PRODUCT BROCHURE

PVB outdoor vacuum circuit breaker

- Global proven reputation
- Accountable solution for safety and reliability
- Wide range offering, easy business and convenient installation
Contents

04-06 Introduction
 04 Overview
 05 Product characteristic
 06 Application condition

07 Technical parameters
 07 PVB technical parameters

08-17 Structure and functions
 08 PVB structure
 08-09 Interruption principle of ABB interrupter
 10 Solid-encapsulated pole
 11 Operating mechanism
 11 Protection functions of manual operating PVB
 12-13 Motor operating PVB with simple protection functions
 14-15 Motor operating PVB with intelligent protection functions--PCD Control Device
 16-17 Motor operating PVB with intelligent protection functions--REF615 relay

18 Electrical circuit diagram
 18 Manual operating PVB
 19 Motor operating PVB with simple control cabinet
 20 Motor operating PVB with smart control cabinet (PCD)
 21 Motor operating PVB with smart control cabinet (REF615)

22-25 Overall dimension and mounting modes
 22-23 Dimension
 24 Mounting modes
 25 Mounting modes and rectangular bracket

26-27 Circuit-breaker selection and ordering
 26 Selection
 27 Ordering requirements
Introduction

Overview

PVB outdoor vacuum circuit breaker (hereinafter referred to as PVB) is pole mounted switch equipment of ABB’s vacuum circuit breaker series. Rated voltage is 12 kV, applied to the overhead lines. ABB’s PVB is one of the most flexible devices for smart grid application, and also provides maximum functionality and mounting flexibility suitable for a variety of applications. This is especially true of our feeder automation product, where years of knowledge and modular manufacturing technique allow PVB outdoor circuit breaker to meet any need and schedule. PVB outdoor vacuum circuit breakers can meet various protection requirements under the situation with power electricity, including making and breaking short-circuit current. PVB has a very good performance on frequent operation occasions, and PVB can fully meet the requirements of automatic reclosing with high reliability and electrical service lifetime.

Product characteristic

PVB is perfect synthesis of ABB’s affirmed technology in designing and constructing vacuum interrupter and HCEP with highly molded research and manufacturing technology, and also is combination of advanced EL operating mechanism.

Both the vacuum interrupter and poles encapsulated in HCEP insulation material are manufactured by German CalorEmag Company which is famous as manufacturer of ABB vacuum interrupter.

Breaking short-circuit current in the vacuum PVB does not require an Interrupting and Insulating medium. In fact, the interrupter does not contain ignitable material.

In any case, on separation of the contacts, an electric arc is generated made up exclusively of molten and vaporized contact material. The electric arc supported by the external energy only remains until the current is cancelled by passing through natural zero. At that instant, the rapid reduction in the load density carried and the fast condensation of the metallic vapour lead to extremely rapid recovery of the dielectric properties. The vacuum interrupter therefore recovers the insulating capacity which withstand the transient recovery voltage, definitively the arc is extinguished.

Since high dielectric strength can be reached in vacuum, even with minimum distances, interruption of the circuit is also guaranteed when separation of the contacts takes place a few milliseconds before passage of the current through natural zero.

The special geometry of the contacts and the material used, together with the limited duration and low voltage of the arc guarantee minimum contact wear and long life. Furthermore, the vacuum prevents their oxidation and contamination.

Features

- Vacuum interruption technique
- Modular design for easy service ability in the field
- The contacts in vacuum protect against oxidation and contamination
- Suitable for different climatic conditions
- Low operating force
- Spring operation mechanism equipped with mechanical anti-pump device supplied as standard

