternating current with coding switch to select effective ranges (transformer measurement)

Changeoverswitches

voltmeter changeover switch

L1, L2, L3	0.5	MCV 4	GH V022 5902 R0001	06280 6			0.095	1
L1, L2, L3, N	0.5	MCV 7	GH V022 5910 R0002	062905			0.110	1

ammeter-changeover switch

| 0.5 | MCA 4 | GH V022 5928 R0003 | 063001 | | 0.110 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0.1-2-3$ | 0.5 | | | | | |

(1) bbn no. 4012233

code AMT - D1

12345678					12345678				15
150	11	1010	1010	OOFF		110	110	OOFF	
	1			ON	1		1	ON	
200	11	1010	10	OFF	1	10	110	OFF	0
	1			ON			1	ON	
250	11	1010	10	$\left\lvert\, \begin{gathered} \mathrm{OFF} \\ \mathrm{ON} \end{gathered}\right.$	11	10	110	OFF	25
400	110	10	111	1 OFF		10	110	OOFF	
		1		ON			1	ON	0
600	110	101	1010	OOFF		10	10	OOFF	60
		,		ON			11	ON	60
999	110	101	110	$\begin{array}{\|c\|} \hline 1 \mathrm{OFF} \\ \mathrm{ON} \end{array}$		10		OFF	99,9

Before using the measuring instrument, adapt device to actual transformation ratio of the transformer by using the coding switch.
wiring diagrams

AMT - D1

FRZ - D1
Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022

mounting depth:	68 mm
mounting width:	$54 \mathrm{~mm}=3$ modules
colour:	grey, RAL 7035

Specialfeatures

- visible operation check
- positionindicator
- preselection of ON or OFF position
- permanent ON / OFF switch
- summer time and winter time changeover through bi-directional precision positioning
- transparent cover sealable
- protection against electric shock according to DIN VDE 0106 Part 100 (BGV A2)

Joint technical data

rated voltage: switching capacity: powerconsumption: permissible ambient temperature: switching position: contact: casing and insulation material: electric connection : degree of protection: class of protection:

230 V ~ $\pm 10 \%$
16 (4) A/250 V p, cos j=1 $(\cos j=0.6)$
max. 2.5 VA
$-20^{\circ} \mathrm{C} /-4^{\circ} \mathrm{F} \ldots+50^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}$
with control segment
potential-free, maximum opening less than $3 \mathrm{~mm}(\mu)$
heat resistant, self-extinguishing thermoplastic
box terminals
IP 20 according to DIN 60529
II according to EN $60335-1$ if installed as prescribed

Selection table

contacts	switching capacity	power loss W	order details type code	order code	$\begin{array}{\|l} \text { bbn } \\ 4016779 \\ \hline \text { EAN } \end{array}$	price 1 pc. DM	price group	weight 1 pc. kg	pack. unit pc.

Synchronous time switches without running reserve

drive:	self-starting synchronous motor
rated voltage:	$230 \mathrm{~V}, 50 \mathrm{~Hz} \mathrm{©}$

time dial: $\mathbf{2 4} \mathbf{h}$ ($\mathbf{4 8}$ segments)

Quartz time switches with approx. 150 h running reserve at $20^{\circ} \mathrm{C} / 68^{\circ} \mathrm{F}$

drive:	quartz-controlled stepping motor
rated voltage:	$230 \mathrm{~V} \sim, 45-60 \mathrm{~Hz} \oplus$
accuracy:	$\leq 1 \mathrm{~s} /$ day at $20^{\circ} \mathrm{C} / 68^{\circ} \mathrm{F}$
start-up after running reserve is exhausted:	after a few minutes
full running reserve is available:	approx. 3 days after connection to operating voltage

Time dial: 24 h (48 segments)

1 W	H16 A	5	STU 8011 N	GH V021 8011 R0003	429009		0.275	1

Cover for terminals to be mounted on rails, sealable

(1) special voltages on request
(2) bbn no.: $\mathbf{4 0} 12233$

switching intervals

time switch type	switching intervals on 24 h dial	segments
STU 6011 N	30 min	48 segments
STU 8011 N	30 min	48 segments

STU 6011 S
STU 8011 S

wiring diagram STU 6011 N, STU 8011 N

dimension drawing

in $\mathbf{m m}$

STT-111/117/127/227 N

Timer-programmable time switches, microprocessor-controlled

Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022 flange frame installation in doors and cover
mounting depth: 68 mm
mounting width: STT-111, -117, -127, $-22735 \mathrm{~mm}=2$ modules STT-467, -467F $\quad 105 \mathrm{~mm}=6$ modules
colour: grey, RAL 7035

The initial setting of STT digital time switches is according to CET and includes automatic adjustment to summer time and winter time.

