2 JUNE 2017

DA Partner Conference
SUE3000 and HSTS

Michael Kluge, Product Marketing DAP Germany
High Speed Transfer Device SUE 3000

The Challenge

Direct and indirect costs due to loss of power, example

5,000 EUR: Identification of damage (extrusion, combustion, melting processes, chemical equipment)
20,000 EUR: Repair of damaged production equipment and machines
10,000 EUR: Detection and disposal of defective product, elimination of environmental damage
20,000 EUR: Re-start of production machines (re-start costs)

5,000 EUR: Increased quality control
10,000 EUR: Delay in delivery
... EUR: Loss of trust and image

Sum of all costs ≥ 70,000 EUR+ xxx per incident
High Speed Transfer Device SUE 3000
The Solution

Function

- Ensures continuous power supply to essential electrical equipment by changing over from a main to a stand-by feeder as fast as possible.
- Suitable for HV, MV and LV networks.
- Benefits:
 - Increased plant availability
 - Ensuring process continuity
 - Quality of energy supply
 - Prevention of costly production outages
 - Protection of facilities, environment and workers

Only one successful transfer can create a full amortization of the investment
High Speed Transfer Device SUE 3000

Application Areas

<table>
<thead>
<tr>
<th>Power stations</th>
<th>Automotive industry</th>
<th>Chemical industry</th>
<th>Logistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water desalination</td>
<td>Glass & plastic industry</td>
<td>Refineries</td>
<td>Metal & aluminum industry</td>
</tr>
</tbody>
</table>
Prerequisites for the application

- Existence of at least two -usually independent- synchronous feeders
- Circuit-breakers with short operating times < 100ms
- Existence of appropriate initiation devices
- General suitability of plant for network change-over: load configuration with rotating devices
High Speed Transfer Device SUE 3000

Connections

Interfaces

- Circuit Breakers:
 - Control (Trip/Close commands)
 - Indication (CB position)
- Analogue Measurements:
 - Voltage Transformers (Feeder U, Busbar U)
 - Current Transformers (optional, Feeder I)
- External protection
- Instrumentation & Control
- SCADA/DCS connection

Permanent supervision of incomers, busbars and CBs
High Speed Transfer Device SUE 3000

Construction

Central unit & HMI

Available communication protocols (optional):
- IEC 61850-8-1
- IEC 60870-5-103
- Ethernet interface
- ModBUS TCP
- ModBUS RTU
- Profibus DP (via adapter)
- SPA

AI board
Mainboard
Comm. board
AO board
3x BI/O boards
Power supply board
High Speed Transfer Device SUE 3000

Installation

Options

- SUE 3000 as loose device solution for further installation in a LV compartment of a MV panel
- SUE 3000 installed in a standalone steel sheet cabinet (installation of more than one device per cabinet possible)
High Speed Transfer Device SUE 3000

Variants

Variant 1

Variant 2/4

Variant 3/5

Variant 2: Between feeder A or B and coupler

Variant 4: Between all breakers

Variant 3: Between feeder A and B or C

Variant 5: Between all breakers
High Speed Transfer Device SUE 3000

Functional modes

Four transfer modes

- Fast transfer
- First phase coincidence transfer
- Residual voltage transfer
- Time depending transfer
High Speed Transfer Device SUE 3000

Functional modes

Total transfer duration definition

The total transfer duration consists per definition of following main time components:

- Protection time for fault detection and transfer initiation
- SUE 3000 processing time
- Circuit breaker operating times

Transfer mode

<table>
<thead>
<tr>
<th>Transfer mode</th>
<th>Average total transfer duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast transfer</td>
<td>30* – 100 ms</td>
</tr>
<tr>
<td>1st phase coincidence transfer</td>
<td>250 – 500 ms</td>
</tr>
<tr>
<td>Residual voltage transfer</td>
<td>400 – 1200 ms</td>
</tr>
<tr>
<td>Time depending transfer</td>
<td>> 1500 ms</td>
</tr>
</tbody>
</table>

* Only in case of use of HSTS system
High Speed Transfer Device SUE 3000

Functional modes: fault record of a manual fast transfer
High Speed Transfer Device SUE 3000

SUE 3000 vs. ATS

SUE 3000
- Typical transfer time <100ms (including CB operation times)
- Dynamic and conditions-based transfer mode selection
- 4 matched transfer modes in order to achieve fast and safe transfers
- Uninterrupted and undisturbed function of the processes in case of an incomer fault
- Smooth transfer considering phase angle and voltage differences from initiation to transfer end
- CB operating times considerations during transfer operations
- Extendable system for time performance enhancement (HSTS)
- Safety features (decoupling, CB open, CB indication inconsistent)

ATS
- Typical total transfer time > 500ms
- Limited transfer mode selection
- Risk of interruption on loads and processes in case of an incomer fault
- Uncontrolled transfer at high voltage levels (above 40% \(U_n\)) leading to equipment damage (shafts, bearings, etc...)
- CB operating times not considered

SUE 3000 or ATS? A question of performance requirement
High Speed Transfer System HSTS
From fast to superfast

The step forward

- For fast fault detection optimized REF542plus initiation units:
 - equipped with special protection functions enabling fast fault detection
 - fast and supervised optical communication link towards the SUE 3000

- Vacuum CBs VM1-T with magnetic drive:
 - 9 ms breaking time
 - 16 ms making time

- Ideal solution for process industry, hospitals, logistic centers and data center

Total transfer time 30ms!
High Speed Transfer System HSTS

Total transfer duration: SUE 3000 vs. HSTS

- Protection initiation time (ms)
- SUE 3000 processing time (ms) (incl. BIO times)
- CB operating time -closing- (ms)

<table>
<thead>
<tr>
<th></th>
<th>Fast Transfer Mode</th>
<th>Balance Transfer Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUE 3000</td>
<td>x (>20) 12 x (>60)</td>
<td></td>
</tr>
<tr>
<td>SUE 3000 with REF542plus</td>
<td>6 7 x (>60)</td>
<td></td>
</tr>
<tr>
<td>SUE 3000 with VM1-T</td>
<td>x (>20) 12 16</td>
<td></td>
</tr>
<tr>
<td>HSTS</td>
<td>6 7 16</td>
<td></td>
</tr>
</tbody>
</table>

X = Components provided by customer, times can vary

©ABB
June 21, 2017
| Slide 15
Summary

Benefits

- Continuous Processes
- Uninterrupted Power Supply
- Protection of Production Equipment
- No Costly Outages
- Plant Availability
- Easy Integration into the System
- Protection of Employees and Environment