Standards

- IEC 60694-2002 Common specifications for high-voltage switchgear and controlgear standards
- IEC 62271-100 High-voltage switchgear and controlgear - Part 100: High-voltage alternating-current circuit-breakers
- GB/T 11022 Common specifications for high-voltage switchgear and controlgear standards
- GB 1984 High-voltage alternating-current circuit-breakers
- GB/T 311.1 Insulation coordination for high voltage transmission and distribution equipment
- DL/T 402 Specification of high-voltage alternating-current circuit-breakers
- DL/T 403 HV vacuum circuit-breaker for rated voltage 12 kV to 40.5 kV
- DL/T 593 Common specifications for high-voltage switchgear and controlgear standards
- DL/T 813 Specification for 12 kV H. V. alternating current automatic circuit recloser
- GB 1985 High-voltage alternating-current disconnectors and earthing switches
- IEC 62271-102 High-voltage switchgear and controlgear - Part 102: Alternating-current disconnectors and earthing switches

Flexible configuration

PVB has different flexible configurations according to customer different requirements, such as configuration with visible break.

Main additional features of PVB integrated disconnector product are:

- Outside visible isolated gap
- 3 phase mechanical operation disconnector, reliable mechanical interlocking with the PVB circuit breaker
- Disconnector with excellent performance and high technical ratings

Features

- Spring operation mechanism equipped with mechanical anti-pump device supplied as standard
- Compact design provides easy installation
- 10,000 full load operation
- Parts and components are recyclable
- No oil or gas insulation=environmentally friendly product
- Plastic parts are manufactured according to standard ISO 11469 to ensure product was easily separated at the end of its life time

Features

- Modular design for easy service ability in the field
- The contacts in vacuum protect against oxidation and contamination
- Suitable for different climatic conditions
- Low operating force
- Spring operation mechanism equipped with mechanical anti-pump device supplied as standard
- Compact design provides easy installation
- 10,000 full load operation
- Parts and components are recyclable
- No oil or gas insulation=environmentally friendly product
- Plastic parts are manufactured according to standard ISO 11469 to ensure product was easily separated at the end of its life time

Features

- Modular design for easy service ability in the field
- The contacts in vacuum protect against oxidation and contamination
- Suitable for different climatic conditions
- Low operating force
- Spring operation mechanism equipped with mechanical anti-pump device supplied as standard
- Compact design provides easy installation
- 10,000 full load operation
- Parts and components are recyclable
- No oil or gas insulation=environmentally friendly product
- Plastic parts are manufactured according to standard ISO 11469 to ensure product was easily separated at the end of its life time
Introduction

Application condition
General condition
- Ambient temperature
 - High limit: +40°C
 - Average temperature limit in 24 hours: +35°C
 - Low limit: -25°C
- Installation altitude
 - High limit: 1000 m
 - Special design can reach to 2000 m
- Seismic intensity
 - High limit: 9 Degree
- Horizontal acceleration
 - Simulated earthquake waves: 0.50 g
 - Sine resonate waves: 0.30 g

Special condition
Application in special condition, please contact and consult with manufacturer in advance.

- Generally, the following special condition can be considered by manufacturer:
 - Installation altitude exceeds 1000 m
 - External insulation can be decreased
 - Choose the products which can be used in altiplano area
 - Installed in higher ambient temperature
 - Decrease continuous operating current PVB

