BORDLINE® M80 AC_1000
For double-deck coaches with 1000 Vac train line voltage

The BORDLINE® M80 AC static converter is a compact, rugged unit used to generate onboard supply voltages for passenger coaches from the train line. This product is part of the ABB BORDLINE® M platform for onboard converters. The converter can be connected directly to the 1000 Vac/16.7 Hz train line.

Characteristics
- Compact and rugged design
- Easy access to diagnostic data
- Integrated battery charger

System overview
The BORDLINE® M80 AC onboard converter is based on state-of-the-art IGBT technology and provides three-phase sinusoidal AC voltage output as well as regulated DC voltage output for charging the battery.

BORDLINE® M80 AC auxiliary converter contains:
- Input and EMC filter (1)
- AC/DC converter with galvanic separation (2)
- 3 three phase inverters (3) with sine-filter (4)
- DC/DC converter for battery charging (5)
- AC 800PEC main control module (6)
- Electronics power supply (7)
- Flat battery start device (8)

AC/DC converter
The input voltage is connected through an input and EMC filter to an AC/DC converter, consisting of a boost converter and a resonant DC/DC converter. The boost converter controls the power factor while regulating the voltage on the primary DC-link, as a first level for the DC/DC converter. The DC/DC converter generates a regulated voltage for the secondary DC-link with galvanic separation from the input. The converter starts automatically when the input voltage is within the operating range.

Three-phase inverter
The three-phase inverter, due to the integrated sine-filter generates, a sinusoidal voltage at the converter output, which can be connected to standard three-phase motors. High overload capability and a soft-start function permit trouble-free starting of heavy loads (e.g. compressors). The device features three independent three-phase inverters, one with fixed voltage/frequency and two with variable frequency.

Battery charger
For charging the battery and supplying the vehicle DC loads, the onboard converter provides an independent DC/DC converter with galvanic separation. In case of a heavily discharged vehicle battery, the electronics will be fed from a flat battery start device which is connected directly to the input voltage. Switchover is managed automatically.
Control and monitoring
The main control is based on ABB’s AC 800PEC control platform and is structured so that each power section (AC or DC) can work independently of each other. All outputs are short-circuit-proof. The control unit also monitors voltages, currents and internal temperatures.

Cooling systems
The onboard converter is cooled by forced air. Externally mounted ventilators and air ducts form integral parts of the converter. A thermal monitoring device protects the converter from overheating.

Mechanical design
The equipment is housed in an IP54 cabinet, designed for mounting within the machine room. The design is modular and the heat sinks are partitioned, so that individual modules can be easily exchanged.

Diagnostics and service
The service-friendly modular design with highly standardized components ensures high reliability, excellent spare parts availability, and optimized lifecycle costs. For maintenance, an Ethernet interface is available. Further data can be obtained using a standard PC and the BORDLINE® View, a diagnostic tool that includes an advanced self-diagnosis function, which provides advice and instructions for service and repair. All major bus systems are available (MVB, CAN, etc.).

Application example
As part of the extensive Swiss Federal Railways (SBB) retrofit project ‘LION’, the class DPZ first generation double-deck trains are being upgraded to feature air conditioning, video surveillance and information systems. Increased comfort requires more powerful and energy-efficient auxiliary converters.

Technical data

<table>
<thead>
<tr>
<th>BORDLINE® M80 AC_1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train line voltage</td>
</tr>
<tr>
<td>AC output 1</td>
</tr>
<tr>
<td>AC output 2 and 3</td>
</tr>
<tr>
<td>DC output</td>
</tr>
<tr>
<td>DC output options</td>
</tr>
<tr>
<td>BUS interface</td>
</tr>
<tr>
<td>Product option (included)</td>
</tr>
<tr>
<td>Dimensions (L x W x H)</td>
</tr>
<tr>
<td>Weight</td>
</tr>
</tbody>
</table>