Technical data

	$\begin{aligned} & \text { STT-111 N, STT-117 N } \\ & \text { STT-127 N, STT-227 N } \end{aligned}$	$\begin{aligned} & \text { STT-467 } \\ & \text { STT-467F } \end{aligned}$
rated voltage: frenquency: switching capacity at $250 \mathrm{~V} \sim$:	$\begin{aligned} & 230 / 240 \mathrm{~V} \sim+6 \%-10 \% \\ & 50 \ldots 60 \mathrm{~Hz} \\ & \mu 16 \mathrm{~A}, \cos \varphi=1 \\ & \mu 10 \mathrm{~A}, \cos \varphi=0.6 \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} / 240 \mathrm{~V} \sim+6 \%-10 \% \\ & 50 \ldots 60 \mathrm{~Hz} \\ & \mu 10 \mathrm{~A}, \cos \varphi=1 \\ & \mu \quad 6 \mathrm{~A}, \cos \varphi=0.6 \end{aligned}$
contact complement:	STT-111: 1 NO, STT-117: 1 S STT-127: 1 W, STT-227: 2 W	4 W
contacts:	potential-free	potential-free
contact opening	< 3 mm (μ)	$<3 \mathrm{~mm}$ (μ)
contact material:	AgSnO_{2}	Ag CdO
power consumption	max. 10 VA	7 VA
running reserve at $20^{\circ} \mathrm{C} / 68^{\circ} \mathrm{F}$	ca. 3 year	3 years; data save in OFF position 10 years
accuracy:	$\leq 1 \mathrm{~s} /$ day at $20^{\circ} \mathrm{C} / 68^{\circ} \mathrm{F}$	$\begin{aligned} & \leq 1 \mathrm{~s} / \text { day at } 20^{\circ} \mathrm{C} / 68^{\circ} \mathrm{F} \\ & \text { STT-467F DCF } 77 \text { synchronous } \end{aligned}$
minimum switching interval:	1 minute	1 minute/1 second pulse programme 1-59 sec.
switc	to the second	to the second
time base:	quart	quartz STT-467F Quartz, DCF 77 time
permissible ambient temperature:	$-10^{\circ} \mathrm{C} /+14^{\circ} \mathrm{F} \ldots+50^{\circ} \mathrm{C} / 122{ }^{\circ} \mathrm{F}$	$\begin{aligned} & \text { timer }-10^{\circ} \mathrm{C} /+14^{\circ} \mathrm{F} \ldots+45^{\circ} \mathrm{C} / 113^{\circ} \mathrm{F} \\ & \text { aerial }-20^{\circ} \mathrm{C} /-4^{\circ} \mathrm{F} \ldots+70^{\circ} \mathrm{C} / 158^{\circ} \mathrm{F} \end{aligned}$
class of protection	Il according to EN $60335-1$	II according to EN $60335-1$
degree of protection:	IP 20 according to EN 60529	IP 20 according to EN 60529
protection against electric shock	according to DIN VDE 0106 Part 100 (BGV A2)	according to DIN VDE 0106 Part 100 (BGV A2)
channels/memory locations:	STT-111: 1/14, STT-117: $1 / 14$ STT-127: 1/36, STT-227: 2/36	$\begin{aligned} & \text { STT-467: 4/128 } \\ & \text { STT-467F: } 4 / 128 \end{aligned}$
battery	environmentally friendly lithium	environmentally friendly lithium
casing- and insulation material:	heat-resistant, self-extinguishing thermoplast	heat-resistant, self-extingushing thermoplast

programmable time switches with microprocessor-controlled electronics

Special features STT-111 N, STT-117 N, STT-127 N, STT-227 N

- daily and weekly programme pre-selectableswitching (manual) does not change programme
- easy to operate pre-selectable switching
- holiday option interrupting the permanent ON/OFF
automatic programme for 1 to 99 days
- random switching (only STT-127 N)
- transparent cover sealable
- adjusts automatically to summer time/winter time - assignment of own blocks for one, certain or all days of the

contact complement	memory locations	power loss W	order detail type code	order code	$\begin{array}{\|l} \text { bbn } \\ 4016779 \\ \text { EAN } \end{array}$	price 1 pc. DM	price group	weight 1 pc. kg	pack. unit pc.

1 channel one-day switch with 24 h programme

for 7 switch-on 7 switch-off times (14 memory locations)

1 channel one day / one week time switch with 24 h/7d programme
for 7 switch-on 7 switch-off times (14 memory locations) freely assignable

1 NO	14	6	STT-117 N	GH V0210859 R0022	42940 5			0.13

1 channel one day / one week time switch with $24 \mathrm{~h} / 7 \mathrm{~d}$ programme and random switching
36 memory locations. Individualised blocks.

1 W	\| 36	16	STT-127 N	GH V021 0859 R0023		0.13	1

$\mathbf{2}$ channel one day / one week time switch with $\mathbf{2 4}$ h / $\mathbf{7}$ d programme

36 memory locations freely assignable to channel 1 or 2. Individualised blocks.

2 W	36	5	STT-227 N	GH V021 0859 R0024	42960 3			0.16

Accessories

(1) bbn no. : 4012233
dimension drawings

Random programme of STT-127 N:

is activated by pushing the "RND pushbutton" and runs during the assigned periods. The ON duration varies from 10 to 120 minutes.

SK 0107 Z 00

Assignment of blocks for STT-117 N, STT-127 N, STT-127 N, STT467 and STT-467 F:

Assigning individualised blocks of several days multiplies the number of available switching possibilites,
e.g. Tuesday - Saturday 9 a.m. ON
(block command = only 1 memory location)
Tuesday 6 p.m. OFF (1 memory location)
Wednesday to Friday 8 p.m. OFF
(block command = only 1 memory location)
Voltage drop:
The contact is released, relay picks up when voltage has recovered, if no switching time occurs.

programmable time switches with mircoprocessorcontrolled electronics and radio control

Special features STT-467,STT-467F

- daily, weekly and pulse programme (1-59 s)
- large LCD display
- operator is guided by flashing symbols
- daily, weekly and pulse programme can be combined
- any holiday programmes up to 7 days' duration are possible as $1 \times$ switching. Is deleted automatically upon completion.
holiday option interrupting the
automatic programme 1-45 days
permanent ON/OFF/automatic individual configuration for each channel
- pre-selectable switching (manual) without changing existing programme
- programmed from outside the distribution board independently of supply system, ends with data save
- summer time / winter time changeover can be activiated one week in advance
- transparent cover sealable

contact complement	memory locations	power loss W	order details type code	order code	bbn 4016779 EAN	price 1 pc. DM	price group	weight 1 pc . kg	pack. unit pc.

4 channel one-day / one week time switch with $\mathbf{2 4} \mathbf{h} / 7 \mathbf{d}$ and pulse programme

for 64 switch-on and 64 switch-off times, freely assignable to channel 1, 2, 3 or 4 . Individualised blocks.

Radio-controlled 4 channel one-day / one week time switch with $24 \mathrm{~h} / 7 \mathrm{~d}$ and pulse programme

 for 64 switch-on and 64 switch-off times, freely assignable to channel $1,2,3$ or 4 . Individualised blocks. Automatic setting of time and weekdays, and: summer times / winter time changeover radio-controlled by DCF 77 radio signal (aerial FA/A 1.1 required).

Aerial for DCF 77 signal reception

in surface mounting casing IP 54 with LED display. Connection of up to 10 timers to the 2-core aerial bus.