Technical parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage (U)</td>
<td>kV</td>
<td>630/1250***</td>
</tr>
<tr>
<td>Rated current (I)</td>
<td>A</td>
<td>630/1250***</td>
</tr>
<tr>
<td>Power frequency withstand voltage, 50/60 sec/1 min</td>
<td>kV</td>
<td>34</td>
</tr>
<tr>
<td>Lightning impulse withstand voltage</td>
<td>kV</td>
<td>48</td>
</tr>
<tr>
<td>Short-circuit breaking current</td>
<td>kA</td>
<td>20 kA/30</td>
</tr>
<tr>
<td>Short-circuit making current</td>
<td>kA</td>
<td>50</td>
</tr>
<tr>
<td>Withstand duration</td>
<td>s</td>
<td>4</td>
</tr>
<tr>
<td>Peak withstand current</td>
<td>kA</td>
<td>50</td>
</tr>
<tr>
<td>Ice covering</td>
<td>mm</td>
<td>10</td>
</tr>
<tr>
<td>Circuit breaker level</td>
<td>C2-E2-M2*</td>
<td></td>
</tr>
<tr>
<td>Rated operating sequence</td>
<td>O-0.3 s-CO-180 s (15 s)-CO**</td>
<td></td>
</tr>
<tr>
<td>Mechanical mechanism type</td>
<td>Spring mechanism</td>
<td></td>
</tr>
<tr>
<td>Dimension</td>
<td>mm</td>
<td>1093x1015x542 (HXWXD)***</td>
</tr>
<tr>
<td>Weight</td>
<td>kg</td>
<td>110 (incl. CT)</td>
</tr>
<tr>
<td>Pollution level</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Ingress degree</td>
<td>IP66</td>
<td></td>
</tr>
<tr>
<td>Mechanical endurance</td>
<td>n</td>
<td>10,000</td>
</tr>
<tr>
<td>Power frequency withstand voltage, 50/60 sec/1 min</td>
<td>kV</td>
<td>48</td>
</tr>
<tr>
<td>Lightning impulse withstand voltage</td>
<td>kV</td>
<td>54.5</td>
</tr>
<tr>
<td>Short-time withstand current</td>
<td>kA</td>
<td>20</td>
</tr>
<tr>
<td>Withstand duration</td>
<td>s</td>
<td>4</td>
</tr>
<tr>
<td>Peak withstand current</td>
<td>kA</td>
<td>50</td>
</tr>
<tr>
<td>Ice breaking</td>
<td>mm</td>
<td>10</td>
</tr>
<tr>
<td>Dimension</td>
<td>mm</td>
<td>1093x1015x542 (HXWXD)***</td>
</tr>
<tr>
<td>Pollution level</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Mechanical endurance</td>
<td>CO</td>
<td>3000</td>
</tr>
</tbody>
</table>

* According to the definition of standard GB 3904-2013 high-voltage alternating current circuit-breakers, C2-E2-M2 circuit breaker means:
 - Circuit-Breaker Class C2: Circuit-breaker with very low probability of restrike during capacitive current breaking as demonstrated by specific type test.
 - Circuit-Breaker Class E2: Circuit-breaker designed so as not to require maintenance of the interrupting parts of the main circuit during its expected operation life, and only minimal maintenance of its other parts (circuit-breaker with extended mechanical endurance).
 - Circuit-Breaker Class M2: Frequently operated circuit-breaker for special service requirements and designed so as to require only limited maintenance as demonstrated by specific type tests (circuit-breaker with extended mechanical endurance, mechanically type tested for 10,000 operations).

** Motor operating PVB with smart controllers can carry out 4-5 reclosing sequences.

*** The dimension is the overall dimension with CT.

**** Rated current 1250 A is only for the circuit-breakers.
Structure and functions

PVB structure
The poles of PVB are capsulated by insulated material which is Hydrophobic Cycloaliphatic Epoxy (HCEP) and the poles are installed vertically on the mechanism tank (see right side picture). Poles casted by HCEP can minimize partial discharge and mechanical damage. When PVB is closed, current path of the main circuit is: upper terminal→static contact in the vacuum interrupter→dynamic contact in the vacuum interrupter→lower terminal→external circuit.

 Interruption principle of ABB Interrupters
Vacuum Interrupter
ABB has been developing and manufacturing vacuum interrupters since the early 1980s. Worldwide, more than two million ABB vacuum interrupters are in service. ABB’s vacuum interrupter facility uses the latest technologies in high quality mass production to produce the next generation of vacuum interrupters. This new generation vacuum interrupter is robust for universal application.

Advantages
• Maximum reliability
• Superior contact wear
• Long life: 10,000 full load operations
• Minimal maintenance
• Environmentally friendly

In a vacuum interrupter, separation of current-carrying contacts initiates the vacuum arc and this is maintained until the current zero and can be influenced by magnetic fields.

Diffuse or contracted vacuum arcs
Following contact separation, single melting points form on the surface of the cathode, producing metal vapours which support the arc.

The diffuse vacuum arc is characterised by expansion over the contact surface and by an even distribution of the thermal stress.

At the rated current of the vacuum interrupter, the electric arc is always of the diffuse type. Contact erosion is negligible, and the number of current interruptions very high.

As the interrupted current value increases (above the rated value), the electric arc tends to be transformed from the diffuse into the contracted type, due to the Hall effect.

Starting at the anode, the arc contracts and as the current rises further it tends to become sharply defined.

Near the area involved there is an increase in temperature with consequent thermal stress on the contact. To prevent overheating and erosion of the contacts, the arc is kept rotating. With arc rotation it becomes similar to a moving conductor which the current passes through.

The spiral geometry of ABB vacuum Interrupter contacts
The special geometry of the spiral contacts generates a radial magnetic field in all areas of the arc column, concentrated over the contact circumferences.

An electromagnetic force is self-generated and this acts tangentially, causing rapid arc rotation around the contact axis.

This means the arc is forced to rotate and to involve a wider surface than that of a fixed contracted arc.

Apart from minimising thermal stress on the contacts, all this makes contact erosion negligible and, above all, allows the interruption process even with very high short-circuits.

ABB vacuum interrupters are zero-current interrupters and are free of any re-striking.

Rapid reduction in the current charge and rapid condensation of the metal vapours simultaneously with the zero-current, means maximum dielectric strength can be restored between the interrupter contacts within microseconds.
Structure and functions

Solid-encapsulated pole

PVB’s pole assemblies are constructed of UV resistant HCEP encapsulating material and are designed to provide a rated 10,000 full load operations without maintenance. Meanwhile, HCEP can supply protection for vacuum interrupter to decrease the effect of dust and humidity, and main contacts will enduringly be encapsulated in vacuum condition through arc extinguished chamber which constitutes vacuum interrupter unit.

Characteristic of insulating material

HCEP is light, and anti-aging, so it can meet the requirements of using in outdoor severe environment and enhance anti-corrosion during high-pollution environment of equipment.

Advantages of HCEP over CEP

- Improved performance and heavily polluted areas
- Improved weatherability and outdoor aging
- Increased life expectancy
- Enhanced reliability

Why we need Hydrophobicity?

- Improved waters beading and runoff
- Lower leakage currents- Less discharge activity
- Lower flash over probability
- Battery reliability
- Improved life expectancy

Operating mechanism

PVB uses EL-mechanical operation, and the optional secondary accessories can be installed easily and quickly, and EL-mechanical operation is spring operated mechanism.

EL-mechanical operating mechanism

The mechanical operating mechanism of PVB circuit-breaker is of simple concept and use, and can be customized with a wide range of easily and rapidly installed accessories.

This simplicity translates into greater reliability of circuit breaker. The EL operating mechanism is of the stored energy type with the anti-pumping device mounted as standard to prevent incorrect operations.

Position of open or closed, and charging status are visible from the indication windows which are at the bottom of PVB tank (please find the dimension of the windows in detail shown below).

Manual operating PVB

Spring operating mechanism of PVB can be charged manually via charging rod simply and reliably. After the spring operating mechanism being charged, PVB can be closed via operation handle, if PVB is closed, PVB can be opened by operation handle without charging the spring operating mechanism again!

Protection functions of manual operating PVB

Protection elements of manual operating PVB are CT, MFC protection control device and overcurrent release. When the overhead lines have overloaded current or fault current, CT will sense the current and secondary current of CT will increase accordingly, thus the current into the MFC protection control will over the setting value to drive the overcurrent release to trip.

Comparison of CEP and HCEP after 1000 hours salt-fog test
Structure and functions

MFC protection control device
- Cold load time for Inrush current, time delay setting has four options: 0, 200 ms, 400 ms, 600 ms
- Time overcurrent, its delay time can be set from 40 ms to 3 s with 16 options
- Multiplier of rated current (CT secondary value) for instantaneous overcurrent protection can be set: 2, 3, 4, and 5
- Time delay for Instantaneous overcurrent can be set: 0, 40 ms, 80 ms, and 120 ms
- Power loss of MFC is less than 0.5 W at normal work condition
- Ambient temperature: -40°C~+85°C
- Protection function is achieved through phase A and phase C, which controlled by two independent CPU

Overcurrent release
- Rated current: 5 A, DC
- Insulation level: E
- Power frequent withstand voltage: 2000 V/1 min

Motor operating PVB with simple protection functions
In order to operate the circuit breaker safely and use less effort, meanwhile ready for DA, manual PVB can be upgradeto motor operating mechanism PVB by adding motor operator and control cabinet which is installed below the Pole to fulfill protection function.