4changeover switches
STT-467 (4 channels)
dimension drawings
in $\mathbf{m m}$

STT-467 ...
SK 0201 Z 99

SK 0074 Z 95

4 changeover switches
STT-467F (4 channels) radio-controlled via aerial DCF 77

Radio control of STT-467F with aerial FA/A 1.1

The radio timer adapts fully automatically to the standard time transmitted via radio control, thus using the most precise timing method available. The long-wave receiver integrated into the aerial receives the time frames that are transmitted by the official DCF 77 time transmitter. The timer is synchronised after approx. 2 to 3 minutes, upon receipt of two identically coded signals. Then, synchronisation is permanent. Transmitter DCF 77 is based in Mainflingen near Frankfurt /Main and has a reach of some 1,000 km (For best results, aerials should not be installed in the basement or inside the distribution board). The connection is implemented via a 2 strand, non-shielded power cable (max. 600 m) to which up to 10 radio timers may be connected. Optical indication of polarity, short circuit and break of the aerial facilitates the installation process.

dimension drawing

in mm

Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022
mounting depth: 68 mm
mounting width: $53 \mathrm{~mm}=3$ modules
colour: grey, RAL 7035

Application

CRT modular clock thermostat is used for the individual time-related control of room temperatures in private, commercial or industrial buildings.
Thanks to the modularity of the equipment and the externally fitted probe, CRT thermostats allow for graded temperature control of various rooms in a building to be carried out from one single location.
E.g. by individualised controlling of radiator valves, blowers, air heaters, mixing valves with actuator or circulating pumps.

Technical data

rated voltage:	$230 \mathrm{~V} \sim \pm 15 \%, 50 \ldots 60 \mathrm{~Hz}$
switching capacity (relays):	$\mu 8 \mathrm{~A}, 250 \mathrm{~V} \sim$
operating temperature:	$-10^{\circ} \mathrm{C} /+14^{\circ} \mathrm{F} \ldots 55^{\circ} \mathrm{C} / 131^{\circ} \mathrm{F}$
running reserve:	48 h
battery charging time:	72 h
memory locations:	16 (8 on, 8 off)

memorylocations: 16 (8 on, 8 ofi)
protection against electric shock: according to DIN VDE 0106 Part 100 (BGV A2) connection cross section: up to $10 \mathrm{~mm}^{2}$
temperature adjustment range: $2{ }^{\circ} \mathrm{C} / 35^{\circ} \mathrm{F} \ldots 49.9^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}$
graduation of temperature scale: $0.1^{\circ} \mathrm{C} / 32.2^{\circ} \mathrm{F}$
temperature accuracy: $\quad \pm 1^{\circ} \mathrm{C}$
updating of
temperature indication: every 60 sec .
max. cable length of probe: 200 m
degree of protection of probe: IP 65
wiring diagram

Selection table

modular clock thermostat with probe

contacts	switching capacity	power loss W	order detail type code	order code	$\begin{array}{\|l\|} \text { bbn } \\ 8012542 \\ \text { EAN } \end{array}$	price 1 pc. DM	$\begin{array}{\|l} \text { price } \\ \text { group } \end{array}$	$\begin{array}{\|l} \text { weight } \\ 1 \mathrm{pc} . \\ \mathrm{kg} \end{array}$	pack. unit pc.
1 W	$\mu 8 \mathrm{~A}$	5	CRT*	GH V021 5761 R0001	024101			0.316	1

applicationexamples

SK $0013 Z 94$

SK 0014 Z 94

dimension drawings

in mm

built-in photo sensor

Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022

```
mounting depth: }68\textrm{mm
mounting width: }\quad54\textrm{mm}=3\mathrm{ modules
colour:
grey, RAL }703
```


Application

Series SDS 101 twilight switch is used to automatically switch on / off lighting systems in relation to daylight. A photo sensor measures the brightness of the light and transmits the value thus obtained to the switch. The operation of the twilight switch can be interrupted by a time switch as is required (e.g. at a specific time, on a particular day of the week).
SDS 101 is predominantly used to control the lighting of streets, shop windows and staircases.

Technical data

rated voltage:
rated voltage photo sensor: contact:
contact material:
switching capacity:
filament lamp load:
halogen lamps (230 V ~):
fluorescent lamps
uncorrected/series compensated: 800 W
shunt compensated: 200 W
twin-lamp circuit:
high pressure vapour lamps:
powerconsumption:
indication of switching position:
ON/OFF delay:
setting:
degree of protection:
permissible ambient temperature:
cable for photo sensor:
protection against electric shock:
radio interference suppression:
radio interference
suppression level: "N" according to EC Directive 76/889/EEC

Selectiontable

name	\|power loss W	order details type code	order code	$\begin{array}{\|l} \text { bbn } \\ 4016779 \\ \text { EAN } \end{array}$	price 1 pc. DM	$\begin{array}{\|l} \text { price } \\ \text { group } \end{array}$	weight 1 pc . kg	pack. unit pc.
Twilightswitch								
incl. photo sensor and mounting bracket	4	SDS 101 N	GH V021 0879 R0003	429108			0.270	11 set
incl. built-in photo sensor	4	SDS 101-L2 N	GH V021 0879 R0004	429207			0.270	1 set

(1) bbn no. : 4012233

System pro M Twilight switch SDS 101

Application in practice

example no. 1:

twilight switch and time switch

The operation of twilight switch SDS 101 N is interrupted by time switch STT $127 \mathrm{~N} / 8011 \mathrm{~N}$ every day at the same selected time, e.g. at night from 11 p.m. to 5 a.m.

STT-127N or STU 8011N

example no. 2:

twilight switch, time switch and staircase lighting time-delay switch (t.d.s.)

automatic "day-evening-night sequence" with SDS $101 \mathrm{~N} /$ STT 127 N or STT 8011 N that is brightness-dependent and staircase lighting timedelay switch (t.d.s.) E 232-230. Staircase lighting (A) and house number illumination (B) are switched to brightness-depedent mode in the morning and in the evening. At night, a time switch switches the staircase lighting to a minute mode with E 232.

STL-101

photo sensor mit mounting bracket
dimension
drawing

Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022

mounting depth:	68 mm
mounting width:	$105 \mathrm{~mm}=6$ modules
colour:	grey, RAL 7035

Application

The light level switch is used to switch on and off automatically lighting installations depending on the daylight. A photo sensor fitted at the window measures the daylight intensity and forwards the value measured to the connected light level switch(es). The light level switches switch the lighting fittings on or off as is determined by the disconnection and reconnection values.
One photo sensor can be connected to up to seven light level switches. To suit the individual requirements, the relevant disconnection and reconnection values can be preset for each light level switch. This makes independent switching of various lighting groups and lighting trunkings possible.
The switching hysteresis prevents excessive switching. Additional time-delay functions prevent spurious switching caused by external influences such transient clouds, strokes of lightning, etc.
STL 101/103 is predominantly used to control lighting in offices, factories, etc.