(Note: One (1) potential transformer at least is needed to supply power for control cabinet).

Motor operator
This carries out automatic charging of the circuit-breaker operating mechanism closing springs. After circuit-breaker closing, the geared motor immediately recharges the closing springs. In the case of a power cut or during maintenance work, the closing springs can be charged manually in any case (by means of the special crank handle incorporated in the operating mechanism).

Opening and closing release
This allows remote control of the PVB. The release can operate both in direct and alternating current. This release is suitable for both Instantaneous and permanent service. In the case of instantaneous service, the minimum current impulse time must be 100 ms.

Auxiliary switch
Parameters	Values
Rated voltage, Un	DC 24, 48, 110, 220 V
AC (50, 60 Hz) 110, 220 V	
Operating limits | 85~110% Un
Power on inrush (Ps) | DC 500 W; AC=500 VA
Rated power (Pn) | DC 200 W; AC=200 VA
Inrush duration | 0.2 s
Charging time | 4~7 s
Insulation voltage | 2500 V 50 Hz (1 min)

Parameters	Values
Rated voltage, Un	DC 65~120% Un
AC 65~120% Un	
Power on inrush (Ps) | DC 200 W; AC=200 VA
Rated power (Pn) | DC 5 W; AC 5 VA
Inrush duration | 100 ms
Closing time | 35~80 ms
Opening time | 45~80 ms
Insulation voltage | 2500 V 50 Hz (1 min)

Parameters	Values
Rated voltage, Un | DC 220 V
Rated frequency | 50 Hz
Rated current | 3 A
Structure and functions

To fulfill more complicated protection functions settings, SCADA, and DA functions, PCD control unit and feeder relay REF 615 can be configured in control cabinet.

Motor operating PVB with Intelligent Protection Functions—PCD Control Device

An intelligent control device has functions of protection, monitoring, and controlling.

Local human-machine interface
- Enlarged LCD (1”x5”) with large characters (two lines of 20 characters)
- Simple menu driven programming using large six- button keypad
- Backlit display indicates metering values, fault information and location
- Temperature compensated
- Battery test function included

Indicator lights
- Continual self-checking with status indication
- Pickup and lockout indication

Front panel pushbuttons
- Up to six protection groups available
- Front panel button to set Alt 1 settings
- Ground blocked, remote blocked, and reclose blocked pushbuttons
- Sensitive earth fault (SEF) available for ungrounded or Delta CT applications
- PROG 1 battery test load feature preprogrammed
- User programmable LEDs for alarms, additional targets, etc
- Counters button for easy access to number of operations and overcurrent trip information

Hot line tagging feature
- On faceplate for simpler and safer operation
- Can be mapped for multiple applications

Front mounted RS-232 port
- Independent from rear mounted RS-232 port
- Easy download and upload of data on-site using WinPCD

Separate open and close pushbuttons
- Separate indicator light for easier viewing
- ANSI or IEC coloring for individual practices

Control cabinet
- Stainless steel cabinet, NEMA 3R with drip shield
- Battery provides full operational capability for up to 48 hours (15-27 kV) /24 hours (38 kV)
- Ample space for mounting communications equipment
- Three-point latching with padlockable handle
- Vented design

Communication & I/O ports
- Isolated RS-232 and RS-485 ports
- ST fiber optic ports
- Modbus ASCII and RTU, and DNP 3.0 TM protocols included with all units
- DNP 3.0 TM is compliant to Level 2
- IEC 60870-5-101
- Programmable I/O ports: 6 inputs, 4 outputs available with UPS
- Programmable I/O ports: 10 inputs, 7 outputs available with PS

Oscillographic data
- Storage capacity of 64 cycles of monitored waveform data at 32 samples per cycle
- All data can be downloaded on-site or remotely through communication interfaces

Fault recording
- Records last 128 operations of:
 - Phase and ground fault amperes
 - Phase and ground voltage
 - Isolates the faulted section
 - Reclose time- Distance to fault
 - Estimated fault resistance
 - Time stamp
 - Stores 1024 operation records

Metering
- Meters current and voltage (with PT voltage input supplied) to ± 1% accuracies
- Measures kW and kVAR, power factor, demand Watts and VARs, and frequency to ± 2% accuracy
- User-selectable load profile data sampling 5, 15, 30, 60 minute time internal which will contain 13.3, 40, 80 or 160 days of information
- All data can be downloaded on-site or remotely through communications interface
- Includes assignable phases for easy phase selection and selectable power flow

Protective functions
- Phase time overcurrent protection (51P)
- Phase instantaneous overcurrent protection (50P-1)
- Two definite time overcurrent settings (50P-2, 50P-3)
- Ground overcurrent protection (51N)
- Ground instantaneous overcurrent protection (50N-1)
- Two definite time ground overcurrent settings (50N-2, 50N-3)
- Negative sequence overcurrent protection (46)
- Two independent steps for load shed, restoration, and over-frequency (81S, 81R, 81O)
- Undervoltage and overvoltage control and alarm (27/59)
- Phase and ground directional overcurrent protection (67P, 67N)
- Negative sequence overcurrent protection (46)
- Two independent steps for load shed, restoration, and over-frequency (81S, 81R, 81O)
- Undervoltage and overvoltage control and alarm (27/59)
- Phase and ground directional overcurrent protection (67P, 67N)
- Sensitive Earth Fault protection with directional features (optional)
- Up to four reclose cycles (define a recloser cycle 79-1→79-5) close four times / trip five Adaptive reclosing shots: each reclose sequence allows independent programming of protective functions
- Available with up to 38 recloser curves, nine ANSI curves, four IEC curves and three user
- Programmable curves
Structure and functions

Motor operating PVB with intelligent protection functions—REF615 relay

REF 615 is a member of ABB's Relion® family and a part of its 615 protection and control product series. The 615 series IEDs are characterized by their compactness and withdrawable design. Engineered from ground up, the 615 series has been designed to unleash the full protection of the IEC 61850 standard for communication and interoperability of substation automation devices.

The REF615 provides main protection for overhead lines, cable feeders, and busbar systems of distribution substations. It can be applied for protection and control of grounded and un-grounded distribution systems. Flexible order coding allows for choosing current-only or current-and-voltage configurations to best fit your application needs.

- The REF615 is the one of most powerful, advanced and simplest protection relay, perfectly offering time and instantaneous overcurrent, negative sequence overcurrent, and voltage metering and protection. The relay also features optional high impedance fault (HIZ) and ungrounded distribution systems, and the relay incorporates a flexible three-phase multi-shot auto-reclose function for automatic restoration in temporary faults on overhead lines.
- I/O extension model, has maximum 17 BI/O, 13 SI/O
- Drawout design
- Six setting groups
- High-speed (<1 ms) output
- Fault recording: higher sample frequency, larger storage capacity can record 12 analogue signals and 64 digital signals
- HMI: Large, and easy to read LCD screen
- Environmentally friendly design with RoHS compliance

Standard configuration functionality

<table>
<thead>
<tr>
<th>Protection</th>
<th>Std. conf. A</th>
<th>Std. conf. B</th>
<th>Std. conf. C</th>
<th>Std. conf. D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overcurrent and non-directional earth-fault protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overcurrent and directional earth-fault protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection</td>
<td>Std. conf. A</td>
<td>Std. conf. B</td>
<td>Std. conf. C</td>
<td>Std. conf. D</td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent, low-set stage</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent, high-set stage, instance 1</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent, high-set stage, instance 2</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Directional earth-fault, low-set stage, instance 1</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Directional earth-fault, low-set stage, instance 2</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Directional earth-fault, high-set stage</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Non-directional earth-fault, high-set stage (cross country earth-fault)</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Non-directional sensitive earth-fault</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Negative-sequence overcurrent, instance 1</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Negative-sequence overcurrent, instance 2</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Phase discontinuity</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Thermal overload</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Circuit breaker failure protection</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Three-phase inrush current detection</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Arc protection with three sensors</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