Technical data

operational voltage: $\quad 230 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$, DC not allowed (will destroy gear)
power consumption: ca. 2 W (ca. 3 W at STL 103)
fusing:
operating temperature:
photo sensor input:
pushbutton input:
control voltage range:
contact load:
switching values:
delay time:
external $10 \mathrm{~A} /$ for each load circuit
$0^{\circ} \mathrm{C} / 32^{\circ} \mathrm{F} \ldots+45^{\circ} \mathrm{C} / 113^{\circ} \mathrm{F}$, supply air in horizontal service position one photo sensor
1 pushbutton (NO contact), shunt connection of any given number of pushbuttons possible
0-5 V DC (light sensor, pushbutton and switch), basic insulation according to IEC 664 (10/92) no safety extra low voltage (SELV) max. $10 \mathrm{~A} / 250 \mathrm{~V}$ ~ or $10 \mathrm{~A} / 30 \mathrm{~V}-(\mu)$
adjustable between ca. 10-1000 Lux and 200 to 20000 Lux
adjustable in the range of 5 seconds to 20 minutes
class \& degree of protection: II (total insulation), IP 20
terminals:
max. cable length:
pollution degree: $0.5 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$ for one-wire conductor or with connector sleeve 100 m , control leads $0.5 \mathrm{~mm}^{2}$, load and supply lines $1.5 \mathrm{~mm}^{2}$ 2 (dry, non-conductive, according to IEC 664, 10/92)
protection against electric shock: according to DIN VDE 0106 Part 100 (BGV A2)
terminal assignment: see wiring examples,
faulty installation may lead to malfunctioning or destruction
CE requirements: EMC fulfilled according to EN61547 (04/96), low voltage according to IEC 669-2-1 (11/94)

Selection table

name/ application	power loss	order details W		bbn $\mathbf{4 0} \mathbf{1 2 2 3 3}$ order code	price 1 pc. EAN	price group DM	weight 1 pc.	pack. unit kg pc.
light level switch for one lighting group	6	STL-101	GJ V501 0000 R0011	$\mathbf{6 0 4 4 0} \mathbf{1}$			0.400	1
light level switch for three lighting groups	8	STL-103	GJ V501 0000 R0012	$\mathbf{1 2 7 0 0} \mathbf{4 (1)}$			0.450	1
photo sensor (IP 54) and mounting bracket		STL-LF 103	GH V021 1370 R0171	$\mathbf{5 3 2 1 0} \mathbf{0}$			0.100	1

(1) bbn no. 4016779

(1) lamp contactor to be designed to fit flexible cord loads up to 2 kVA switchable without contactor

(1) designed to fit the individual connected load (2) loads up to 2 kVA switchable without contactor

Calculation of profitability

Determination of the daylight factor

The daylight factor indicates the percentage of outside illuminance measured at a specified point inside a building.
To determine the average daylight factor, the measured inside illuminance E_{i} is divided by the measured outside illuminance E_{a} and then multiplied with 100 :
$\mathrm{T}=\frac{\mathrm{E}_{\mathrm{i}}}{\mathrm{E}_{\mathrm{a}}} \times 100$ [\%]

Measurements should be made when skies are cloudy, because the daylight curves used for further calculations were made under these conditions, too.

Practical application

An open-plan office is lit by two lighting trunkings mounted in parallel to the windows. The results of the measurements made are as follows :
outside daylight $E_{a}=17,000$ Lux
inside daylight E_{i} (with lighting switched off)
$\mathrm{E}_{\mathrm{i}} 1$ = lighting trunking 1 (distance from window $=1.5 \mathrm{~m}$) $=3,000 \mathrm{Lux}$ $\mathrm{E}_{\mathrm{i}} 2=$ lighting trunking 2 (distance from window $=4.5 \mathrm{~m}$) $=1,000 \mathrm{Lux}$ results in the following daylight factor:
$T=\frac{E_{i}}{E_{a}} \times 100[\%]$
$T_{1}=\frac{3000}{17000} \times 100=17.6 \%$
$T_{2}=\frac{1000}{17000} \times 100=5.9 \%$
Required brightness value for workplaces according to DIN $5035=$ 750 Lux. Working hours from 7 a.m. to 5 p.m. $=10$ hours, results in a lighting operation time of 2,400 hours a year for 240 working days.

Calculation of the daylight value

value at which the lighting system can be switched off, because the specified light value of 750 Lux is obtained through daylight alone.

$\frac{E_{\text {schedule }}}{T} \times 100=$ outside brightness[Lux]

lightingtrunking $\mathbf{1}=\frac{750 \text { Lux }}{17.6} \times 100=4,260$ Lux,
lightingtrunking $\quad \mathbf{2}=\frac{750 \text { Lux }}{5.9} \times 100=12,700$ Lux

Savings:

according to the following calculation
lighting trunking $1=2,080$ non-operation hours lighting trunking $2=1,680$ non-operation hours
expressed as percentages: lighting trunking $1=87.5 \%$ lighting trunking $2=70.0 \%$

Calculation of non-operation times by using daylight curves

lighting trunking No.	months	time		no. of non-operation hours (average 20 working days per month)	
1	December	9:30	14:30	5	100
	Jan + Nov	8:45	15:15	6:30	130
4260	Feb + Oct	8:00	16:00	8	160
Lux	Marto Sep	7:00	17:00	10	200
	(7 months)			annualno hours = 2	eration
2	December	-	-		
	Jan + Nov	11:00	13:00	2	40
12700	Feb + Oct	9:00	15:00	6	120
Lux	Mar + Sep	7:30	16:30	9	180
	Apr to Aug	7:00	17:00	10	200
	(5 months)			annual no hours =	eration

In the above example, the lighting remained constantly switched on throughout the working hours. To assess profitability in other cases, operation times must be established first.
The serviceable life of fluorescent and metal vapour lamps is reduced by frequent switching. The operation breaks, however, make good for this disadvantage or may even prolong the serviceable life of the lamps used.

[^1]
dimmer STD-50-3 in two-way circuit, Iv halogen lamps via transformer(DIN VDE 0551)

dimmer STD-50-4 in two-way circuit, IV halogen lamps via electronic transformer

dimension drawing

Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022

mounting depth:	68 mm
mounting width:	$52.5 \mathrm{~mm}=3$ modules
colour:	grey, RAL 7035

Dimmer for brightness control STD 50-3

Application:

Brightness control of incandescent lamps and 230 V halogen lamps and low-volt halogen lamps with conventional transformers.

Technical data:

rated voltage:
$230 \mathrm{~V} \mathrm{AC} \pm 10 \% / 50 \mathrm{~Hz}$
rated current:
max. switching capacity: min. switching capacity: power consumption: degree of protection / protection against electric shock: radio interference suppression: ambient temperature:
max. 2.3 A
500 W/VA
20 W/VA (dependent on ambient temperature, see diagram)
5 W
IP 20 / according to DIN VDE 0106 Part 100 (BGV A2) interference level N according to VDE 0875/11.84 $0^{\circ} \mathrm{C} / 32^{\circ} \mathrm{F} . .35^{\circ} \mathrm{C} / 95^{\circ} \mathrm{F}$

Conventional transformers:

When operating conventional transformers, each transformer must be primarily protected against short circuits according to the instructions of the manufacturer. Safety isolating transformers according to DIN VDE 0551 must be used.
It is not allowed to switch loads via a serial switching contact, because overcurrents and overvoltages may occur during the resetting process which may lead to a destruction of the dimmer. Secondary no-load operation of conventional transformers is neither allowed when putting the equipment into operation nor during operation.
Always operate conventional transformers at rated load. To achieve identical brightness of the halogen lamps throughout the full operating range from bright to dark, transformers should be used that have the same secondary voltage and rating.

Dimmer for brightness control STD 50-4

Application:

Brightness control of incandescent lamps and 230 V halogen lamps and low-volt halogen lamps with electronic transformers.

Technical data:

rated voltage:
230 V AC $\pm 10 \% / 50 \mathrm{~Hz}$
rated current:

max. 2.3 A

max. switching capacity:
min. switching capacity: power consumption: degree of protection / protection against electric shock radio interference suppression: ambient temperature:

420 W/VA
40 W/VA (dependent on ambient temperature, see diagram)
5 W
IP 20 / according to DIN VDE 0106 Part 100 (BGV A2) interference level N according to VDE 0875/11.84 $0^{\circ} \mathrm{C} / 32^{\circ} \mathrm{F} . .35{ }^{\circ} \mathrm{C} / 95{ }^{\circ} \mathrm{F}$

Note:

To achieve identical brightness of the halogen lamps throughout the full operating range from bright to dark, electric transformers should be used that have the same secondary voltage and the same rating.
Conventional transformers must not be connected to this dimmer (loss of warranty).
The electronics protect the dimmer from load-related short circuits. Where afault occurs by reason of temperature-related overloads, the dimmer self-adjusts the brightness set to a non-critical brightness level; in this case, connected loads may flicker. To restore normal functionning, check the load of the dimmer and reduce it if appropriate. Allow the dimmer sufficient time to cool down before putting it back into operation.

Influence of ambient temperature on control power

The dimmer carries an indication as to the certified rated power.
Where higher ambient temperatures occur, reduce them as is specified in the diagram.
At $50^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}$ ambient temperature, the rated power drops to 57%.

Selection table

name/ application	power loss	orde type W	code	bbn 4016779 order code	price 1 pc. EAN	price group DM	weight 1 pc.	pack. unit kg pc .

Dimmer for brightness control

(1) power loss $=1 \%$ of connected power (5 W max.)

Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022
mounting depth: 68 mm
mounting width: $35 \mathrm{~mm}=2$ modules
colour: grey, RAL 7035

Memory touch controller STD-MTS

Application:
Brightness control of fluorescent lamps through electronic control gear units with 1-10 V DC control input.

Technical data:

rated voltage: rated current:
max. switchingcapacity:
power consumption: control voltage: control current: degree of protection: protectionagainst electric shock: ambient temperature:
$230 \mathrm{VAC} \pm 10 \% / 50 \mathrm{~Hz}$
$4 \mathrm{~A} \cos \varphi 0.9$ (approx. 10 electronic control gear units, follow indications of manufacturer)
$3 A \cos \varphi 0.5$
700 VA
$\leq 1 \mathrm{~W}$
$<1 . .10 \mathrm{~V}$ DC
max. 50 mADC
IP 20
according to DIN VDE 0106 Part 100 (BGV A2)
$0^{\circ} \mathrm{C} / 32^{\circ} \mathrm{F} . .35^{\circ} \mathrm{C} / 95^{\circ} \mathrm{F}$
operation via extensions (parallel operation)
max. cable length: 100 m
The phase of the power supply input "L" must be the phase of the control phase for extension input "1" (see below).

Setting of background brightness

Press control element (e.g. pushbutton) for approx. 30 sec . to switch into programming mode, which STD-MTS indicates by adjusting to a minimum brightness level.
Select desired brightness level and release the pushbutton. Approx. 30 sec . after having released the pushbutton, STDMTS returns automatically to maximum, thus signalling that the setting has been completed successfully.

Note

The previous brightness value is maintained even afterswitching off the device (memory function). If a voltage failure occurs, STD-MTS looses this value and will subsequently switch on at maximum brightness. WhenSTD-MTS is used for the firsttime, it goes from bright to dark, and every stop will result in a change of the dimming direction. The dimmer stops at maximum brightness, and changes its dimming direction after having arrived at the minimum value.

Parallel operation

Activate control element and all STD-MTS's will be switched on and dimmed simultaneously via the Nebenstelle. Lighting systems may also be operated by using a uniform brightness value, to do so, press the control element for approx. 10 sec. The lighting system will be switched to maximum brightness and may then be operated synchronously (below).

Selection table

name	power loss W	order details type code	product code	$\begin{array}{\|l} \text { bbn } \\ 4016779 \\ \text { EAN } \end{array}$	price 1 pc. DM	price group	weight 1 pc . kg	pack. unit pc.

Memory touch controller for electronic control gear units
rated current/control output $4 \mathrm{~A} \cos \varphi 0.9 ; 3 \mathrm{~A} \cos \varphi 0.5$, switching capacity 700 VA

brightness control of fluorescent lamp with 1 - 10 V DC control input with memory touch controller STD-MTS with external pushbutton, e.g. E 225

SK 0190 Z 99
brightness control of fluorescent lamps with 1-10 V DC control input. Two or more STD-MTS memory touch controllers are controlled by a pushbutton.

SK 0189 Z 99

STD-1000 U

dimension drawings

in mm

STD-EP

EIB-operation

Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022

```
mounting depth: }68\textrm{mm
mounting width: }\quad70\textrm{mm}=4\mathrm{ modules
colour:
grey, RAL }703
```


Application

STD-1000 U universal high-performance dimmer is used to control the brightness of:

- incandescent lamps
- 230 V halogen incandescent lamps
- low-volt halogen lamps with wound transformers, e.g. ABB: Si-TR 20 ... 500
- electronic transformers for low-volt halogen lamps e.g.: ABB: ETR-NO, ETR-NA, ETR-NE

The universal high-performance dimmer can be optionally operated from an electronic potentiometer (STDEP), one or more pushbuttons or directly at the device itself. Press the MEMO pushbutton to save the desired minimum brightness level.
Use actuator drivers $\mathrm{SB} / \mathrm{NO} 2.2$ or $\mathrm{PSB} / \mathrm{NO} 1.1$ to implement EIB solutions.
Universal high-performance dimmers STD-1000 U are operative in the range of up to $18 \mathrm{kVA} / \mathrm{kW}$, and parallel use of a maximum of 18 devices via pushbuttons is possible.
Shunt connection is not possible in the case of potentiometer extension.
Not suitable for electric control gear with 0-10V DC control (for 0-10V DC control, see memory touch controller, page 45).

Technical data

rated voltage: $\quad 230 \mathrm{~V} ; 50 \mathrm{~Hz}+5 \%-10 \%$
rated current: 4.78 A
max. connected load:
$1 \mathrm{~kW} / \mathrm{kVA}$
min. connected load:
pushbutton input cl. 1 :
switch input cl. 5:
max. cable length:
$230 \mathrm{~V} \sim \pm 10 \%, 50 \mathrm{~Hz}$
$230 \mathrm{~V} \sim \pm 10 \%, 50 \mathrm{~Hz}$
capacity increase by pushbutton operation : $18 \mathrm{~kW} / \mathrm{kVA}$
radio interference suppression: EN 55014 interference level N
connected loads ambient temperature diagram
 protection against electric shock: according to DIN VDE 0106 Part 100 (BGV A2) ambient temperature: $\quad-10^{\circ} \mathrm{C} /+14^{\circ} \mathrm{F}$ to $+35^{\circ} \mathrm{C} / 95^{\circ} \mathrm{F}$,
higher temperatures reduce capacity (see diagram)
electronic protection against short circuit, overloads and overtemperatures

Selection table

name	power loss W	order details type code	product code	bbn 4016779 EAN	price 1 pc . DM	price group	weight 1 pc . kg	pack. unit pc.
High-performance dimmer	10 (1)	STD-1000 U *	GH V021 0881 R0003	259408			0.325	1

(1) power loss $=2 \%$ of connected load

Note: load and control lead must never run in a single cable. No switching of loads in the dimming circuit allowed. * discontinued type \rightarrow replaced by STD 500 MA and STD 420 SL

Electronic potentiometer

rated current/control output $4 \mathrm{~A} \cos \varphi 0.9$; $3 \mathrm{~A} \cos \varphi 0.5$ (2), switching capacity 700 VA

(1) power loss = 1\% of connected load (5 W max.)

dimension drawing
in mm

1. STD-500 MA

2. STD-500 MA, STD-420 SL

Equipment for panel installation on DIN rails (35 mm) according to DIN EN 50022

mounting depth:	68 mm
mounting width:	$35 \mathrm{~mm}=2$ modules
colour:	grey, RAL 7035

Universal high-performance dimmer STD-500 MA power extension with STD-420 SL

Application/loads

- incandescent lamps
- 230 V halogen lamps
- low-volt halogen lamps via electronic transformers
- low-volt halogen lamps via conventional transformers

Combined dimming with conventional and electronic transformers is not allowed!

Calculation of rated power

rated power = transformer loss* + lamp wattage

* for electronic transformers 5\% of rated power of transformer
* for conventional transformers 20\% of rated power of transformer

Conventional transformers

When operating conventional transformers, each transformer must be primarily protected against short circuits according to the instructions of the manufacturer. Safety isolating transformers according to DIN VDE 0551 must be used. It is not allowed to switch loads via a serial switching contact, because overcurrents and overvoltages may occur during the resetting process which may lead to a destruction of the dimmer. Secondary no-load operation of conventional transformers is neither allowed when putting the equipment into operation nor during operation. Always operate conventional transformers at rated load. To achieve identical brightness of the halogen lamps throughout the full operating range from bright to dark, transformers should be used that have the same secondary voltage and rating.

Technical data

rated voltage: $\quad 230 \mathrm{VAC} \pm 10 \% / 50 \mathrm{~Hz}$
rated current: STD-500 MA: 2.17 VA STD-420 SL: 1.83 A
max. switching capacity:
min. switching capacity:
power extension:
power consumption:
pushbutton input:
max. cable length:
max. cable length

- in between data outputs (D1, D2 and D):
- in between control outputs (NO-NO, G-G):
degree of protection / protection against electric shock: IP 20 / according to DIN VDE 0106 Part 100 (BGV A2) ambient temperature: $\quad 0^{\circ} \mathrm{C} / 32{ }^{\circ} \mathrm{F} \ldots 35^{\circ} \mathrm{C} / 95^{\circ} \mathrm{F}$

Supply connection and load connection

Supply connection is made via terminals "L" and " N ". The load is connected to any of terminals \sim (controlled outputs).

Operation with pushbuttons

The phase of the extension and the phase of the supply voltage must be identical (see 1 and 2).
In the case of switch extensions, the lighting glow lamp must not be connected in parallel (use pushbutton with neutral connection)
When installing the leads make sure that there is an adequate distance between the supply connection and the load connection (min. 5 cm).
For switching and dimming via the data line connected to the D terminal, the dimmer may be operated via ElB control elements SB/NO 2.2 or PSB/NO 1.1 (see 3 and 4).

Power extension

For synchronous switching and dimming of a lighting system in excess of 500 W/VA connected load, connect dimmers STD500 MA and STD-420 SL via the "S" and "G" terminals. Controlled outputs must be connected in parallel (see 2).

Selectiontable

name	power loss W	order details type code	order code	bbn 4016779 EAN	price 1 pc. DM	price group	weight 1 pc. kg	pack. unit pc.
high performance dimmer	6 W (1)	STD-500 MA	GH V021 0881 R0005	420105			0.105	1
extension	6 W (1)	STD-420 SL	GH V021 0881 R0006	420204			0.135	1

(1) heat dissipation = approx. 2% of the connected load

8
N
N
$\stackrel{1}{5}$
\vdots
■
4. STD-500 MA, SB/NO 2.2 or PSB/1.1, STD-420 SL

System pro M Universal high-performance dimmer for phase control and reverse phase control

Putting into operation

After connecting the system voltage, the microprocessor integrated in the dimmer analyses the properties of the connected operable load and decides whether phase control or reverse phase control will be used.
During this calibration process, the lighting system can be switched on for up to 6 seconds.
During this period, the malfunction LED is lit, and the device is disabled.

As a rule, the central dimmer may be operated with a pushbutton or the D data line. Where the data line is connected, the central dimmer will not accept operation via the pushbutton line.

Overload

If the electronic overload protection is activated (overload or overtemperature because of improper installation or insufficient cooling) the preset brightness value of the lighting system is reduced, and the malfunction LED is lit. The dimmer is switched off and the malfunction LED switches to permanent ON if overloads or overtemperatures persist for more than 10 minutes.
Switch off system voltage during fault removal. Test load of the dimmer and reduce it if appropriate.
After removal of the overload and a sufficient cooling-down period, the dimmer can be put into operation again.

Short circuit

Short-term short circuits will make the dimmer first switch off the connected loads and subsequently switch them on again. Permanent short circuits will result in a disconnection from the system and the malfunction LED is lit.
Switch off system voltage during fault removal. If the short circuit is removed, the dimmer can be put to operation again.

Pushbutton operation

Press the pushbutton extension momentarily to switch on and off. The last preset brightness value (memory value) is restored automatically.

Switch on at no-light level

Keep the pushbutton extension pressed, and the dimmer will start at background brightness and brightness increases for as long as the pushbutton is pressed.

Dimming

Keep the pushbutton extension pressed. The dimmer changes the brightness of the connected lighting system. Stop to change the dimming direction. At maximum brightness, the dimmer stops, and at its minimum, the dimming direction changes and brightness increases again.

Switch off with soft OFF functionality (see programming functions)

Press the pushbutton extension momentarily. The current value is saved as memory value. The dimmer slowly goes down from the selected brightness to its minimum and is then switched off.

Programming functions (only for pushbutton operation)
The following dimming functions are activated by pressing the MEMO pushbutton for specific periods of time. The flashing rate of the LED indicates the respective function.

Programming of background brightness

Choose the desired background brightness. To save the setting of the background brightness, press the MEMO pushbutton, and release it when the LED has flashed once.

Delete background brightness

To delete the background brightness saved (reset to minimum background brightness) press the MEMO pushbutton, and release it when the LED has flashed twice.

Programming of soft OFF

Press the MEMO pushbutton, release after LED has flashed three times. The dimmer activates the soft OFF function.

Delete soft OFF

Press MEMO pushbuttons, release after LED has flashed three times.

DIN VDE 0432,
DIN EN 50 081-1,

Application

The mains disconnection relay E 235-NFR disconnects the circuit from the power supply after having interrupted any downstream loads, thus avoiding disturbing electromechnical fields.
As long as no load is switched on, the monitored circuit remains one-pole disconnected from the power supply. The neutral conductor and earthing are permanently connected. For monitoring purposes, there is a direct voltage of 4 V . When a load is switched on, the mains disconnection relay switches the phase. The switched current threshold is infinitely adjustable from 5 to 200 mA .
For the purpose of testing or transitory operation of devices with insufficient power consumption, use the integrated rotary switch or the GLA base load adapter for the socket outlet to suspend the automatic disconnection feature.
For the operation of loads with a current consumption $<5 \mathrm{~mA}$, you can use base load device E 235-GL that is capable of servicing up to three circuits. If, in the case of flush mounting or subsequent installation, there is no extra line available for the base load device, use base load element GLE.
Loads with extremely low current consumption are, e.g., starting fluorescent lamps, electronic control gear of energy-saving lamps, transformers of radio clocks or low-volt halogen lamps, equipment including electronic components e.g. vacuum cleaners, hair-dryers, drilling machines and lighting with electronic dimmers.
If the monitored circuit contains rotary-button dimmers, use the rotary switch to set the mains disconnection relay to "mech. Dimmer auto". This will increase the monitoring direct voltage and and the dimmers will be recognised as loads.

Technical data

rated switching capacity: $\quad 16 \mathrm{~A} / 250 \mathrm{~V} \sim$
filament lamp load:
fluorescent lamp load (twin-lamp circuit):
fluorescent lamp load shunt-compensated:
fluorescent lamp load inductive or capacitive:
electronic control gear:
inductive load $\cos \varphi=0.6 / 230 \mathrm{~V} \sim$:
contact rating at DC:
minimum contact rating:
contact gap:
mechanical serviceable life, switchover:
serviceable life if nominal stress $\cos \varphi=1$ and $10^{3} / h$: serviceable life if filament lamps 1000 W and $103 / \mathrm{h}$:
serviceable life if nominal stress $\cos \varphi=0.6$ and $10^{3} / \mathrm{h}$:
max. switching rate:
closed time:
time to contact:
position indicator:
ON duration at rated voltage: permissible ambient temperature:
control voltage range:
power consumption of coils $A C+D C$:
overall power loss at permanent excitation,
rated voltage and nominal contact rating:
max. parallel capacitance of individual control lead at $230 \mathrm{~V} \sim$:
max. induced voltage at control inputs:
protection against electric shock:
connection cross section (strain-relief clamp):

Selection table

description	order details type code	order code	$\begin{array}{\|l} \text { bbn } \\ 4016779 \\ \text { EAN } \end{array}$	price 1 pc. DM	price group	weight 1 pc . kg	pack. unit pc.
mains disconnection relay	E 235-NFR	GH E235 1001 R0001	368902			0.080	10
base load	E 235-GL	GH E235 1001 R0002	369008			0.070	1
base load element	GLE	GH V022 0868 R0001	369107			0.010	1
base load adaptor	GLA	GH V022 0868 R0002	369206			0.070	1

connection diagrams

load switched OFF

load switched ON

Labelling material System pro $M \quad$ for pro M equipment

（1）bbn no．： 4016779
customised printed labels upon request：minimum order 50 mats，otherwise there will be a low－quantity surcharge．

－

资：	81	82	83	84	
\％	85	86	87	88	
	89	90	91	92	弯
	93	94	95	96	\％
	97	98	99	100	${ }^{\text {a }}$
${ }_{0}$	101	102	103	104	
N	105	106	107	108	
愛	109	110	111	112	
at	113	114	115	116	
	117	118	119	120	

N	41	42	43	44	
\％	45	46	47	48	
	49	50	51	52	蜀
1	53	54	55	56	－
	57	58	59	60	）
\％	61	62	63	64	
5	65	66	67	68	
\％	69	70	71	72	
	73	74	75	76	
－	77	78	79	80	\％

Approvals and certifications
System pro M of classification societies

Modular installation equipment

				Finland EL. Insp.	Norway	$\left\|\begin{array}{c} \text { Austria } \\ \text { OVEE } \\ \text { OVE } \end{array}\right\|$	$\underbrace{\text { Sweden }}_{\text {SEMKO }}$					classification societies			
switches	E221		\square							\square		\square			
	E222	\square							\square		\square				
	E223	\square													
	E271-	$\square 63 \mathrm{~A}$						\square			\square				
	E272-	$\square 63 \mathrm{~A}$						\square			\square				
	E273-	$\square 63 \mathrm{~A}$	\square	\square	\square			\square			\square				
	E274-	■63 A						\square			\square				
	E 463/3 KB	\square													
	E 480/3 KB	\square													
	E463/3 SP	\square													
bell transformers	TS 8-16-, 24-	\square								\square					
pushbuttons	E 225	\square							\square		\square				
and indicator lights	E 227	\square							\square		\square				
	E 229	\square							\square		\square				
latching relays	E 250	\bigcirc									\square				
	E 260	\bigcirc									\square				
	E 260 C	\bigcirc									\square				
alarm indicators	E 228-WM	\bigcirc							\square						
time-delay relays (TDR)	E 234	\bigcirc									\square				
installation relays	E 259-	\bigcirc									\square				
elapsed-time meters	E 23360 Hz	$\bigcirc 50 \mathrm{~Hz}$							\square						
priority switch	E 451-	\bigcirc						\square			\square				
(Load shedding relay)	E 452-	\bigcirc									\square				
mains disconnection relays	E235	\bigcirc													
t.d.s.	E232-230	\square				\square					\square				
socket-outlets	E1175 (C)	\square									\square				
time switches	STU6011N	\square				\square					\square				
	STU8011N	\square				\square					\square				
timers	STT111N	\square				\square					\square				
	STT117N	\square				\square					\square				
	STT127N	\square				\square					\square				
	STT227N	\square				\square			\square		\square				
	STT467	\square													
	STT467F	\square													
dimmers	SDS 101 N	\square													
	STL101/103	\bigcirc													
	STD 50-3-4	\bigcirc													
	STD 500 MA	\bigcirc													
	STD 420 SL	\bigcirc													
	STD1000 U	\bigcirc		\square	\square	\square		\square							

- approved
\square submission for approval / approval pending
- conditionally approved

O no approval required

ABB STOTZ-KONTAKT, the Heidelberg-based company, develops, manufactures and sells highly modern, modular systems for electrical building installations. It offers complete installation ranges for a wide variety of applications:

System pro M

For classic installation applications

The modular System pro \boldsymbol{M} for installation on DIN rails incorporates Europe's best-selling miniature circuit-breakers and residual-current-operated circuit-breakers as well as a complete range of built-in devices.
The system components have been designed with various functions and performance capabilities and are therefore to able optimally cover the complete range of applications in building installation:

- conventional domestic electrical installations
- industrial and commercial installations
- protection and switch functions
- checking and monitoring tasks
- control and time-dependent tasks etc.

System pro M compact ${ }^{\circledR}$

The extension of System pro \boldsymbol{M} for targeted use in domestic electrical installations stands out due to its compact and easily comprehensible range of miniature circuit-breakers, residual-current-operated circuit-breakers and cross wiring tools as well as an optimised installation technology taking into account the special circumstances and requirements of domestic electrical installations.

System Connect

This pioneering system concept contains seamlessly integrated system units - consisting of miniature circuit-breakers and residual-current-operated circuit-breakers as well as apparatus racks and flush-mounted wall boxes - was designed to suit the special requirements of domestic electrical installations.

The new plug-in connection technology for the devices and apparatus rack ensures quick and reliable installations: assembly, connection of the devices and cross wiring are carried out time-effectively in one single step.
If need be, component sets may still be changed quickly and flexibly right until transfer takes place; devices may also be exchanged easily at some later date, and economically in terms of both money and time, at that.
The entire System Connect was developed by ABB STOTZKONTAKT and Striebel \& John, within the framework of their successful system partnership.

EIB Installation Systems

For intelligent Building Installation

Highly modern, programmable installation systems with bus technology based on the European EIB standard.

ABB i-bus ${ }^{\circledR}$ EIB

System with special 2-core bus cable, primarily for new buildings.

ABB Powernet EIB

System for retrofitting in existing buildings. Transfer of information via the existing network.

Security Systems

All-in-one Protection

Wide range of security systems and components: intruder and fire alarm systems, radio-controlled alarm systems, door locking system and signalling components.

During the century-long experience of the company, it has always contributed pioneering solutions to the safe application of electricity.
Today, ABB STOTZ-KONTAKT GmbH is an integral part of the ABB Group, a major player on the electrical and electronic markets.

ABB STOTZ-KONTAKT GmbH

P.O. Box 101680

D-69006 Heidelberg
Phone (0 62 21) 701-00
Fax (0 62 21) 701-723
www.abb-stotz-kontakt.de

[^0]: Labelling material for System pro M equipment, see page 50.

[^1]: (1) lamp contactor