Control

<table>
<thead>
<tr>
<th>Control</th>
<th>Std. conf. A</th>
<th>Std. conf. B</th>
<th>Std. conf. C</th>
<th>Std. conf. D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit breaker control with basic interlocking 1)</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Circuit breaker control with extended interlocking 2)</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Auto-reclosing of one circuit breaker</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Supervision and monitoring</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Trip-circuit supervision of two trip circuits</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Measurement</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Transient disturbance recorder</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Three-phase current measurement</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Current sequence components</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Residual current measurement</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Residual voltage measurement</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

● = Included, ○ = Optional at the time of the order
Electrical circuit diagram

The status of circuit breaker for all electrical control circuit diagram of the catalogue is: the circuit breaker is in open position; control circuit has no electricity; charging spring is uncharged.
Electrical circuit diagram

Motor operating PVB with smart control cabinet (PCD)

Motor operating PVB with smart control cabinet (REF 615)
Overall dimension and mounting modes

Dimension—PVB without disconnector

Dimension—PVB with disconnector

Type A CT
- 800
- 800

Type B CT
- 855
- 855

Note:
- Type A CT includes CT ratio: 400/5, 630/5, 630-400/5;
- Type B CT includes CT ratio: 200/5, 400-200/5.
Overall dimension and mounting modes

Mounting modes

Mounting mode 1:
Single pole rectangular bracket

Mounting mode 2:
Double pole rectangular bracket (Front)

Mounting mode 3:
Double pole rectangular bracket (side)

*For mounting mode 2/mounting mode 3/mounting mode 4, only rectangular bracket is supplied, if further support is needed, contact us.

Mounting mode 4:
Tower installation

Mounting mode 5:
Single pole side installation (includes: clamp and bracket, pole diameter: 180 mm-250 mm)

Mounting mode 6:
Single pole triangular bracket installation (includes Clamp and Bracket, pole diameter: 180 mm-250 mm)
Circuit-breaker selection and ordering

Type number description
E.G: PVB/12.06.20-M40-A1/BCU-A/06

Description:
PVB: outdoor pole mounted vacuum circuit breaker
Rated voltage: 12 kV
Rated current: 630 A
Short-circuit breaking current: 20 kA

HV cabinet: carbon steel
Operating mechanism: motor
CT ratio: 400/5 (A)
Control voltage: AC110 V
Disconnector: without disconnector
Control cabinet: simple control cabinet
Control cable length: 6 m

Ordering requirements
Outdoor pole mounted circuit breaker
Rated voltage: 12 kV
Rated current: 630 A (or 1250 A)
Rated short-circuit breaking current: 20 kA

Carbon steel HV cabinet (default)
Stainless steel HV cabinet

Manual operating mechanism
Motor operating mechanism

CT ratio: 630/5
Ratio: 400/5
Ratio: 200/5
Ratio: 630-400/5
Ratio: 400-200/5
Ratio: 1250/5
Other CT ratio, please comment requirement:

Control voltage: AC110 V
Control voltage: AC220 V
Control voltage: DC110 V
Control voltage: DC220 V
Control voltage: DC24 V
Control voltage: DC48 V

Without disconnector (default)
Integrated with disconnector

No control cabinet
Simple control cabinet
Intelligent control cabinet (With PCD)
Intelligent control cabinet (With REF 615)

Control cable length: 6 m
Control cable length: 9 m
Control cable length: 12 m
Control cable length: (<15 m)

Configurated with MFC protection control device
YES
NO

Ordering company:
ABB Xiamen Electrical Controlgear Co., Ltd.
Manufacturer: ABB Xiamen Electrical Controlgear Co., Ltd.
Signature: Signature:
Year: Month: Day: